首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alcaligenes eutrophus H16 harbors seven hyp genes (hypA, B, F, C, D, E, and X) as part of the hydrogenase gene cluster on megaplasmid pHG1. Here we demonstrate that three of the hyp genes (hypA, B, and F) are duplicated in A. eutrophus, which explains the lack of a phenotypic change in single-site mutants impaired in one of the two copies. Mutants with lesions in both copies showed clear alterations in hydrogenase activities. Deletions in hypF1 and hypF2 completely abolished activities of the soluble hydrogenase and of the membrane-bound hydrogenase, mutations in hypA1 and hypA2 totally blocked the membrane-bound hydrogenase activity, while residual soluble hydrogenase activity accounted for the extremely slow growth of the strain on H2. Both hydrogenase activities of mutants defective in hypB1 and hypB2 were partially restored by elevating the concentration of nickel chloride in the medium. Reduction of hydrogenase activities in the double mutants correlated with varying degrees of maturation deficiency based upon the amount of unprocessed nickel-free hydrogenase precursor. Despite a high identity between the two copies of hyp gene products, substantial structural differences were identified between the two copies of hypF genes. HypF1, although functionally active, is a truncated version of HypF2, whose structure resembles HypF proteins of other organisms. Interestingly, the N-terminus of HypF2, which is missing in the HypF1 counterpart, contains a putative acylphosphatase domain in addition to a potential metal binding site. Received: 15 June 1998 / Accepted: 5 August 1998  相似文献   

3.
Plasmid pAL618 contains the genetic determinants for H2 uptake (hup) fromRhizobium leguminosarum bv.viciae, including a cluster of 17 genes namedhupSLCDEFGHIJK-hypABFCDE. A 1.7-kb segment of insert DNA located downstream ofhypE has now been sequenced, thus completing the sequence of the 20 441-bp insert DNA in plasmid pAL618. An open reading frame (designatedhypX) encoding a protein with a calculated Mr of 62 300 that exhibits extensive sequence similarity with HoxX fromAlcaligenes eutrophus (52% identity) andBradyrhizobium japonicum (57% identity) was identified 10 bp downstream ofhypE. Nodule bacteroids produced byhypX mutants in pea (Pisum sativum L.) plants grown at optimal nickel concentrations (100 µM) for hydrogenase expression, exhibited less than 5% of the wild-type levels of hydrogenase activity. These bacteroids contained wild-type levels of mRNA from hydrogenase structural genes (hupSL) but accumulated large amounts of the immature form of HupL protein. The Hup-deficient mutants were complemented for normal hydrogenase activity and nickel-dependent maturation of HupL by ahypX gene provided in trans. From expression analysis ofhypX-lacZ fusion genes, it appears thathypX gene is transcribed from the FnrN-dependenthyp promoter, thus placinghypX in thehyp operon (hypBFCDEX). Comparisons of the HypX/HoxX sequences with those in databases provided unexpected insights into their function in hydrogenase synthesis. Similarities were restricted to two distinct regions in the HypX/HoxX sequences. Region I, corresponding to a sequence conserved in N10-formyltetrahydrofolate-dependent enzymes involved in transferring one-carbon units (C1), was located in the N-terminal half of the protein, whereas region II, corresponding to a sequence conserved in enzymes of the enoyl-CoA hydratase/isomerase-family, was located in the C-terminal half. These similarities strongly suggest that HypX/HoxX have dual functions: binding of the C1 donor N10-formyl-tetrahydrofolate and transfer of the C1 to an unknown substrate, and catalysis of a reaction involving polarization of the C=O bond of an X-CO-SCoA substrate. These results also suggest the involvement of a small organic molecule, possibly synthesized with the participation of an X-CO-SCoA precursor and of formyl groups, in the synthesis of the metal-containing active centre of hydrogenase.  相似文献   

