首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Snake venom proteomes have long been investigated to explore a multitude of biologically active components that are used for prey capture and defense, and are involved in the pathological effects observed upon mammalian envenomation. Glycosylation is a major protein post-translational modification in venoms and contributes to the diversification of proteomes. We have shown that Bothrops venoms are markedly defined by their content of glycoproteins, and that most N-glycan structures of eight Bothrops venoms contain sialic acid, while bisected N-acetylglucosamine was identified in Bothrops cotiara venom. To further investigate the mechanisms involved in the generation of different venoms by related snakes, here the glycoproteomes of nine Bothrops venoms (Bothrops atrox, B. cotiara, Bothrops erythromelas, Bothrops fonsecai, B. insularis, Bothrops jararaca, Bothrops jararacussu, Bothrops moojeni and Bothrops neuwiedi) were comparatively analyzed by enrichment with three lectins of different specificities, recognizing bisecting N-acetylglucosamine- and sialic acid-containing glycoproteins, and mass spectrometry. The lectin capture strategy generated venom fractions enriched with several glycoproteins, including metalloprotease, serine protease, and L- amino acid oxidase, in addition to various types of low abundant enzymes. The different contents of lectin-enriched proteins underscore novel aspects of the variability of the glycoprotein subproteomes of Bothrops venoms and point to the role of distinct types of glycan chains in generating different venoms by closely related snake species.  相似文献   

2.
In Latin America, Bothrops snakes account for most snake bites in humans, and the recommended treatment is administration of multispecific Bothrops antivenom (SAB – soro antibotrópico). However, Bothrops snakes are very diverse with regard to their venom composition, which raises the issue of which venoms should be used as immunizing antigens for the production of pan-specific Bothrops antivenoms. In this study, we simultaneously compared the composition and reactivity with SAB of venoms collected from six species of snakes, distributed in pairs from three distinct phylogenetic clades: Bothrops, Bothropoides and Rhinocerophis. We also evaluated the neutralization of Bothrops atrox venom, which is the species responsible for most snake bites in the Amazon region, but not included in the immunization antigen mixture used to produce SAB. Using mass spectrometric and chromatographic approaches, we observed a lack of similarity in protein composition between the venoms from closely related snakes and a high similarity between the venoms of phylogenetically more distant snakes, suggesting little connection between taxonomic position and venom composition. P-III snake venom metalloproteinases (SVMPs) are the most antigenic toxins in the venoms of snakes from the Bothrops complex, whereas class P-I SVMPs, snake venom serine proteinases and phospholipases A2 reacted with antibodies in lower levels. Low molecular size toxins, such as disintegrins and bradykinin-potentiating peptides, were poorly antigenic. Toxins from the same protein family showed antigenic cross-reactivity among venoms from different species; SAB was efficient in neutralizing the B. atrox venom major toxins. Thus, we suggest that it is possible to obtain pan-specific effective antivenoms for Bothrops envenomations through immunization with venoms from only a few species of snakes, if these venoms contain protein classes that are representative of all species to which the antivenom is targeted.  相似文献   

3.
Glycosylation is an important post-translational modification of snake venom proteins and contributes to venom proteome complexity. Many snake venom components are known to be glycosylated, however, very little is known about the carbohydrate structures present in venom glycoproteins. Previous studies showed that the ontogenetic shift in diet, from ectothermic prey in early life to endothermic prey in adulthood, and shift in animal size are associated with changes in the venom proteome of the snake Bothrops jararaca. In this study we explored the composition of the N-glycome released from newborn and adult B. jararaca venom proteins. We used an ion trap mass spectrometer (IT-MS) to disassemble glycan structures based on the use of several pathways of MS (MSn) and demonstrate the presence of some structural isomers in both newborn and adult venom B. jararaca N-glycans. The main N-glycans identified in both venoms are of the hybrid/complex type however some mannose-rich type structures were also detected. The N-glycan composition of newborn and adult venoms did not vary indicating that differences in the utilization of the N-glycosylation motif could be the explanation for the differences in the glycosylation levels indicated by the differential electrophoretic profiles previously reported for B. jararaca newborn and adult venoms.  相似文献   

