首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Transport across the nuclear envelope is mediated by transport receptors from the Importin beta family. We identified Exportin 1 from Arabidopsis (AtXPO1/AtCRM1) as the nuclear export receptor for proteins carrying leucine-rich nuclear export signals (NESs). AtXPO1 shares 42-50% identity with its functional homologues from humans and yeasts. We functionally characterised AtXPO1 by its interaction with NESs of animal and plant proteins, which is inhibited by the cytotoxin leptomycin B (LMB), and also by its interaction with the small GTPase Ran1 in the yeast two-hybrid system. Furthermore, we demonstrated the existence of a nuclear export pathway for proteins in plants. For the characterisation of nuclear export activities, we established an in vivo assay based on the localisation equilibrium of a GFP reporter protein fused to both a nuclear localisation signal (NLS) and an NES motif. Using this in vivo assay we demonstrated that the NES of the heterologous protein Rev is also functional in plants and that its export is inhibited by LMB. In addition, we identified a leucine-rich NES in the Arabidopsis protein AtRanBP1a. The NES, which is located at the carboxy terminus of the protein, is disrupted by mutating three long chain hydrophobic amino acid residues to alanine (L176A, L179A, V181A). In BY-2 protoplasts the NES of AtRanBP1a is functionally indistinguishable from the Rev NES. Our results demonstrate that the machinery for the nuclear export of proteins is functionally conserved in plants.  相似文献   

3.
Leptomycin B (LMB) is aStreptomycesmetabolite that inhibits nuclear export of the human immunodeficiency virus type 1 regulatory protein Rev at low nanomolar concentrations. Recently, LMB was shown to inhibit the function of CRM1, a receptor for the nuclear export signal (NES). Here we show evidence that LMB binds directly to CRM1 and that CRM1 is essential for NES-dependent nuclear export of proteins in both yeast and mammalian cells. Binding experiments with a biotinylated derivative of LMB and a HeLa cell extract led to identifying CRM1 as a major protein that bound to the LMB derivative. Microinjection of a purified anti-human CRM1 antibody into the mammalian nucleus specifically inhibited nuclear export of NES-containing proteins, as did LMB. Consistent with this, CRM1 was found to interact with NES, when assayed with immobilized NES and HeLa cell extracts. This association was disrupted by adding LMB or purified anti-human CRM1 antibody. The inhibition of CRM1 by LMB was also observed in fission yeast. The fission yeastcrm1mutant was defective in the nuclear export of NES-fused proteins, but not in the import of nuclear localization signal (NLS)-fused proteins. Interestingly, a protein containing both NES and NLS, which is expected to shuttle between nucleus and cytoplasm, was highly accumulated in the nucleus of thecrm1mutant cells or of cells treated with LMB. These results strongly suggest that CRM1 is the target of LMB and is an essential factor for nuclear export of proteins in eukaryotes.  相似文献   

4.
5.
M-phase-promoting factor (MPF), a complex of cdc2 and a B-type cyclin, is a key regulator of the G2/M cell cycle transition. Cyclin B1 accumulates in the cytoplasm through S and G2 phases and translocates to the nucleus during prophase. We show here that cytoplasmic localization of cyclin B1 during interphase is directed by its nuclear export signal (NES)-dependent transport mechanism. Treatment of HeLa cells with leptomycin B (LMB), a specific inhibitor of the NES-dependent transport, resulted in nuclear accumulation of cyclin B1 in G2 phase. Disruption of an NES which has been identified in cyclin B1 here abolished the nuclear export of this protein, and consequently the NES-disrupted cyclin B1 when expressed in cells accumulated in the nucleus. Moreover, we show that expression of the NES-disrupted cyclin B1 or LMB treatment of the cells is able to override the DNA damage-induced G2 checkpoint when combined with caffeine treatment. These results suggest a role of nuclear exclusion of cyclin B1 in the DNA damage-induced G2 checkpoint.  相似文献   

6.
The product of the Mdm2 oncogene directly interacts with p53 and promotes its ubiquitination and proteasomal degradation. Initial biological studies identified nuclear export sequences (NES), similar to that of the Rev protein from the human immunodeficiency virus, both in Mdm2 and p53. The reported phenotypes resulting from mutation of these NESs, together with results obtained using the nuclear export inhibitor leptomycin B (LMB), have led to a model according to which nuclear export of p53 (via either the NES of Mdm2 or its own NES) is required for efficient p53 degradation. In this study we demonstrate that Mdm2 can promote degradation of p53 in the nucleus or in the cytoplasm, provided both proteins are colocalized. We also investigated if nuclear export is an obligate step on the p53 degradation pathway. We find that (1) when proteasome activity is inhibited, ubiquitinated p53 accumulates in the nucleus and not in the cytoplasm; (2) Mdm2 with a mutated NES can efficiently mediate degradation of wild type p53 or p53 with a mutated NES; (3) the nuclear export inhibitor LMB can increase the steady-state level of p53 by inhibiting Mdm2-mediated ubiquitination of p53; and (4) LMB fails to inhibit Mdm2-mediated degradation of the p53NES mutant, demonstrating that Mdm2-dependent proteolysis of p53 is feasible in the nucleus in the absence of any nuclear export. Therefore, given cocompartmentalization, Mdm2 can promote ubiquitination and proteasomal degradation of p53 with no absolute requirement for nuclear to cytoplasmic transport.  相似文献   