4.
Jacobi  A.  Rossmann  R.  Böck  A. 《Archives of microbiology》1992,158(6):444-451
The hyp operon of Escherichia coli comprises several genes which are required for the synthesis of all three hydrogenase isoenzymes. Deletions were introduced into each of the hypA-E genes, transferred to the chromosome and the resulting mutants were analysed for hydrogenase 1, 2 and 3 activity. The products of three of the genes, hypB, hypD and hypE were found to be essential for the synthesis of all three hydrogenase isoenzymes. A defect in hypB, as previously observed, could be complemented by high nickel concentrations in the medium, whereas the effects of mutants in the other genes could not. Lesions in hypA prevented development of hydrogenase 3 activity, did not influence the level of hydrogenase 1 but led to a considerable increase in hydrogenase 2 activity although the amount of hydrogenase 2 protein was not drastically altered. Lesions in hypC, on the other hand, led to a reduction of hydrogenase 1 activity and abolished hydrogenase 3 activity. HYPA and HYPC, besides being required for hydrogenase 3 formation, therefore may have a function in modulating the activities of the three isoenzymes with respect to each other and adjusting their levels to the requirement imposed by the physiological situation. Mutations in all five hyp genes prevented the apparent processing of the large subunits of all three hydrogenase isoenzymes. It is concluded that the products of the hypA-E genes play a role in nickel incorporation into hydrogenase apoprotein and/or processing of the constituent subunits of this enzyme. The importance of their roles is also reflected in their phylogenetic conservation in distantly related organisms.  相似文献   

5.
6.
Clostridium pasteurianum has two distinct hydrogenases, the bidirectional hydrogenase and the H2-oxidizing (uptake) hydrogenase. The H2-oxidizing hydrogenase has been purified (up to 970-fold) to a specific activity of 17,600 μmol H2 oxidized/min·mg protein (5 mM methylene blue) or 3.5 μmol H2 produced/min·mg protein (1 mM methyl viologen). The uptake hydrogenase has a Mr of 53,000 (one polypeptide chain). Depending upon how protein was measured, the Fe and S= contents (gatom/mol) were 4.7 and 5.2 (by the dye-binding assay) or 7.2 and 8.0 (by the Lowry method). Both reduced and oxidized forms of the enzyme gave electron paramagnetic resonance signals. The activation energy for H2-production and H2-oxidation by the uptake hydrogenase was 59.1 and 31.2 kJ/mol, respectively. In the exponential phase of growth, the ratio of uptake hydrogenase/bidirectional hydrogenase in NH3-grown cells was much lower than that in N2-fixing cells.  相似文献   

7.
Plasmid pAL618 contains the genetic determinants for H2 uptake (hup) fromRhizobium leguminosarum bv.viciae, including a cluster of 17 genes namedhupSLCDEFGHIJK-hypABFCDE. A 1.7-kb segment of insert DNA located downstream ofhypE has now been sequenced, thus completing the sequence of the 20 441-bp insert DNA in plasmid pAL618. An open reading frame (designatedhypX) encoding a protein with a calculated Mr of 62 300 that exhibits extensive sequence similarity with HoxX fromAlcaligenes eutrophus (52% identity) andBradyrhizobium japonicum (57% identity) was identified 10 bp downstream ofhypE. Nodule bacteroids produced byhypX mutants in pea (Pisum sativum L.) plants grown at optimal nickel concentrations (100 µM) for hydrogenase expression, exhibited less than 5% of the wild-type levels of hydrogenase activity. These bacteroids contained wild-type levels of mRNA from hydrogenase structural genes (hupSL) but accumulated large amounts of the immature form of HupL protein. The Hup-deficient mutants were complemented for normal hydrogenase activity and nickel-dependent maturation of HupL by ahypX gene provided in trans. From expression analysis ofhypX-lacZ fusion genes, it appears thathypX gene is transcribed from the FnrN-dependenthyp promoter, thus placinghypX in thehyp operon (hypBFCDEX). Comparisons of the HypX/HoxX sequences with those in databases provided unexpected insights into their function in hydrogenase synthesis. Similarities were restricted to two distinct regions in the HypX/HoxX sequences. Region I, corresponding to a sequence conserved in N10-formyltetrahydrofolate-dependent enzymes involved in transferring one-carbon units (C1), was located in the N-terminal half of the protein, whereas region II, corresponding to a sequence conserved in enzymes of the enoyl-CoA hydratase/isomerase-family, was located in the C-terminal half. These similarities strongly suggest that HypX/HoxX have dual functions: binding of the C1 donor N10-formyl-tetrahydrofolate and transfer of the C1 to an unknown substrate, and catalysis of a reaction involving polarization of the C=O bond of an X-CO-SCoA substrate. These results also suggest the involvement of a small organic molecule, possibly synthesized with the participation of an X-CO-SCoA precursor and of formyl groups, in the synthesis of the metal-containing active centre of hydrogenase.  相似文献   

