首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Major gene inheritance of resistance to Potato leafroll virus (PLRV) was demonstrated in a parthenogenic population derived from the highly resistant tetraploid andigena landrace, LOP-868. This major gene or chromosome region seems to control a single mechanism for resistance to infection and virus accumulation in this source. About 149 dihaploid lines segregated in a ratio of 107 resistant to 32 susceptible, fitting the expected ratio for inheritance of a duplex gene under random chromatid segregation. A tetraploid AFLP map was constructed using as reference the ultra high density (UHD) map. All AFLP markers associated with PLRV resistance mapped to the same linkage group. Map position was confirmed by analysis of previously-mapped SSR markers. Rl adg is located on the upper arm of chromosome V, at 1 cM from its most closely linked AFLP marker, E35M48.192. This marker will be used to develop allele-specific primers or a pair of flanking PCR-based markers for their use in marker assisted selection.  相似文献   

2.
The obligate biotrophic, soil-borne fungus Synchytrium endobioticum causes wart disease of potato (Solanum tuberosum), which is a serious problem for crop production in countries with moderate climates. S. endobioticum induces hypertrophic cell divisions in plant host tissues leading to the formation of tumor-like structures. Potato wart is a quarantine disease and chemical control is not possible. From 38 S. endobioticum pathotypes occurring in Europe, pathotypes 1, 2, 6 and 18 are the most relevant. Genetic resistance to wart is available but only few current potato varieties are resistant to all four pathotypes. The phenotypic evaluation of wart resistance is laborious, time-consuming and sometimes ambiguous, which makes breeding for resistance difficult. Molecular markers diagnostic for genes for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 would greatly facilitate the selection of new, resistant cultivars. Two tetraploid half-sib families (266 individuals) segregating for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 were produced by crossing a resistant genotype with two different susceptible ones. The families were scored for five different wart resistance phenotypes. The distribution of mean resistance scores was quantitative in both families. Resistance to pathotypes 2, 6 and 18 was correlated and independent from resistance to pathotype 1. DNA pools were constructed from the most resistant and most susceptible individuals and screened with genome wide simple sequence repeat (SSR), inverted simple sequence region (ISSR) and randomly amplified polymorphic DNA (RAPD) markers. Bulked segregant analysis identified three SSR markers that were linked to wart resistance loci (Sen). Sen1-XI on chromosome XI conferred partial resistance to pathotype 1, Sen18-IX on chromosome IX to pathotype 18 and Sen2/6/18-I on chromosome I to pathotypes 2,6 and 18. Additional genotyping with 191 single nucleotide polymorphism (SNP) markers confirmed the localization of the Sen loci. Thirty-three SNP markers linked to the Sen loci permitted the dissection of Sen alleles that increased or decreased resistance to wart. The alleles were inherited from both the resistant and susceptible parents.  相似文献   

3.
Rice blast disease is a major constraint for rice breeding. Nevertheless, the genetic basis of resistance remains poorly understood for most rice varieties, and new resistance genes remain to be identified. We identified the resistance gene corresponding to the cloned avirulence gene ACE1 using pairs of isogenic strains of Magnaporthe grisea differing only by their ACE1 allele. This resistance gene was mapped on the short arm of rice chromosome 8 using progenies from the crosses IR64 (resistant) × Azucena (susceptible) and Azucena × Bala (resistant). The isogenic strains also permitted the detection of this resistance gene in several rice varieties, including the differential isogenic line C101LAC. Allelism tests permitted us to distinguish this gene from two other resistance genes [Pi11 and Pi-29(t)] that are present on the short arm of chromosome 8. Segregation analysis in F2 populations was in agreement with the existence of a single dominant gene, designated as Pi33. Finally, Pi33 was finely mapped between two molecular markers of the rice genetic map that are separated by a distance of 1.6 cM. Detection of Pi33 in different semi-dwarf indica varieties indicated that this gene could originate from either one or a few varieties.Communicated by D.J. Mackill  相似文献   