7.
A new group of nucleocytoplasmic shuttling proteins has recently been identified in the structural proteins encoded by several alphaherpesvirus UL47 genes. Nuclear import and export signals for the bovine herpesvirus type 1 UL47 protein (VP8 or bUL47) have been described previously. Here, we study the trafficking of bUL47 in detail and identify an import signal different from that shown before. It comprises a 20-residue N-terminal peptide that is fully transferable and targets a large, normally cytosolic protein to the nucleus. A conserved RRPRRS motif within this peptide was shown to be essential but not sufficient for nuclear targeting. Using interspecies heterokaryon assays, we further demonstrate that the export activity of the published leucine-rich nuclear export signal (NES) is also transferable to a large protein but is functionally weak compared to the activity of the HIV-1 Rev NES. We show that nuclear export dictated by this bUL47 NES is sensitive to leptomycin B (LMB) and therefore dependent on the export receptor CRM-1. However, nuclear export of full-length bUL47 is fully resistant to LMB, suggesting the presence of an additional NES. We go on to identify a second NES in bUL47 within a 28-residue peptide that is in close proximity to but entirely separable from the N-terminal import signal, and we use fluorescence loss in photobleaching to confirm its activity. This NES is resistant to leptomycin B, and therefore utilizes an export receptor other than CRM-1. As this new sequence bears little similarity to other export signals so far defined, we suggest it may be involved in bUL47 export from the nucleus via a novel cellular receptor.  相似文献   

8.
9.
A Wada  M Fukuda  M Mishima    E Nishida 《The EMBO journal》1998,17(6):1635-1641
Actin is a highly conserved, ubiquitous cytoskeletal protein, which is essential for multiple cellular functions. Despite its small size (Mr = 42 000), unpolymerized forms of actin, as well as polymerized forms, exist primarily in the cytoplasm, excluded from the nucleus. Although spatial control of actin is crucially important, the molecular mechanisms ensuring the cytoplasmic localization of unpolymerized actin have not been revealed so far. In this paper we report that actin contains two leucine-rich type nuclear export signal (NES) sequences in the middle part of the molecule, which are both shown to be functional. Monomeric actin, when injected into the nucleus, was rapidly exported in a manner which was sensitive to leptomycin B (LMB), a specific inhibitor of NES-dependent nuclear export. LMB treatment of cells prevented nuclear exclusion of endogenous actin, inducing its nuclear accumulation. Furthermore, actin mutants with disrupted NESs accumulated in the nucleus. Expression of these NES-disrupted actin mutants, but not of wild-type actin, induced a decrease in the proliferative potential of the cell. These results reveal a novel molecular mechanism controlling the subcellular distribution of actin.  相似文献   

10.
The aryl hydrocarbon receptor (AHR) contains signals for both nuclear import and nuclear export (NES). The purpose of the studies in this report was to determine the relationship between the nuclear export of the AHR and AHR-mediated gene regulation. Blockage of nuclear export in HepG2 cells with leptomycin B (LMB) resulted in increased levels of AHR-AHR nuclear translocator (ARNT) complex in the nucleus and correlative reductions in agonist-stimulated AHR degradation. However, LMB exposure inhibited agonist-mediated induction of numerous AHR-responsive reporter genes by 75 to 89% and also inhibited induction of endogenous CYP1A1. LMB did not transform the AHR to a ligand binding species or affect activation by TCDD (2, 3,7,8-tetrachlorodibenzo-p-dioxin). Mutagenesis of leucines 66 and 71 of the putative AHR NES resulted in a protein with reduced function in dimerization to ARNT and binding to DNA, while alanine substitution at leucine 69 (AHR(A69)) resulted in an AHR that bound with ARNT and associated with DNA. AHR(A69) protein injected directly into the nuclei of E36 cells remained nuclear following 6 h of agonist stimulation. In transient-transfection assays, AHR(A69) accumulated within the nucleus was not degraded efficiently following agonist exposure. Finally, AHR(A69) supported induction of AHR-responsive reporter genes in an agonist-dependent manner. These findings show that it is possible to generate an AHR protein defective in nuclear export that is functional in agonist-mediated gene induction. This implies that the negative effect of LMB on agonist-mediated gene induction is independent of the nuclear export of the AHR.  相似文献   