8.
The nucleotide sequence (6138 bp) of a microaerobically inducible region (hupV/VI) from the Rhizobium leguminosarum bv. viciae hydrogenase gene cluster has been determined. Six genes, arranged as a single operon, were identified, and designated hypA, B, F, C, D and E based on the sequence similarities of all of them, except hypF, to genes from the hydrogenase pleiotropic operon (hyp) from Escherichia coli. The gene products from hypBFCDE were identified by in vivo expression analysis in E. coli, and their molecular sizes were consistent with those predicted from the nucleotide sequence. Transposon Tn5 insertions into hypB, hypF, hypD and hypE resulted in R. leguminosarum mutants that lacked any hydrogenase activity in symbiosis with peas, but still were able to synthesize the polypeptide for the hydrogenase large subunit. The gene products HypA, HypB, HypF and HypD contained CX2C motifs characteristic of metal-binding proteins. In addition, HypB bore a long histidine-rich stretch of amino acids near the N-terminus, suggesting a possible role in nickel binding for this protein. The gene product HypF, which was translationally coupled to HypB, presented two cysteine motifs (CX2CX81CX2C) with a capacity to form zinc finger-like structures in the N-terminal third of the protein. A role in nickel metabolism in relation to hydrogenase synthesis is postulated for proteins HypB and HypF.  相似文献   

9.
10.
Transposon Tn5 mutagenesis was used to isolate mutants of Rhodospirillum rubrum which lack uptake hydrogenase (Hup) activity. Three Tn5 insertions mapped at different positions within the same 13-kb EcoRI fragment (fragment E1). Hybridization experiments revealed homology to the structural hydrogenase genes hupSLM from Rhodobacter capsulatus and hupSL from Bradyrhizobium japonicum in a 3.8-kb EcoRI-ClaI subfragment of fragment E1. It is suggested that this region contains at least some of the structural genes encoding the nickel-dependent uptake hydrogenase of R. rubrum. At a distance of about 4.5 kb from the fragment homologous to hupSLM, a region with homology to a DNA fragment carrying hypDE and hoxXA from B. japonicum was identified. Stable insertion and deletion mutations were generated in vitro and introduced into R. rubrum by homogenotization. In comparison with the wild type, the resulting hup mutants showed increased nitrogenase-dependent H2 photoproduction. However, a mutation in a structural hup gene did not result in maximum H2 production rates, indicating that the capacity to recycle H2 was not completely lost. Highest H2 production rates were obtained with a mutant carrying an insertion in a nonstructural hup-specific sequence and with a deletion mutant affected in both structural and nonstructural hup genes. Thus, besides the known Hup activity, a second, previously unknown Hup activity seems to be involved in H2 recycling. A single regulatory or accessory gene might be responsible for both enzymes. In contrast to the nickel-dependent uptake hydrogenase, the second Hup activity seems to be resistant to the metal chelator EDTA.  相似文献   