4.
One novel venom factor was isolated and purified from the venom of Taiwan habu (Trimeresurus mucrosquamatus) using two consecutive anion-exchange and gel-filtration chromatographies followed by cation-exchange HPLC. Further characterization of the purified protein indicated that it lacks the proteolytic activity toward fibrinogen molecules, suggesting that this protein factor does not belong to the familes of metalloproteinases and thrombin-like serine proteases commonly found in the crude venoms of various crotalid snakes. The purified protein exists as a native dimeric protein of 26 kDa, consisting of two closely similar subunits of 16 and 13 kDa, held together by disulfide linkage. N-Terminal sequence analysis revealed that both chains are homologous to each other at the N-terminal fragment and also similar to the factors IX/X-binding protein isolated fromTrimeresurus flavoviridis and botrocetin fromBothrops jararaca. This study points to the existence of one new two-chain venom factor without fibrinogenase activity from Taiwan habu, which, in contrast to botrocetin, promotes platelet agglutination even in the absence of von Willebrand factor. Unlike factors IX/X-binding proteins, it did not show affinity to coagulation factors IX and X in the presence of Ca2+ ion. It also shows no inhibition on thrombin, in contrast with bothrojaracin, a thrombin inhibitor isolated fromBothrops jararaca venom. We have therefore named this novel venom factortrimecetin to distinguish it from some structurally related venom factors present in various crotalid and viperid snakes.  相似文献   

5.
Snake venom peptidomes are valuable sources of pharmacologically active compounds. We analyzed the peptidic fractions (peptides with molecular masses < 10,000 Da) of venoms of Vipera ammodytes meridionalis (Viperinae), the most toxic snake in Europe, and Bothrops jararacussu (Crotalinae), an extremely poisonous snake of South America. Liquid chromatography/mass spectrometry (LC/MS), direct infusion electrospray mass spectrometry (ESI-MS) and matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were applied to characterize the peptides of both snake venoms. 32 bradykinin-potentiating peptides (BPPs) were identified in the Crotalinae venom and their sequences determined. 3 metalloproteinase inhibitors, 10 BPPs and a Kunitz-type inhibitor were observed in the Viperinae venom peptidome. Variability in the C-terminus of homologous BPPs was observed, which can influence the pharmacological effects. The data obtained so far show a subfamily specificity of the venom peptidome in the Viperidae family: BPPs are the major peptide component of the Crotalinae venom peptidome lacking Kunitz-type inhibitors (with one exception) while the Viperinae venom, in addition to BPPs, can contain peptides of the bovine pancreatic trypsin inhibitor family. We found indications for a post-translational phosphorylation of serine residues in Bothrops jararacussu venom BPP (S[combining low line]QGLPPGPPIP), which could be a regulatory mechanism in their interactions with ACE, and might influence the hypotensive effect. Homology between venom BPPs from Viperidae snakes and venom natriuretic peptide precursors from Elapidae snakes suggests a structural similarity between the respective peptides from the peptidomes of both snake families. The results demonstrate that the venoms of both snakes are rich sources of peptides influencing important physiological systems such as blood pressure regulation and hemostasis. The data can be used for pharmacological and medical applications.  相似文献   

6.
7.
Viperid snakes show the most complex snake‐venom proteomes and offer an intriguing challenge in terms of understanding the nature of their components and the pathological outcomes of envenomation characterized by local and systemic effects. In this work, the venom complexity of eight Bothrops species was analyzed by 2‐DE, and their subproteomes of proteinases were explored by 2‐D immunostaining and 2‐D gelatin zymography, demonstrating the diversity of their profiles. Heparin, a highly sulfated glycosaminoglycan released from mast cells, is involved in anti‐coagulant and anti‐inflammatory processes. Here, we explored the hypothesis that heparin released upon envenomation could interact with toxins and interfere with venom pathogenesis. We first identified the Bothrops venom subproteome of toxins that bind with high‐affinity for heparin as composed of mainly serine proteinases and C‐type lectins. Next, we explored the Bothrops jararaca toxins that bind to heparin under physiological conditions and identified a relationship between the subproteomes of proteinases, and that of heparin‐binding toxins. Only the non‐bound fraction, composed mainly of metalloproteinases, showed lethal and hemorrhagic activities, whereas the heparin‐bound fraction contained mainly serine proteinases associated with coagulant and fibrinogenolytic activities. These data suggest that heparin binding to B. jararaca venom components in vivo has a minor protective effect to venom toxicity.  相似文献   