4.
In the pathosystem of turnip mosaic virus (TuMV) and Arabidopsis thaliana, two distinct symptoms (mosaic symptom and veinal necrosis) were observed that were dependent upon the combination of the TuMV isolate and the Arabidopsis ecotype. The Col-0 ecotype developed mosaic symptoms after infection with the TuMV isolate Azu while the Ler ecotype developed veinal necrosis after infection with the same TuMV isolate. The Ler phenotype is controlled by a single dominant gene TuNI (TuMV necrosis inducer) which is located on chromosome 1. The TuNI gene was precisely mapped to the ~105 kb interval between the two markers of mXF41 and mRF28 by using several types of DNA polymorphism markers. Within this region, which included largely duplicated sequences, a total of 19 putative genes were predicted and 15 of these were classified into five gene families. The genes belonging to the gene families At1g58480 and At1g58602 may function in response to infection by pathogens. The gene family At1g58480 encodes lipase-like proteins, which might be involved in the induction of defence responses that are mediated by salicylic acid. The gene family At1g58602 encodes the CC-NBS-LRR (CNL) proteins, which are known to function as one of the plant resistance (R) proteins against pathogens. In the present study, the possibility that TuNI might function as an R gene was discussed.Y.K. and T.I. contributed equally to this study  相似文献   

5.
Blackleg (stem canker) caused by the fungus Leptosphaeria maculans is one of the most damaging diseases of oilseed rape (Brassica napus). Crop relatives represent a valuable source of “new” resistance genes that could be used to diversify cultivar resistance. B. rapa, one of the progenitors of B. napus, is a potential source of new resistance genes. However, most of the accessions are heterozygous so it is impossible to directly detect the plant genes conferring specific resistance due to the complex patterns of avirulence genes in L. maculans isolates. We developed a strategy to simultaneously characterize and introgress resistance genes from B. rapa, by homologous recombination, into B. napus. One B. rapa plant resistant to one L. maculans isolate was used to produce B. rapa backcross progeny and a resynthesized B. napus plant from which a population of doubled haploid lines was derived after crossing with natural B. napus. We then used molecular analyses and resistance tests on these populations to identify and map the resistance genes and to characterize their introgression from B. rapa into B. napus. Three specific genes conferring resistance to L. maculans (Rlm1, Rlm2 and Rlm7) were identified in B. rapa. Comparisons of genetic maps showed that two of these genes were located on the R7 linkage group, in a region homologous to the region on linkage group N7 in B. napus, where these genes have been reported previously. The results of our study offer new perspectives for gene introgression and cloning in Brassicas.  相似文献   

6.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a devastating disease in rice worldwide. The resistance gene Xa7, which provides dominant resistance against the pathogen with avirulence (Avr) gene AvrXa7, has proved to be durably resistant to BB. A set of SSR markers were selected from the “gramene” database based on the Xa7 gene initial mapping region on chromosome 6. These markers were used to construct a high-resolution genetic map of the chromosomal region surrounding the Xa7 gene. An F2 mapping population with 721 highly susceptible individuals derived from a cross between the near isogenic lines (NILs) IRBB7 and IR24 were constructed to localize the Xa7 gene. In a primary analysis with eleven polymorphic SSR markers, Xa7 was located in approximately the 0.28-cM region. To walk closer to the target gene, recombinant F2 individuals were tested using newly developed STMS (sequence tagged microsatellite) markers. Finally, the Xa7 gene was mapped to a 0.21-cM interval between the markers GDSSR02 and RM20593. The Xa7-linked markers were landed on the reference sequence of cv. Nipponbare through bioinformatics analysis. A contig map corresponding to the Xa7 gene was constructed. The target gene was assumed to span an interval of approximately 118.5-kb which contained a total of fourteen genes released by the TIGR Genome Annotation Version 5.0. Candidate-gene analysis of Xa7 revealed that the fourteen genes encode novel domains that have no amino acid sequence similar to other cloned Xa(xa) genes. Shen Chen and Zhanghui Huang are contributed equally to this work.  相似文献   