11.
The purple sulfur phototrophic bacterium Thiocapsa roseopersicina BBS synthesizes at least three NiFe hydrogenases (Hox, Hup, Hyn). We characterized the physiological H2 consumption/evolution reactions in mutants having deletions of the structural genes of two hydrogenases in various combinations. This made possible the separation of the functionally distinct roles of the three hydrogenases. Data showed that Hox hydrogenase (unlike the Hup and Hyn hydrogenases) catalyzed the dark fermentative H2 evolution and the light-dependent H2 production in the presence of thiosulfate. Both Hox+ and Hup+ mutants demonstrated light-dependent H2 uptake stimulated by CO2 but only the Hup+ mutant was able to mediate O2-dependent H2 consumption in the dark. The ability of the Hox+ mutant to evolve or consume hydrogen was found to depend on a number of interplaying factors including both growth and reaction conditions (availability of glucose, sulfur compounds, CO2, H2, light). The study of the redox properties of Hox hydrogenase supported the reversibility of its action. Based on the results a scheme is suggested to describe the role of Hox hydrogenase in light-dependent and dark hydrogen metabolism in T. roseopersicina BBS.  相似文献   

12.
The conditions necessary for coordinate derepression of nitrogenase and O2-dependent hydrogenase activities in free-living cultures of Rhizobium japonicum were studied. Carbon sources were screened for their ability to support nitrogenase, and then hydrogenase activities. There was a positive correlation between the level of nitrogenase and corresponding hydrogenase activities among the various carbon substrates. The carbon substrate -ketoglutarate was able to support the highest levels of both nitrogenase and hydrogenase activities. When cells were incubated in -ketoglutarate-containing medium, without added H2 but in the presence of acetylene (to block H2 evolution from nitrogenase) significant hydrogenase activity was still observed. Complete inhibition of nitrogenase-dependent H2 evolution by acetylene was verified by the use of a Hup- mutant. Hydrogen is therefore not required to induce hydrogenase. The presence of 10% acetylene inhibited derepression of hydrogenase. Constitutive (Hupc) mutants were isolated which contained up to 9 times the level of hydrogenase acitivity than the wild type in nitrogenase induction medium. These mutants did not have greater nitrogenase activities than the wild type.This is contribution number 1254 from the Department of Biology and the McCollum-Pratt Institute Abbreviations: -Ketoglutarate-containing medium (LOKG) and pre-adaptation medium (SRM) as described in Materials and methods  相似文献   

13.
The bidirectional, NAD+-dependent hydrogenase from cyanobacteria is encoded by the structural genes hoxFUYH, which have been found to be clustered, though interspersed with different open reading frames (ORFs), in the heterocystous, N2-fixing Anabaena variabilis and in the unicellular Synechocystis PCC 6803. In another unicellular, non N2-fixing cyanobacterium, Anacystis nidulans, hoxF has now been identified as being separated by at least 16 kb from the residual structural genes hoxUYH. An ORF (termed hoxE gene) is located immediately upstream of hoxF in A. nidulans and in Synechocystis. Its deduced amino acid sequence shows similarities to the NuoE subunit of NADH dehydrogenase I of E. coli, to the homologous subunit of respiratory complex I in mitochondria, and also to the first 104 amino acids of HoxF in A. nidulans and Synechocystis. The diversity in the arrangement of hydrogenase genes in cyanobacteria is puzzling. The subunits HoxE, HoxF, and HoxU of the diaphorase part of the bidirectional hydrogenase have been discussed to be shared both by respiratory complex I and bidirectional hydrogenase in cyanobacteria. Different hoxU mutants were obtained by inserting a lacZKmR cassette into the gene both in A. nidulans and Anacystis PCC 7942. Such mutants showed reduced H2-evolution activities catalyzed by the bidirectional hydrogenase, but had nonimpaired respiratory O2-uptake. A common link between respiratory complex I and the diaphorase part of the bidirectional hydrogenase in cyanobacteria may still exist, but this hypothesis could not be verified in the present study by analyzing defined mutants impaired in one of the diaphorase genes. Received: 11 August 1997 / Accepted: 23 September 1997  相似文献   