8.
Bothrops alcatraz is a new pitviper species derived from the Bothrops jararaca group, whose natural habitat is situated in Alcatrazes Archipelago, a group of marine islands near São Paulo State coast in Brazil. Herein, the biological and biochemical properties of venoms of four adult specimens of B. alcatraz were examined comparatively to a reference pool of Bothrops jararaca venom. Both venoms showed similar activities and electrophoretic patterns, but B. alcatraz venom showed three protein bands of molecular masses of 97, 80 and 38 kDa that were not present in B. jararaca reference venom. The i.p. median lethal dose of B. alcatraz venom ranged from 5.1 to 6.6 mg/kg, while it was 1.5 mg/kg for B. jararaca venom. The minimum hemorrhagic dose of B. jararaca venom was 0.63, whereas 2.28 μg/mouse for B. alcatraz venom. In contrast, B. alcatraz venom was more potent in regard to procoagulant and proteolytic activities. These differences were supported by western blotting and neutralization tests, employing commercial bothropic antivenom, which showed that hemorrhagic and lethal activities of B. alcatraz venom were less effectively inhibited than B. jararaca venom. Such results evidence that B. alcatraz shows quantitative and qualitative differences in venom composition in comparison with its B. jararaca relatives, which might represent an optimization of venom towards a specialized diet.  相似文献   

9.
Fibrinogen is an essential protein involved in several steps of hemostasis, being associated with the final steps of the blood coagulation mechanism. Herein, we describe the purification and characterization of a reptile fibrinogen, obtained from Bothrops jararaca plasma. Native B. jararaca fibrinogen showed a molecular mass of 372 kDa, and the reduced and alkylated fibrinogen molecule showed three chains of 71, 60 and 55 kDa, which are similar to the molecular masses of human and bovine Aα, Bβ and γ fibrinogen chains. Remarkably, B. jararaca fibrinogen was clotted by bovine thrombin, but B. jararaca, Crotalus durissus terrificus and Lachesis muta rhombeata venoms could not induce its clotting or hydrolysis. Thus, despite the similarities between B. jararaca and mammalian fibrinogens, the former shows distinctive features, which protect B. jararaca snakes from accidental envenomation.  相似文献   

10.
One novel venom factor was isolated and purified from the venom of Taiwan habu (Trimeresurus mucrosquamatus) using two consecutive anion-exchange and gel-filtration chromatographies followed by cation-exchange HPLC. Further characterization of the purified protein indicated that it lacks the proteolytic activity toward fibrinogen molecules, suggesting that this protein factor does not belong to the familes of metalloproteinases and thrombin-like serine proteases commonly found in the crude venoms of various crotalid snakes. The purified protein exists as a native dimeric protein of 26 kDa, consisting of two closely similar subunits of 16 and 13 kDa, held together by disulfide linkage. N-Terminal sequence analysis revealed that both chains are homologous to each other at the N-terminal fragment and also similar to the factors IX/X-binding protein isolated fromTrimeresurus flavoviridis and botrocetin fromBothrops jararaca. This study points to the existence of one new two-chain venom factor without fibrinogenase activity from Taiwan habu, which, in contrast to botrocetin, promotes platelet agglutination even in the absence of von Willebrand factor. Unlike factors IX/X-binding proteins, it did not show affinity to coagulation factors IX and X in the presence of Ca2+ ion. It also shows no inhibition on thrombin, in contrast with bothrojaracin, a thrombin inhibitor isolated fromBothrops jararaca venom. We have therefore named this novel venom factortrimecetin to distinguish it from some structurally related venom factors present in various crotalid and viperid snakes.  相似文献   

11.
We report the comparative proteomic characterization of the venoms of adult and newborn specimens of the lancehead pitviper Bothrops asper from two geographically isolated populations from the Caribbean and the Pacific versants of Costa Rica. The crude venoms were fractionated by reverse-phase HPLC, followed by analysis of each chromatographic fraction by SDS-PAGE, N-terminal sequencing, MALDI-TOF mass fingerprinting, and collision-induced dissociation tandem mass spectrometry of tryptic peptides. The two B. asper populations, separated since the late Miocene or early Pliocene (8-5 mya) by the Guanacaste Mountain Range, Central Mountain Range, and Talamanca Mountain Range, contain both identical and different (iso)enzymes from the PLA 2, serine proteinase, and SVMP families. Using a similarity coefficient, we estimate that the similarity of venom proteins between the two B. asper populations may be around 52%. Compositional differences between venoms among different geographic regions may be due to evolutionary environmental pressure acting on isolated populations. To investigate venom variability among specimens from the two B. asper populations, the reverse-phase HPLC protein profiles of 15 venoms from Caribbean specimens and 11 venoms from snakes from Pacific regions were compared. Within each B. asper geographic populations, all major venom protein families appeared to be subjected to individual variations. The occurrence of intraspecific individual allopatric variability highlights the concept that a species, B. asper in our case, should be considered as a group of metapopulations. Analysis of pooled venoms of neonate specimens from Caribbean and Pacific regions with those of adult snakes from the same geographical habitat revealed prominent ontogenetic changes in both geographical populations. Major ontogenetic changes appear to be a shift from a PIII-SVMP-rich to a PI-SVMP-rich venom and the secretion in adults of a distinct set of PLA 2 molecules than in the neonates. In addition, the ontogenetic venom composition shift results in increasing venom complexity, indicating that the requirement for the venom to immobilize prey and initiate digestion may change with the size (age) of the snake. Besides ecological and taxonomical implications, the geographical venom variability reported here may have an impact in the treatment of bite victims and in the selection of specimens for antivenom production. The occurrence of intraspecies variability in the biochemical composition and symptomatology after envenomation by snakes from different geographical location and age has long been appreciated by herpetologist and toxinologists, though detailed comparative proteomic analysis are scarce. Our study represents the first detailed characterization of individual and ontogenetic venom protein profile variations in two geographical isolated B. asper populations, and highlights the necessity of using pooled venoms as a statistically representative venom for antivenom production.  相似文献   