7.
Clubroot disease, caused by the obligate plant pathogen Plasmodiophora brassicae Wor., is one of the most economically important diseases affecting Brassica crops in the world. The genetic basis of clubroot resistance (CR) has been well studied in three economically important Brassica species: B. rapa, B. oleracea, and B. napus. In B. rapa, mainly in Chinese cabbage, one minor and seven major CR genes introduced from European fodder turnips have been identified. Mapping of these CR genes localized Crr1 on R8, Crr2 on R1, CRc on R2, and Crr4 on R6 linkage groups of Chinese cabbage. Genes Crr3, CRa, CRb, and CRk mapped to R3, but at two separate loci, CRa and CRb are independent of Crr3 and CRk, which are closely linked. Further analysis suggested that Crr1, Crr2, and CRb have similar origins in the ancestral genome as in chromosome 4 of Arabidopsis thaliana. Genetic analysis of clubroot resistance genes in B. oleracea suggests that they are quantitative traits. Twenty-two quantitative trait loci (QTLs) were mapped in different linkage groups of B. oleracea. In B. napus, genetic analysis of clubroot resistance was found to be governed by one or two dominant genes, whereas resistance conferred by two recessive genes is reported. The quantitative analysis approach, however, proved that they are polygenic. In total, at least 16 QTLs have been detected on eight chromosomes of B. napus, N02, N03, N08, N09, N13, N15, N16, and N19. The chromosomal location of the other six QTLs is not clear. Cloning of any of these QTLs or resistance loci was not, however, possible until recently. Progress in genomics, particularly the techniques of comparative mapping and genome sequencing, supplements cloning and allows improved characterization of CR genes. Further development of DNA markers linked to CR genes will in turn hasten the breeding of clubroot-resistant Brassica cultivars.  相似文献   

8.
Turnip mosaic virus (TuMV) is the major virus infecting Brassica crops. A dominant gene, TuRB01, that confers extreme resistance to some isolates of TuMV on Brassica napus (oilseed rape), has been mapped genetically. The mapping employed a set of doubled-haploid lines extracted from a population used previously to develop a reference RFLP map of the B. napus genome. The positioning of TuRB01 on linkage group N6 of the B. napus A–genome indicated that the gene probably originated from Brassica rapa. Resistance phenotypes were confirmed by indirect plate-trapped antigen ELISA using a monoclonal antibody raised against TuMV. The specificity of TuRB01 was determined using a wide range of TuMV isolates, including representatives of the European and American/Taiwanese pathotyping systems. Some isolates of TuMV that did not normally infect B. napus plants possessing TuRB01 produced mutant viruses able to overcome the action of the resistance gene. TuRB01 is the first gene for host resistance to TuMV to be mapped in a Brassica crop. A second locus, TuRB02, that appeared to control the degree of susceptibility to the TuMV isolate CHN 1 in a quantitative manner, was identified on the C-genome linkage group N14. The mapping of other complementary genes and the selective combining of such genes, using marker-assisted breeding, will make durable resistance to TuMV a realisable breeding objective. Received: 14 December 1998 / Accepted: 10 April 1999  相似文献   

9.
A genetic map of Pinus sylvestris was constructed using ESTP (expressed sequence tag polymorphism) markers and other gene-based markers, AFLP markers and microsatellites. Part of the ESTP markers (40) were developed and mapped earlier in Pinus taeda, and additional markers were generated based on P. sylvestris sequences or sequences from other pine species. The mapping in P. sylvestris was based on 94 F1 progeny from a cross between plus-tree parents E635C and E1101. AFLP framework maps for the parent trees were first constructed. The ESTP and other gene sequence-based markers were added to the framework maps, as well as five published microsatellite loci. The separate maps were then integrated with the aid of AFLPs segregating in both trees (dominant segregation ratios 3:1) as well as gene markers and microsatellites segregating in both parent trees (segregation ratios 1:1:1:1 or 1:2:1). The integrated map consisted of 12 groups corresponding to the P. taeda linkage groups, and additionally three and six smaller groups for E1101 and E635C, respectively. The number of framework AFLP markers in the integrated map is altogether 194 and the number of gene markers 61. The total length of the integrated map was 1,314 cM. The set of markers developed for P. sylvestris was also added to existing maps of two P. taeda pedigrees. Starting with a mapped marker from one pedigree in the source species resulted in a mapped marker in a pedigree of the other species in more than 40% of the cases, with about equal success in both directions. The maps of the two species are largely colinear, even if the species have diverged more than 70 MYA. Most cases of different locations were probably due to problems in identifying the orthologous members of gene families. These data provide a first ESTP-containing map of P. sylvestris, which can also be used for comparing this species to additional species mapped with the same markers.Communicated by C. Möllers  相似文献   

