首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In astrocytes the activity of the Na+,K(+)-ATPase pump maintains an inwardly directed electrochemical sodium gradient used by the Na+-dependent transporters and regulates the extracellular K+ concentration essential for neuronal excitability. We show here that incubation of cultured rat astrocytes with angiotensin II (Ang II) modulates Na+,K(+)-ATPase activity, in a dose- and time-dependent manner. Na+,K(+)-ATPase activation was mediated by binding of Ang II to AT1 receptors as it was completely blocked by DuP 753, a specific AT1 receptor subtype antagonist. Stimulation of Na+,K(+)-ATPase activity by Ang II was dependent on protein kinase C (PKC) activation because PKC antagonists abolished the inducing effect of Ang II and the PKC activator phorbol 12-myristate 13-acetate enhanced transporter activity. Ang II stimulated translocation of PKC-delta but not that of other PKC isoforms from the cytosol to the plasma membrane. These results indicate that the activity of Na+,K(+)-ATPase in astrocytes is increased by physiological concentrations of Ang II and that the AT1 receptor subtype mediates the Na+,K(+)-ATPase response to Ang II via PKC-delta activation.  相似文献   

2.
Multiple subtypes (alpha1A, alpha1B, and alpha1D) of alpha1-adrenoreceptors (alpha1ARs) co-exist in the heart and mediate a variety of cellular functions. We studied alphaAR modulation of inward rectifier (IK1) and transient outward (Ito) K(+) currents in canine ventricular myocytes. Phenylephrine at 10 microM depressed only Ito without affecting IK1 and at 100 microM inhibited both Ito and IK1. The effect of phenylephrine on Ito was abolished by (+)niguldipine (10 nm) to inhibit alpha1AARs but not by chloroethyclonidine (10 microM) to inactivate alpha1BARs nor by BMY-7378 to antagonize alpha1DARs. In contrast, phenylephrine inhibition of IK1 was reversed only by BMY-7378 (1 nm). PDD (100 nm, phorbol ester activator of protein kinase C (PKC)) simulates and bisindolylmaleimide (50 nm, PKC inhibitor) weakens phenylephrine modulation of Ito but not IK1. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-93 and inhibitor peptides abolished the effects of phenylephrine on IK1. Enhancement of PKC or CaMKII activities was seen in alpha1aAR- or alpha1dAR-transfected HEK293 cells and in myocytes pretreated with 10 or 100 microM phenylephrine, respectively. Our data suggest that different subtypes of alpha1ARs selectively modulate different cardiac K(+) currents via different signal transduction mechanisms; alpha1AARs mediate Ito regulation via PKC, and alpha1DARs mediate IK1 regulation via CaMKII.  相似文献   

3.
Angiotensin II (Ang II) increases the cytosolic Ca2+ concentration in different cell types. In this study, we investigate the effect of Ang II on the Ca2+ ATPase of purified basolateral membranes of kidney proximal tubules. This enzyme pumps Ca2+ out of the cytosol in a reaction coupled to ATP hydrolysis, and it is responsible for the fine-tuned regulation of cytosolic Ca2+ activity. Ca2+-ATPase activity is inhibited by picomolar concentrations of Ang II, with maximal inhibition being attained at approximately 50% of the control values. The presence of raising concentrations (10(-11) to 10(-7) M) of losartan (an AT1-receptor antagonist) or PD123319 (an AT2-receptor antagonist) gradually reverts inhibition by Ang II. Both the phospholipase C (PLC) inhibitor U-73122 (10(-6) M) and the inhibitor of protein kinase C (PKC) staurosporine (10(-7) M) prevent inhibition of the Ca2+ pump by Ang II. Incubation of the previously isolated membranes with a PKC activator-the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (10(-8) M)-mimics the inhibition found with Ang II, and the effects of the compounds are not additive. Taken as a whole, these results indicate the Ang II inhibits Ca2+-ATPase by activation of a PKC system present in primed state in these membranes after binding of the hormone to losartan- and PD123319-sensitive receptors coupled to a PLC. Therefore, inhibition of the basolateral membrane Ca2+-ATPase by kinase-mediated phosphorylation appears to be one of the pathways by which Ang II promotes an increase in the cytosolic Ca2+ concentration of proximal tubule cells.  相似文献   