12.
Snake venoms contain a large number of hemostatically active proteins that are structurally related to Ca(2+)-dependent animal lectins. These proteins, called C-type lectin-like proteins (CLPs), are generally found as heterodimers composed of two homologous subunits linked by a disulfide bond. Here, bothrojaracin (BJC), a CLP from Bothrops jararaca venom that is also a thrombin inhibitor, has been used as a model to study the subunit dissociation and unfolding of CLPs from snake venom. Dithiothreitol (DTT) up to 10 mM produces minor effects on the tertiary structure and activity of BJC. On the other hand, chromatographic studies and fluorescence polarization measurements indicate that the interchain disulfide bond is disrupted by DTT, although the dimeric association is maintained. Treatment of BJC with urea produces a progressive red shift in the emission spectra of the tryptophan residues, and circular dichroism measurements show that BJC retains significant secondary structure in the presence of 8 M urea, suggesting only partial unfolding. The effects of urea are fully reversible, as there is complete recovery of BJC activity after removal of the denaturing agent. Addition of DTT to a protein sample previously treated with 8 M urea produces a slightly larger spectral shift than that observed with urea alone. Furthermore, in this condition BJC loses its secondary structure, and its subunits are dissociated. After removal of urea and DTT, BJC is inactive toward thrombin, suggesting the irreversibility of their combined action. Altogether, our data show that (i) BJC is highly resistant to urea or DTT effects, requiring the simultaneous action of both agents to fully denature the protein, and (ii) BJC monomers are tightly associated, and the presence of DTT combined with high urea concentrations is necessary to disrupt them. On the basis of these results we propose the first denaturation model for a CLP from snake venom.  相似文献   

13.
  • 1.1. The protein composition of Bothrops jararaca venom and venom gland was analyzed through SDS-PAGE, after isoproterenol (IPR) treatment.
  • 2.2. Some proteins (47, 48, 57 and 72 kDa) were detected in the gland homogenate from the control but not from the IPR-treated samples.
  • 3.3. Three proteins (26.5, 44.5 and 53 kDa) were detected in the venom gland from IPR-treated snakes but not from the venom gland from the control.
  • 4.4. In the venom samples proteins of 41 and 74 kDa were detected only in the IPR treated samples, while proteins of 17 and 28 kDa were detected only in the control.
  • 5.5. The biological activity of the venom did not change with IPR treatment.
  相似文献   

14.
1. Examination of the polyacrylamide gel electrophoretic (PAGE) and SDS-PAGE patterns of snake venoms shows that these patterns are useful for species differentiation (and hence identification) for snakes of certain genera but have only limited application for snakes from some other genera, due either to the marked individual variations in the venoms or the lack of marked interspecific differences within the same genus. 2. There is no substantial intersubspecific difference in the electrophoretic patterns of the venoms. 3. In general there are no common characteristics in the electrophoretic patterns of the venom at the generic level because of the wide variations in the electrophoretic patterns of venoms of snakes within the same genus. 4. At the familial level, the venoms of Elapidae exhibited SDS-PAGE patterns distinct from those of Crotalidae.  相似文献   