10.
Sequence-characterized amplified regions markers (SCARs) were developed from six randomly amplified polymorphic DNA (RAPD) markers linked to the major QTL region for powdery mildew (Uncinula necator) resistance in a test population derived from the cross of grapevine cultivars “Regent” (resistant) × “Lemberger”(susceptible). RAPD products were cloned and sequenced. Primer pairs with at least 21 nucleotides primer length were designed. All pairs were tested in the F1 progeny of “Regent” × “Lemberger”. The SCAR primers resulted in the amplification of specific bands of expected sizes and were tested in additional genetic resources of resistant and susceptible germplasm. All SCAR primer pairs resulted in the amplification of specific fragments. Two of the SCAR markers named ScORA7-760 and ScORN3-R produced amplification products predominantly in resistant individuals and were found to correlate to disease resistance. ScORA7-760, in particular, is suitable for marker-assisted selection for powdery mildew resistance and to facilitate pyramiding powdery mildew resistance genes from various sources.  相似文献   

11.
The maize inbred lines 1145 (resistant) and Y331 (susceptible), and the F1, F2 and BC1F1 populations derived from them were inoculated with the pathogen Pythium inflatum Matthews, which causes stalk rot in Zea mays. Field data revealed that the ratio of resistant to susceptible plants was 3:1 in the F2 population, and 1:1 in the BC1F1population, indicating that the resistance to P. inflatum Matthews was controlled by a single dominant gene in the 1145×Y331 cross. The gene that confers resistance to P. inflatum Matthews was designated Rpi1 for resistance to P. inflatum) according to the standard nomenclature for plant disease resistance genes. Fifty SSR markers from 10 chromosomes were first screened in the F2 population to find markers linked to the Rpi1 gene. The results indicated that umc1702 and mmc0371 were both linked to Rpi1, placing the resistance gene on chromosome 4. RAPD (randomly amplified polymorphic DNA) markers were then tested in the F2population using bulked segregant analysis (BSA). Four RAPD products were found to show linkage to the Rpi1 gene. Then 27 SSR markers and 8 RFLP markers in the region encompassing Rpi1 were used for fine-scale mapping of the resistance gene. Two SSR markers and four RFLP markers were linked to the Rpi1 gene. Finally, the Rpi1 gene was mapped between the SSR markers bnlg1937 and agrr286 on chromosome 4, 1.6 cM away from the former and 4.1 cM distant from the latter. This is the first time that a dominant gene for resistance to maize stalk rot caused by P. inflatum Matthews has been mapped with molecular marker techniques.  相似文献   

12.

Key message

Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao.

Abstract

Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F2 individuals and 196 F7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.
  相似文献   

13.
Leaf rust, caused by Puccinia triticina, is one of the most widespread diseases in common wheat (Triticum aestivum L.) globally. With the objective of identifying and mapping new genes for resistance to leaf rust, F1, F2 plants and F3 lines from a cross between resistant cultivar Bimai 16 and susceptible cultivar Thatcher were inoculated with Chinese Puccinia triticina pathotypes FHTT and PHTS in the greenhouse. In the first seedling test, Bimai 16, Thatcher, 20 F1 plants, 359 F2 plants and 298 F3 lines were inoculated with pathotype FHTT. A set of 1,255 simple sequence repeat (SSR) primer pairs were used to test the parents, and resistant and susceptible bulks. Seven polymorphic markers on chromosome 7BL were used for genotyping the F2 and F3 populations. The results indicated that Bimai 16 carried a single dominant resistance gene, temporarily designated LrBi16, closely linked to SSR markers Xcfa2257 and Xgwm344, with genetic distances of 2.8 and 2.9 cM, respectively. In the second seedling test, two dominant resistance genes were identified in Bimai 16 based on seedling reactions of 254 F2 plants inoculated with pathotype PHTS. One of the genes was LrBi16, and the other was likely to be LrZH84, which is located in chromosome 1BL. The seedling reaction pattern of plants with LrBi16 was different from that of the Thatcher lines, with Lr14a and Lr14b located on chromosome 7BL. It was concluded that LrBi16 is likely to be a new leaf rust resistance gene.  相似文献   