14.
15.
Hydrogenase (hox) genes on the megaplasmid pHG21-a from Alcaligenes hydrogenophilus, whose lithoautotrophic growth (Aut) is supported by H2-oxidation (Hox) and CO2-fixation (Cfx), were cloned in vivo using a broad host range IncP1 plasmid R68.45. The recombinant plasmid was detected by the characteristic that it was transferred at a frequency 106-fold higher than pHG21-a in intrastrain mating of the Hox Cfx+ bacterium Pseudomonas oxalaticus OX1. All of six recombinant plasmids designated pFUs inherited all three resistance markers of R68.45. Four plasmids (pFU3, pFU8, pFU11, and pFU15) with a molecular size of 69 Md had only membrane-bound hydrogenase (hoxP) genes, and two plasmids (pFU7 and pFU9) of 85 Md had both hoxP and soluble hydrogenase (hoxS) genes. The Hox Cfx bacteria P. oxalaticus OX4 and OX6 gained Aut phenotype by the possession of pHG21-a, pFU7 or pFU15. These results showed that Hox plasmid pHG21-a was an Aut plasmid and pFU7 and pFU15 inherited this phenotype, pFU7 was maintained stably in P. oxalaticus OX1 and had all of the lithoautotrophic phenotypes of pHG21-a. pFU7, rather than pHG21-a, is useful for further studies on the transfer of the Aut phenotype to a broad range of bacteria.  相似文献   

16.
Many bacteria reduce inorganic sulfate to sulfide to satisfy their need for sulfur, one of the most important elements for biological life. But little is known about the metabolic pathways involving hydrogen sulfide (H2S) in mesophilic bacteria. By genomic sequence analysis, a complete set of genes for the assimilatory sulfate reduction pathway has been identified in the ethanologen Zymomonas mobilis. In this study, the first ATP sulfurylase- and final sulfite reductase-encoding genes cysND and cysIJ, respectively, in the putative pathway from sulfate to sulfite in Z. mobilis ZM4 was singly or doubly inactivated by homologous recombination and a site-specific FLP-FRT recombination. The resultant mutants, ?cysND, ?cysIJ and ?cysND-cat?cysIJ, were unable to produce detectable H2S in glucose or sucrose-containing rich medium and sweet sorghum juice, in which the wild-type ZM4 produced detectable H2S. While adding sulfite (SO3 2?) into media impaired the growth of the mutants and ZM4 to varying degrees, the sulfite restored the H2S formation in the ?cysND in the above media, but not in the ?cysIJ and ?cysND-cat?cysIJ mutants. Although it seemed that the inactivation of cysND and cysIJ did not exert a significant negative effect on the cell growth at least in glucose or sucrose medium, the ethanol production of all mutants was inferior to that of ZM4 in sucrose medium and sweet sorghum juice. In addition, adding l-cysteine to glucose-containing rich media restored H2S formation of all mutants, indicating the existence of another pathway for producing H2S in Z. mobilis. All these results would help to further elucidate the metabolic pathways involving H2S in Z. mobilis and exploit the biotechnological applications of this industrially important bacterium.  相似文献   

17.
Wolinella succinogenes can grow by anaerobic respiration with fumarate or polysulfide as the terminal electron acceptor, and H2 or formate as the electron donor. A ΔhydABC mutant lacking the hydrogenase structural genes did not grow with H2 and either fumarate or polysulfide. In contrast to the wild-type strain, the mutant grown with fumarate and with formate instead of H2 did not catalyze the reduction of fumarate, polysulfide, dimethylnaphthoquinone, or benzyl viologen by H2. Growth and enzymic activities were restored upon integration of a plasmid carrying hydABC into the genome of the ΔhydABC mutant. The ΔhydABC mutant was complemented with hydABC operons modified by artificial stop codons in hydA (StopA) or at the 5′-end of hydC (StopC). The StopC mutant lacked HydC, and the hydrophobic C-terminus of HydA was missing in the hydrogenase of the StopA mutant. The two mutants catalyzed benzyl viologen reduction by H2. The enzyme activity was located in the membrane of the mutants. A mutant with both modifications (StopAC) contained the activity in the periplasm. The three mutants did not grow with H2 and either fumarate or polysulfide, and did not catalyze dimethylnaphthoquinone reduction by H2. We conclude that the same hydrogenase serves in the anaerobic respiration with fumarate and with polysulfide. HydC and the C-terminus of HydA appear to be required for both routes of electron transport and for dimethylnaphthoquinone reduction by H2. The hydrogenase is anchored in the membrane by HydC and by the C-terminus of HydA. The catalytic subunit HydB is oriented towards the periplasmic side of the membrane. Received: 29 December 1997 / Accepted: 6 March 1998  相似文献   