11.
The Rous sarcoma virus (RSV) Gag polyprotein undergoes transient nuclear trafficking as an intrinsic part of the virus assembly pathway. Nuclear export of Gag is crucial for the efficient production of viral particles and is accomplished through the action of a leptomycin B (LMB)-dependent nuclear export signal (NES) in the p10 domain (L. Z. Scheifele, R. A. Garbitt, J. D. Rhoads, and L. J. Parent, Proc. Natl. Acad. Sci. USA 99:3944-3949, 2002). We have now mapped the nuclear export activity to the C-terminal portion of the p10 sequence and identified the four hydrophobic amino acids within this region that comprise a leucine-rich NES. Alteration of these hydrophobic residues resulted in the accumulation of Gag proteins within the nucleus and a budding defect greater than that obtained with LMB treatment of cells expressing the wild-type Gag protein (Scheifele et al., Proc. Natl. Acad. Sci. USA 99:3944-3949, 2002). In addition, export of Gag from the nucleus was found to be a rate-limiting step in virus-like particle production. Consistent with a role for the NES sequence in viral replication, this cluster of hydrophobic residues in p10 is conserved across a wide range of avian retroviruses. Furthermore, naturally occurring substitutions within this region in related viruses maintained nuclear export activity and remained sensitive to the activity of LMB. Using gain-of-function approaches, we found that the hydrophobic motif in p10 was sufficient to promote the nuclear export of a heterologous protein and was positionally independent within the Gag polyprotein. Finally, the export pathway was further defined by the ability of specific nucleoporin inhibitors to prevent the egress of Gag from the nucleus, thereby identifying additional cellular mediators of RSV replication.  相似文献   

12.
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP27 is an RNA-binding protein that performs multiple functions required for the expression of HSV-1 genes during a productive infection. One essential function involves shuttling between the nucleus and the cytoplasm. Some of the domains identified in ICP27 include a leucine-rich nuclear export sequence (NES), a nuclear localization signal, three KH-like RNA-binding domains, and an RGG-box type RNA-binding motif. To study the contribution of two of the essential domains in ICP27 to HSV gene expression, we generated recombinant herpesviruses carrying deleterious mutations in the NES and KH domains of ICP27. To accomplish this, we fused the green fluorescent protein (GFP) to ICP27 and utilized fluorescence as a marker to isolate recombinant herpesviruses. Fusion of GFP to wild-type ICP27 did not disturb its localization or function or significantly reduce virus yield. Analysis of HSV gene expression in cells infected with a recombinant virus carrying a point mutation in the first KH-like RNA-binding domain revealed that nuclear export of ICP27 was not blocked, and the expression of only a subset of ICP27-dependent late genes was affected. These findings suggest that individual KH-like RNA-binding motifs in ICP27 may be involved in binding distinct RNAs. Analysis of recombinant viruses carrying a lethal mutation in the NES of ICP27 was not accomplished because this mutation results in a strong dominant-negative phenotype. Finally, we demonstrate that shuttling by ICP27 is regulated by an export control sequence adjacent to its NES that functions like the inhibitory sequence element found adjacent to the NES of NS1 from influenza virus.  相似文献   

13.
M Neville  M Rosbash 《The EMBO journal》1999,18(13):3746-3756
Nuclear export signal (NES)-containing proteins are recognized by the NES receptor CRM1/Crm1p (also called exportin 1/Xpo1p). In vertebrates and Schizosaccharomyces pombe, the toxin leptomycin B (LMB) inhibits CRM1-mediated export by interacting directly with CRM1 and disrupting the trimeric Ran-GTP-CRM1-NES export complex. In Saccharomyces cerevisiae, LMB is not toxic and is apparently unable to interact with Crm1p. A second difference between the systems is that LMB has no effect on mRNA export in vertebrate systems, whereas there is evidence that S.cerevisiae Crm1p plays a role in mRNA export. Here we show that a single amino acid change converts S. cerevisiae Crm1p from being LMB insensitive to fully LMB sensitive, indicating that Crm1p is the only relevant LMB target. This new strain has no phenotype, but LMB has a rapid and potent inhibitory effect on NES-mediated export. In situ hybridization assays show that LMB also causes nuclear accumulation of poly(A)+ RNA but with a significant delay compared with the effect on NES-mediated export. Biochemical assays indicate little or no LMB effect on cytoplasmic protein synthesis, indicating that the NES-Crm1p pathway is not a major mRNA export route in S.cerevisiae. We conclude that Crm1p structure and function is conserved from S.cerevisiae to man.  相似文献   