14.
Samba mahsuri (BPT 5204) is a cultivar of the medium slender grain indica variety of Oryza sativa grown across India for its high yield and quality. However, this cultivar is susceptible to several diseases and pests including rice blast. The analysis of near isogenic lines indicated the presence of a resistance gene, Pi-1(t) in the donor cultivar C101LAC which is highly resistant to the rice blast fungus Magnaporthe grisea (M. grisea). C101LAC was crossed with susceptible indica rice cultivar (BPT 5204) to generate the mapping population. A mendelian segregation ratio of 3:1 for resistant to susceptible F2 plants using bulk segregation analysis confirmed the presence of a major gene pi-1(t) by simple sequence repeats marker RM224 to the highly virulent blast isolate DRR 001.  相似文献   

15.
Reports from several European countries of the breakdown of the Vf resistance, the most frequently used source of resistance in breeding programs against apple scab, emphasize the urgency of diversifying the basis of apple scab resistance and pyramiding different apple scab resistances with the use of their associated molecular markers. GMAL 2473 is an apple scab resistant selection thought to carry the resistance gene Vr. We report the identification by BSA of three AFLP markers and one RAPD marker associated with the GMAL 2473 resistance gene. SSRs associated with the resistance gene were found by (1) identifying the linkage group carrying the apple scab resistance and (2) testing the SSRs previously mapped in the same region. One such SSR, CH02c02a, mapped on linkage group 2, co-segregates with the resistance gene. GMAL 2473 was tested with molecular markers associated with other apple scab resistance genes, and accessions carrying known apple scab resistance genes were tested with the SSR linked to the resistance gene found in GMAL 2473. The results indicate that GMAL 2473 does not carry Vr, and that a new apple scab resistance gene, named Vr 2, has been identified.  相似文献   

16.
Introduction of more durable resistance against Phytophthora infestans causing late blight into the cultivated potato is of importance for sustainable agriculture. We identified a new monogenically inherited resistance locus that is localized on chromosome 4. The resistance is derived from an ABPT clone, which is originally a complex quadruple hybrid in which Solanum acaule, S. bulbocastanum, S. phureja and S. tuberosum were involved. Resistance data of the original resistant accessions of the wild species and analysis of mobility of AFLP markers linked to the resistance locus suggest that the resistance locus is originating from S. bulbocastanum. A population of 1383 genotypes was screened with two AFLP markers flanking the Rpi-abpt locus and 98 recombinants were identified. An accurate high-resolution map was constructed and the Rpi-abpt locus was localized in a 0.5 cM interval. One AFLP marker was found to co-segregate with the Rpi-abpt locus. Its DNA sequence was highly similar with sequences found on a tomato BAC containing several resistance gene analogues on chromosome 4 and its translated protein sequence appeared to be homologous to several disease resistance related proteins. The results indicated that the Rpi-abpt gene is a member of an R gene cluster.  相似文献   

17.
Sequence-tagged microsatellite site (STMS) and sequence-tagged site (STS) markers linked closely to Fusarium oxysporum f. sp. ciceris race 3 resistance gene in chickpea were identified, and linkage between three wilt resistance genes was elucidated. The resistance to race 3 in chickpea germplasm accession WR-315 was inherited as a single gene, designated foc-3, in 100 F7 recombinant inbred lines derived from the cross of WR-315 (resistant) × C-104 (susceptible). The foc-3 gene was mapped 0.6 cM from STMS markers TA96 and TA27 and STS marker CS27A. Another STMS marker, TA194, at 14.3 cM, flanked the gene on the other side. Linkage between foc-3 and two other chickpea wilt resistance genes, foc-1 (syn. h 1 ) and foc-4, was established. foc-3 was mapped 9.8 cM from foc-1 and 8.7 cM from foc-4, whereas foc-1 and foc-4 are closely linked at 1.1 cM. The identification of closely linked markers to resistance genes will facilitate marker-assisted selection for introgression of the race 3 resistance gene to susceptible chickpea lines.Communicated by H.C. Becker  相似文献   