4.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

5.
We investigated the effects of the vasoconstrictor angiotensin (Ang) II on the whole cell inward rectifier K(+) (Kir) current enzymatically isolated from small-diameter (<100 microm) coronary arterial smooth muscle cells (CASMCs). Ang II inhibited the Kir current in a dose-dependent manner (half inhibition value: 154 nM). Pretreatment with phospholipase C inhibitor and protein kinase C (PKC) inhibitors prevented the Ang II-induced inhibition of the Kir current. The PKC activator reduced the Kir currents. The inhibitory effect of Ang II was reduced by intracellular and extracellular Ca(2+) free condition and by G?6976, which inhibits Ca(2+)-dependent PKC isoforms alpha and beta. However, the inhibitory effect of Ang II was unaffected by a peptide that selectively inhibits the translocation of the epsilon isoform of PKC. Western blot analysis confirmed that PKCalpha, and not PKCbeta, was expressed in small-diameter CASMCs. The Ang II type 1 (AT(1))-receptor antagonist CV-11974 prevented the Ang II-induced inhibition of the Kir current. From these results, we conclude that Ang II inhibits Kir channels through AT(1) receptors by the activation of PKCalpha.  相似文献   

6.
We have previously shown that A10 vascular smooth muscle cells (VSMC) exposed to angiotensin II (Ang?II) exhibited overexpression of Giα proteins. In the present study, we examined the involvement of different signaling pathways in regulating Ang II induced enhanced expression of Giα proteins in VSMC by using pharmacological inhibitors. Ang II induced increased expression of Giα proteins in A10 VSMC was markedly attenuated by actinomycin D, losartan (an AT(1) receptor antagonist), dibutyryl cAMP, phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitors staurosporine and GP109203X, but not by PD123319 (an AT(2) receptor antagonist). In addition, BAPTA-AM and TMB-8 (chelators of intracellular Ca(2+)); and nifedipine (a blocker of L-type Ca(2+) channels) significantly inhibited Ang II induced enhanced expression of Giα proteins. On the other hand, extracellular Ca(2+) chelation using EGTA did not affect the Ang II evoked enhanced levels of Giα proteins. Furthermore, pretreatment of A10 VSMC with calmidazolium (an inhibitor of calmodulin), or KN93 (an inhibitor of CaM kinase), or genistein (an inhibitor of protein tyrosine kinase, PTK), also attenuated the increased levels of Giα proteins induced by Ang?II. These results suggest that Ang II induced enhanced expression of Giα proteins may be regulated by different signaling pathways through AT(1) receptors in A10 VSMC.  相似文献   

7.
Angiotensin II (Ang II) acts via its type 1 (AT(1)) receptor in neurons to regulate the activity of multiple intracellular signaling molecules, including intracellular Ca(2+), protein kinase C, phosphatidylinositol 3-kinase (PI3-K), and c-Jun NH(2)-terminal kinase (JNK). The present studies investigated the upstream signaling molecules involved in the Ang II stimulation of activator protein-1 (AP-1) DNA binding in neurons. Treatment of neurons cultured from neonatal rat hypothalamus and brainstem with Ang II (100 nM) showed a time-dependent increase in AP-1 DNA binding and this effect was inhibited by the AT(1) receptor antagonist, losartan (1 microM), the PI3-K inhibitor, LY294002 (10 microM), and the JNK inhibitor, JNK inhibitor II (100 nM). Furthermore, Ang II (100 nM) causes a time-dependent increase in JNK activity which was attenuated by PI3-K inhibition. These data establish, for the first time, a signaling cascade involved in the Ang II activation of AP-1 DNA binding in neurons.  相似文献   

8.
Zhao X  Li X  Trusa S  Olson SC 《Regulatory peptides》2005,132(1-3):113-122
We previously demonstrated that angiotensin II (Ang II) stimulates an increase in nitric oxide synthase (NOS) mRNA levels, eNOS protein expression and NO production via the type 2 (AT2) receptor, whereas signaling via the type 1 (AT1) receptor negatively regulates NO production in bovine pulmonary artery endothelial cells (BPAECs). In the present study, we investigated the components of the AT1 receptor-linked signaling pathway(s) that are involved in the downregulation of eNOS protein expression in BPAECs. Treatment of BPAECs with either AT1 receptor antagonists or an anti-AT1 receptor antibody induced eNOS protein expression. Furthermore, intracellular delivery of GP-Antagonist-2A, an inhibitor of Galphaq proteins, and treatment of BPAECs with U73122, a phosphatidylinositol-phospholipase C (PLC)-specific inhibitor, enhanced eNOS protein expression. Treatment of BPAECs with the cell-permeable calcium chelator, BAPTA/AM, increased eNOS protein expression at 8 h, while increasing intracellular calcium with either thapsigargin or A23187 prevented Ang II-induced eNOS protein expression. Phorbol myristate acetate (PMA), a protein kinase C (PKC) activator, completely prevented Ang II-stimulated eNOS protein expression at 8 h, whereas depletion of PKC by long-term treatment with PMA, induced eNOS protein expression. Treatment of BPAECs with a PKCalpha-specific inhibitor or transfection of BPAECs with an anti-PKCalpha neutralizing antibody stimulated eNOS protein expression. Conversely, rottlerin, a PKCdelta specific isoform inhibitor had no effect on basal or Ang II-stimulated eNOS protein expression. Moreover, treatment of BPAECs with U73122, BAPTA/AM and PKCalpha-specific inhibitors increased NO production at 8 h. In conclusion, Ang II downregulates eNOS protein expression via an AT1 receptor-linked pathway involving Galphaq/PLC/calcium/PKCalpha signaling pathway in BPAECs.  相似文献   