18.
A component with a difference spectrum similar to that of b-type cytochromes which becomes reduced upon the addition of H2 has been demonstrated in soybean nodule bacteroids. This electron carrier, referred to as component 559-H2, is present in hydrogenase-positive strains of Rhizobium japonicum but has not been detected in mutants that lack hydrogenase activity or in hydrogenase-negative wild-type strains. A positive correlation between concentrations of component 559-H2 and hydrogenase activities has been established. These results provide further evidence that component 559-H2 is involved in H2 metabolism in R. japonicum.  相似文献   

19.
In Alcaligenes eutrophus H16 a pleiotropic DNA-region is involved in formation of catalytically active hydrogenases. This region lies within the hydrogenase gene cluster of megaplasmid pHG1. Nucleotide sequence determination revealed five open reading frames with significant amino acid homology to the products of the hyp operon of Escherichia coli and other hydrogenase-related gene products of diverse organisms. Mutants of A. eutrophus H16 carrying Tn5 insertions in two genes (hypB and hypD) lacked catalytic activity of both soluble (SH) and membrane-bound (MBH) hydrogenase. Immunological analysis showed that the mutants contained SH-and MBH-specific antigen. Growing the cells in the presence of 63Ni2+ yielded significantly lower nickel accumulation rates of the mutant strains compared to the wild-type. Analysis of partially purified SH showed only traces of nickel in the mutant protein suggesting that the gene products of the pleiotropic region are involved in the supply and/or incorporation of nickel into the two hydrogenases of A. eutrophus.  相似文献   

20.
《BBA》2021,1862(12):148492
Thiocapsa bogorovii BBS (former name Thiocapsa roseopersicina) contains HydSL hydrogenase belonging to 1e subgroup of NiFe hydrogenases (isp-type). The operon of these hydrogenases contains gene for small subunit (hydS), gene for large subunit (hupL), and genes isp1 and isp2 between them. It is predicted that last two genes code electron transport careers for electron transfer from/to HydSL hydrogenase. However, the interaction between them is unclear. The aim of this study was to determine structural and functional role of T. bogorovii HydS C-terminal end. For this purpose, we modelled all subunits of the complex HydS-HydL-Isp1-Isp2. Hydrophobicity surface analysis of the Isp1 model revealed highly hydrophobic helices suggesting potential membrane localization, as well as the hydrophilic C-terminus, which is likely localized outside of membrane. Isp1 model was docked with models of full length and C-terminal truncated HydSL hydrogenases and results illustrate the possibility of HydSL membrane anchoring via transmembrane Isp1 with essential participation of C-terminal end of HydS in the interaction. C-terminal end of HydS subunit was deleted and our studies revealed that the truncated HydSL hydrogenase detached from cellular membranes in contrast to native hydrogenase. It is known that HydSL hydrogenase in T. bogorovii performs the reaction of elemental sulfur reduction (S0 + H2 = ≥H2S). Cells with truncated HydS produced much less H2S in the presence of H2 and S0. Thus, our data support the conclusion that C-terminal end of HydS subunit participates in interaction of HydSL hydrogenase with Isp1 protein for membrane anchoring and electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号