14.
We have previously observed, using a green fluorescent protein (GFP) fusion system, that PLC-delta1 is localized mainly at the plasma membrane and in the cytosol, whereas little is present in the nucleus in Madin-Darby canine kidney cells (Fujii, M., Ohtsubo, M., Ogawa, T., Kamata, H., Hirata, H., and Yagisawa, H. (1999) Biochem. Biophys. Res. Commun. 254, 284-291). Herein, we demonstrate that PLC-delta1 has a functional nuclear export signal (NES) sequence in amino acid residues 164-177 of the EF-hand domain. The fluorescence of NES-disrupted GFP/PLC-delta1 expressed in Madin-Darby canine kidney cells was present not only at the plasma membrane and in the cytosol but also in the nucleus. Moreover, treatment with leptomycin B, a specific inhibitor of NES-dependent nuclear export, resulted in the accumulation of GFP/PLC-delta1 in the nucleus. A site-directed mutant containing a pleckstrin homology domain, which does not bind inositol 1,4,5-trisphosphate and cannot hydrolyze phosphatidylinositol 4,5-bisphosphate in vitro, accumulated in the nucleus to a much greater extent than wild-type GFP/PLC-delta1 after treatment with leptomycin B. These results suggest that PLC-delta1 is shuttled between the cytoplasm and the nucleus; its nuclear export is dependent on the leucine-rich NES sequence and its active nuclear import is regulated by an unidentified signal(s).  相似文献   

15.
T- and L-plastin are highly similar actin-bundling proteins implicated in the regulation of cell morphology, lamellipodium protrusion, bacterial invasion and tumor progression. We show that T-plastin localizes predominantly to the cytoplasm, whereas L-plastin distributes between nucleus and cytoplasm in HeLa or Cos cells. T-plastin shows nuclear accumulation upon incubation of cells with the CRM1 antagonist leptomycin B (LMB). We identified a Rev-like nuclear export sequence (NES) in T-plastin that is able to export an otherwise nuclear protein in an LMB-dependent manner. Deletion of the NES promotes nuclear accumulation of T-plastin. Mutation of residues L17, F21 or L26 in the T-plastin NES inhibits nuclear efflux. L-plastin harbors a less conserved NES and lacks the F21 T-plastin residue. Insertion of a Phe residue in the L-plastin NES specifically enhances its export activity. These findings explain why both isoforms exhibit specific distribution patterns in eukaryotic cells.  相似文献   

16.
17.
18.
The nonstructural protein 2 (NS2) from parvovirus minute virus of mice (MVMp) is a 25-kDa polypeptide which localizes preferentially to the cytoplasm and associates with cellular proteins in cytoplasm. These lines of evidence suggest that NS2 is positively exported from the nucleus to cytoplasm and functions in cytoplasm. We report here that nuclear export of NS2 is inhibited by leptomycin B (LMB), a drug that specifically blocks nuclear export signal (NES)-chromosomal region maintenance 1 (CRM1) interactions. CRM1 binds specifically to the 81- to 106-amino-acid (aa) region of NS2, and the region of NS2 actually functions as a NES. Interestingly, this region appears to be distinct from a typical NES sequence, which consists of leucine-rich sequences. These results indicate that NS2 protein is continuously exported from the nucleus by a CRM1-dependent mechanism and suggest that CRM1 also exports to distinct type of NESs.  相似文献   

19.
Beta-catenin not only plays a role in cadherin-dependent cell adhesion, but also interacts with T-cell factor (TCF)/lymphoid enhancer factor-1 (LEF-1) to affect gene expression. In this report, we describe the effects of exogenous LEF-1 and of treatment with leptomycin B (LMB), a specific inhibitor of CRM1-medicated nuclear export, on the nuclear localization and export of beta-catenin. Normal epithelial cells overexpressing LEF-1 accumulate nuclear beta-catenin in a LEF-1 concentration-dependent manner. Nuclear beta-catenin, once imported from the cytoplasm, is rapidly removed from the nucleus. Treatment with LMB results in dramatic retention of nuclear beta-catenin in normal epithelial cells transfected with LEF-1, and this effect is intensified by treatment of N-Acetyl-leucyl-leucyl-norleucinal together with LMB. Colon carcinoma cells containing an adenomatous polyposis coli mutation retain significant amounts of LEF-1 induced nuclear beta-catenin considerably after the time-point when beta-catenin disappears from the nuclei of LEF-1 transfected normal epithelial cells. beta-Catenin binds directly to CRM1, and overexpression of CRM1 reduces nuclear beta-catenin-mediated transactivation function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号