9.
We have investigated signaling pathways leading to angiotensin II (Ang II) activation of mitogen-activated protein kinase (MAPK) in hepatocytes. MAPK activation by Ang II was abolished by the Ang II type 1 (AT1) receptor antagonist losartan, but not by the Ang II type 2 (AT2) receptor antagonist PD123319. Ang II (100 nM) induced a rapid phosphorylation of Src (peak approximately 2 min) and focal adhesion kinase (FAK, peak approximately 5 min) followed by a decrease to basal levels in 30 min. An increased association between FAK and Src in response to Ang II was detected after 1 min, which declined to basal levels after 30 min. Treatment with the Src kinase inhibitor PP-1 inhibited FAK phosphorylation. Downregulation of PKC, intracellular Ca2+ chelator BAPTA or inhibitors of PKC, Src kinase, MAPK kinase (MEK), Ca2+/calmodulin dependent protein kinase, phosphatidylinositol 3-kinase all blocked Ang II-induced MAPK phosphorylation. In contrast to other cells, there was no evidence for the role of EGF receptor transactivation in the activation of MAPK by Ang II. However, PDGF receptor phosphorylation is involved in the Ang II stimulated MAPK activation. Furthermore, Src/FAK and Ca/CaM kinase activation serve as potential links between the Ang II receptor and MAPK activation. These studies offer insight into the signaling network upstream of MAPK activation by AT1 receptor in hepatocytes.  相似文献   

10.
Rattan S  Fan YP  Puri RN 《Life sciences》2002,70(18):2147-2164
Studies were performed to compare the actions of Ang II in the internal anal sphincter (IAS) vs. lower esophageal sphincter (LES) smooth muscles in vitro, in opossum and rabbit. Studies also were carried out in isolated smooth muscle cells. In opossum, Ang II produced no discernible effects in the IAS, but did produce a concentration-dependent contraction in the LES. Conversely, in the rabbit, while Ang II caused a modest response in the LES, it caused a significant contraction in the IAS. The contractile responses of Ang II in the opossum LES were mostly resistant to different neurohumoral antagonists but were antagonized by AT1 antagonist losartan. AT2 antagonist PD 123,319, rather than inhibiting, prolonged the contractile action of Ang II. The contractile actions of Ang II in the opossum LES were not modified by the tyrosine kinase inhibitors (genistein and tyrphostin 1 x 10(-6) M) but were partially attenuated by the PKC inhibitor H-7 (1 x 10(-6) M), Ca2+ channel blocker nicardipine (1 x 10(-5) M), Rho kinase inhibitor HA-1077 (1 x 10(-7) M) or p(44/42) MAP kinase inhibitor PD 98059 (5 x 10(-5) M). The combination of HA-1077 and H-7 did not cause an additive attenuation of Ang II responses. Western blot analyses revealed the presence of both AT1 and AT2 receptors. We conclude that Ang lI-induced contraction of sphincteric smooth muscle occurs primarily by the activation of AT1 receptors at the smooth muscle cells and involves multiple pathways, influx of Ca2+, and PKC, Rho kinase and p(44/42) MAP kinase.  相似文献   