18.
Blast, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. The Chinese native cultivar (cv.) Q15 expresses the broad-spectrum resistance to most of the isolates collected from China. To effectively utilize the resistance, three rounds of linkage analysis were performed in an F2 population derived from a cross of Q15 and a susceptible cv. Tsuyuake, which segregated into 3:1 (resistant/susceptible) ratio. The first round of linkage analysis employing simple sequence repeat (SSR) markers was carried out in the F2 population through bulked-segregant assay. A total of 180 SSR markers selected from each chromosome equally were surveyed. The results revealed that only two polymorphic markers, RM247 and RM463, located on chromosome 12, were linked to the resistance (R) gene. To further define the chromosomal location of the R gene locus, the second round of linkage analysis was performed using additional five SSR markers, which located in the region anchored by markers RM247 and RM463. The locus was further mapped to a 0.27 cM region bounded by markers RM27933 and RM27940 in the pericentromeric region towards the short arm. For fine mapping of the R locus, seven new markers were developed in the smaller region for the third round of linkage analysis, based on the reference sequences. The R locus was further mapped to a 0.18 cM region flanked by marker clusters 39M11 and 39M22, which is closest to, but away from the Pita/Pita 2 locus by 0.09 cM. To physically map the locus, all the linked markers were landed on the respective bacterial artificial chromosome clones of the reference cv. Nipponbare. Sequence information of these clones was used to construct a physical map of the locus, in silico, by bioinformatics analysis. The locus was physically defined to an interval of ≈37 kb. To further characterize the R gene, five R genes mapped near the locus, as well as 10 main R genes those might be exploited in the resistance breeding programs, were selected for differential tests with 475 Chinese isolates. The R gene carrier Q15 conveys resistances distinct from those conditioned by the carriers of the 15 R genes. Together, this valuable R gene was, therefore, designated as Pi39(t). The sequence information of the R gene locus could be used for further marker-based selection and cloning. Xinqiong Liu and Qinzhong Yang contributed equally to this work.  相似文献   

19.
Two isolates of the potyvirus Turnip mosaic virus (TuMV), UK 1 and CDN 1, differ both in their general symptoms on the susceptible propagation host Brassica juncea and in their ability to infect B. napus lines possessing a variety of dominant resistance genes. The isolate CDN 1 produces a more extreme mosaic in infected brassica leaves than UK 1 and is able to overcome the resistance genes TuRB01, TuRB04, and TuRB05. The resistance gene TuRB03, in the B. napus line 22S, is effective against CDN 1 but not UK 1. The nucleic acid sequences of the UK 1 and CDN 1 isolates were 90% identical. The C-terminal half of the P3 protein was identified as being responsible for the differences in symptoms in B. juncea. A single amino acid in the P3 protein was found to be the avirulence determinant for TuRB03. Previous work already has identified the P3 as an avirulence determinant for TuRB04. Our results increase the understanding of the basis of plant-virus recognition, show the importance of the potyviral P3 gene as a symptom determinant, and provide a role in planta for the poorly understood P3 protein in a normal infection cycle.  相似文献   

20.
Ninety-one potato genotypes (cultivars and breeding lines) selected as resistant or susceptible to pathotype Ro1 of Globodera rostochiensis were screened for the presence of two PCR markers, 0.14 and 0.76 kb in length. Both PCR markers were linked with the H1 gene, located at the distal end of the long arm of chromosome V, and were present in 88 to 100% of the resistant cultivars and breeding lines. The 0.76 kb PCR marker was detected in all resistant genotypes and in approximately 86% of susceptible breeding lines as well as in all susceptible cultivars. The 0.14 kb marker was detected in 88% of resistant breeding lines and in 94% of resistant cultivars. Most of the susceptible genotypes tested (91% of cultivars, but only 50% of breeding lines) did not show the presence of the 0.14 kb marker. We conclude that the 0.14 kb H1 marker is likely to be useful for the proper selection of potato genotypes resistant to the Ro1 pathotype of G. rostochiensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号