15.
A thrombin-like enzyme named BjussuSP-I, isolated from B. jararacussu snake venom, is an acidic single chain glycoprotein with approximately 6% sugar, Mr=61,000 under reducing conditions and pI approximately 3.8, representing 1.09% of the chromatographic A(280) recovery. BjussuSP-I is a glycosylated serine protease containing both N-linked carbohydrates and sialic acid in its structure. BjussuSP-I showed a high clotting activity upon human plasma, which was inhibited by PMSF, leupeptin, heparin and 1,10-phenantroline. This enzyme showed high stability regarding coagulant activity when analyzed at different temperatures (-70 to 37 degrees C), pHs (4.5 to 8.0), and presence of two divalent metal ions (Ca(2+) and Mg(2+)). It also displayed TAME esterase and proteolytic activities toward natural (fibrinogen and fibrin) and synthetic (BAPNA) substrates, respectively, being also inhibited by PMSF and leupeptin. BjussuSP-I can induce production of polyclonal antibodies able to inhibit its clotting activity, but unable to inhibit its proteolytic activity on fibrinogen. The enzyme also showed crossed immunoreactivity against 11 venom samples of Bothrops, 1 of Crotalus, and 1 of Calloselasma snakes, in addition of LAAO isolated from B. moojeni venom. It displayed neither hemorrhagic, myotoxic, edema-inducing profiles nor proteolytic activity on casein. BjussuSP-I showed an N-terminal sequence (VLGGDECDINEHPFLA FLYS) similar to other thrombin-like enzymes from snake venoms. Based on its biochemical, enzymatic and pharmacological characteristics, BjussuSP-I was identified as a new thrombin-like enzyme isoform from Bothrops jararacussu snake venom.  相似文献   

16.
17.
Angiostatin is a plasminogen-derived anti-angiogenic factor composed of its first four kringle structures. This molecule is generated by proteolytic cleavage of plasminogen by some proteolytic enzymes in vitro. Since venoms of viper snakes are a rich source of both serine- and metalloproteinase, we hypothesized that angiostatin-like polypeptides could be generated during the envenomation after snake bites and play a pathophysiological role in the local tissue damage and regeneration. Our results showed that crude venoms from several species of Bothrops snakes were able to generate angiostatin-like polypeptides and purified metalloproteinases but not serine proteinases from Bothrops jararaca and Bothrops moojeni venoms were responsible for their generation in vitro. The putative plasminogen cleavage sites by the crude venoms and purified proteinases were determined by N-terminal amino acid sequencing of the angiostatin-like molecules. Angiostatin-like peptides derived from human plasminogen digestion by jararhagin, a metalloproteinase isolated from B. jararaca venom, inhibited endothelial cell proliferation in vitro. These results indicate that angiostatin-like molecules can be generated upon snakebite envenomations and may account for the poor and incomplete regenerative response observed in the damaged tissue.  相似文献   

18.
Several bradykinin potentiating peptides (BPPs) were isolated from the venom of the Brazilian arboricole snake Bothrops insularis by gel filtration on Sephadex G-150-120, followed by sequencial high-voltage paper electrophoreses atpH 3.5, 6.5, and 2.1. The BPPs were assayed by their ability to potentiate the contractile activity, on the isolated guinea pig ileum, and the hypotensive activity, on anesthetized rats, of bradykinin. Eight BPPs, containing 3–13 amino acid residues, were sequenced and their primary structures were shown to have a marked degree of homology with those of several BPPs from other venoms.  相似文献   

19.
20.
Bothrops insularis is a threatened snake endemic to Queimada Grande Island, southern coast of S?o Paulo, Brazil, and the occurrence of sexual abnormalities in males, females and intersexes (females with functional ovaries and rudimentary hemipenis) has been reported in this population. The aim of this study was to identify ontogenetic shifts in protease expression of offspring of captive-bred B. insularis. Three neonates from a single litter were maintained at the facilities of Laboratory of Herpetology, Institute Butantan, for 41 months. The snakes were individually milked and venoms were analyzed both by SDS-PAGE, under reducing conditions, and for biochemical activities. The venoms from the mother and from a pool of adult specimens were used as references. In regard to the electrophoretic patterns, common bands were identified mainly between 14 and 50 kDa among snakes. The occurrence of proteolytic activity was noticed predominantly between 27 and 45 kDa in zymograms. Inhibitory assays with 1,10-phenantroline (10 mM) and PMSF (5 mM) showed that venoms possessed both metalloproteases and serine proteases. Venoms of young specimens showed a higher coagulant activity than those of adults, especially upon factors X and II. All venoms presented fibrino(geno)lytic activity, degrading Aalpha and Bbeta chains of fibrinogen, and lysing fibrin plate. These findings can reflect important individual, ontogenetic and sexual differences on venom composition and are likely correlated with diet habits of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号