11.
Angiotensin II (Ang II) type 1 receptors (AT1Rs) activate tyrosine kinases, including Src. Whether or not tyrosine kinase activation by AT1R occurs independently of heterotrimeric G protein coupling and, if so, the cellular function of such a mechanism are unknown. To address these questions, we used an AT1aR intracellular second loop mutant, which lacks heterotrimeric G protein coupling (AT1a-i2m). Surprisingly, Ang II-induced Src activation was preserved in AT1a-i2m, which was not attenuated by inhibiting protein kinase C and Ca(2+) or by inhibiting Galpha(i) or Galpha(q) in CHO-K1 cells. By contrast, Ang II-induced Src activation was abolished in a C-terminally truncated AT1a-(1--309), where Ang II-induced inositol phosphate response was preserved. Ang II activates ERKs via a Src-Ras-dependent mechanism in AT1a-i2m. ERKs activated by AT1a-i2m phosphorylate their cytoplasmic targets, including p90(RSK), but fail to translocate into the nucleus or to cause cell proliferation. Ang II-induced nuclear translocation of ERKs by wild type AT1aR was inhibited by overexpression of nuclear exportin Crm-1, while that by AT1a-i2m was restored by leptomycin B, an inhibitor of Crm-1. In summary, while Src and ERKs are activated by Ang II even without heterotrimeric G protein coupling, the carboxyl terminus of the AT1 receptor is required for activation of Src. Interestingly, ERKs activated by heterotrimeric G protein-independent mechanisms fail to phosphorylate nuclear targets due to lack of inhibition of Crm-1-induced nuclear export of ERKs. These results suggest that heterotrimeric G protein-dependent and -independent signaling mechanisms play distinct roles in Ang II-mediated cellular responses.  相似文献   

12.
We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.  相似文献   

13.
X Li  J W Lee  L M Graves    H S Earp 《The EMBO journal》1998,17(9):2574-2583
In GN4 rat liver epithelial cells, angiotensin II (Ang II) produces intracellular calcium and protein kinase C (PKC) signals and stimulates ERK and JNK activity. JNK activation appears to be mediated by a calcium-dependent tyrosine kinase (CADTK). To define the ERK pathway, we established GN4 cells expressing an inhibitory Ras(N17). Induction of Ras(N17) blocked EGF- but not Ang II- or phorbol ester (TPA)-dependent ERK activation. In control cells, Ang II and TPA produced minimal increases in Ras-GTP level and Raf kinase activity. PKC depletion by chronic TPA exposure abolished TPA-dependent ERK activation but failed to diminish the effect of Ang II. In PKC-depleted cells, Ang II increased Ras-GTP level and activated Raf and ERK in a Ras-dependent manner. In PKC depleted cells, Ang II stimulated Shc and Cbl tyrosine phosphorylation, suggesting that without PKC, Ang II activates another tyrosine kinase. PKC-depletion did not alter Ang II-dependent tyrosine phosphorylation or activity of p125(FAK), CADTK, Fyn or Src, but PKC depletion or incubation with GF109203X resulted in Ang II-dependent EGF receptor tyrosine phosphorylation. In PKC-depleted cells, EGF receptor-specific tyrosine kinase inhibitors blocked Ang II-dependent EGF receptor and Cbl tyrosine phosphorylation, and ERK activation. In summary, Ang II can activate ERK via two pathways; the latent EGF receptor, Ras-dependent pathway is equipotent to the Ras-independent pathway, but is masked by PKC action. The prominence of this G-protein coupled receptor to EGF receptor pathway may vary between cell types depending upon modifiers such as PKC.  相似文献   

14.
血管紧张素II诱导培养的成年大鼠心肌细胞凋亡   总被引:4,自引:0,他引:4  
Guo X  Guo ZG 《生理学报》1998,50(4):416-422
研究血管紧张素Ⅱ(AngⅡ)诱导培养的成年大鼠心肌细胞(ARVMs)凋亡。酶灌流消化法分离培养ARVMs,不同处理后,光镜观察形态改变,琼脂糖凝胶电泳定性分析DNA降解程度。结果发现培养的ARVMs经AngⅡ10μmol/L处理48h后,大部分细胞变圆,胞浆浓缩;电泳显示核酸断裂片段“梯形”结构,上述改变在72h更为明显。上述作用可被氯沙坦、维拉帕米和staurosporine所取消。这表明Ang  相似文献   

15.
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished. The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan, but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase inhibitor L-NG-nitroarginine. These results suggest that the contraction induced by Ang II might be mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.  相似文献   

16.
17.
The aim of this work is to verify if Angiotensin II (Ang II) affects the frequency of spontaneous cytosolic and nuclear Ca2+ waves in chick embryonic cardiomyocytes and if this effect is mediated via the activation of AT1 and/or AT2 receptors. Using the rapid scan technique of confocal microscopy, we observed that Ang II (10(-8)M) increases the frequency of cytosolic and nuclear Ca2+ waves. This effect was accompanied by a decrease in the amplitude of nuclear Ca2+ waves and an absence of effect on the amplitude of cytosolic Ca2+ waves. The effect of the octapeptide on both frequency and amplitude of the nuclear waves was prevented by the AT1 receptor antagonist L158809. However, blockade of the AT2 receptor using the antagonist PD123319 (10(-7)M) only prevented the effect of Ang II on the frequency of Ca2+ waves. Furthermore, the effect was prevented by both a PKC inhibitor (bisindolylmaleimide) and a PKC activator (phorbol 12,13-dibutyrate). In addition, the Ang II effect was not prevented by the blocker of the pacemaker current If. These results demonstrate that Ang II, via the activation of its receptors AT1 and AT2, affects the frequency of spontaneous Ca2+ waves and this effect seems to be mediated by the PKC pathway.  相似文献   

18.
In this work we have combined biochemical and electrophysiological approaches to explore the modulation of rat ventricular transient outward K(+) current (I(to)) by calmodulin kinase II (CaMKII). Intracellular application of CaMKII inhibitors KN93, calmidazolium, and autocamtide-2-related inhibitory peptide II (ARIP-II) accelerated the inactivation of I(to), even at low [Ca(2+)]. In the same conditions, CaMKII coimmunoprecipitated with Kv4.3 channels, suggesting that phosphorylation of Kv4.3 channels modulate inactivation of I(to). Because channels underlying I(to) are heteromultimers of Kv4.2 and Kv4.3, we have explored the effect of CaMKII on human embryonic kidney (HEK) cells transfected with either of those Kvalpha-subunits. Whereas Kv4.3 inactivated faster upon inhibition of CaMKII, Kv4.2 inactivation was insensitive to CaMKII inhibitors. However, Kv4.2 inactivation became slower when high Ca(2+) was used in the pipette or when intracellular [Ca(2+)] ([Ca(2+)](i)) was transiently increased. This effect was inhibited by KN93, and Western blot analysis demonstrated Ca(2+)-dependent phosphorylation of Kv4.2 channels. On the contrary, CaMKII coimmunoprecipitated with Kv4.3 channels without a previous Ca(2+) increase, and the association was inhibited by KN93. These results suggest that both channels underlying I(to) are substrates of CaMKII, although with different sensitivities; Kv4.2 remain unphosphorylated unless [Ca(2+)](i) increases, whereas Kv4.3 are phosphorylated at rest. In addition to the functional impact that phosphorylation of Kv4 channels could cause on the shape of action potential, association of CaMKII with Kv4.3 provides a new role of Kv4.3 subunits as molecular scaffolds for concentrating CaMKII in the membrane, allowing Ca(2+)-dependent modulation by this enzyme of the associated Kv4.2 channels.  相似文献   

19.
Angiotensin II (Ang II) has two major receptor isoforms, AT1 and AT2. AT1 transphosphorylates Ca(2+)-sensitive tyrosine kinase Pyk2 to activate c-Jun NH2-terminal kinase (JNK). Although AT2 inactivates extracellular signal-regulated kinase (ERK) via tyrosine phosphatases (PTP), the action of AT2 on Pyk2 and JNK remains undefined. Using AT2-overexpressing vascular smooth muscle cells (AT2-VSMC) from AT2-transgenic mice, we studied these undefined actions of AT2. AT1-mediated JNK activity was increased 2.2-fold by AT2 inhibition, which was abolished by orthovanadate. AT2 did not affect AT1-mediated Pyk2 phosphorylation, but attenuated c-Jun mRNA accumulation by 32%. The activity of src-homology 2 domain-containing PTP (SHP-1) was significantly upregulated 1 min after AT2 stimulation. Stable overexpression of SHP-1 dominant negative mutant in AT2-VSMC completely abolished AT2-mediated inhibition of JNK activation and c-Jun expression. These findings suggest that AT2 inhibits JNK activity by affecting the downstream signal of Pyk2 in a SHP-1-dependent manner, leading to a decrease in c-Jun expression.  相似文献   

20.
K Song  N Shiota  H Okunishi  M Miyazaki 《Life sciences》1992,51(18):PL165-PL170
Angiotensin II (Ang II) binding sites in adrenal glands of nephrectomized rats were investigated by in vitro autoradiography using 125I-[Sar1,Ile8]Ang II as ligands. Ang II binding site was increased to 161% in the cortex and decreased to 67% in the medulla 48 h after nephrectomy. In the medulla, the AT2 antagonist (PD123177, 5 microM) inhibited specific binding by 90% whereas the AT1 antagonist (DuP753, 5 microM) inhibited by only 10%. In contrast, in the cortex, neither DuP753 (5 microM) nor PD123177 (5 microM) substantially inhibited the binding. Binding in the presence of either the AT1 or AT2 antagonist was abolished by the simultaneous presence of both antagonists. These results suggest the presence of a new Ang II binding site with unique pharmacological properties and differing from currently known subtypes of Ang II receptors, in the adrenal cortex after nephrectomy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号