首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of rat cornea aldehyde dehydrogenase   总被引:1,自引:0,他引:1  
Aldehyde dehydrogenase has been purified from rat cornea in a single step. The enzyme is a class 3 aldehyde dehydrogenase. Cornea aldehyde dehydrogenase is a 100-kDa dimer composed of 51-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes as well as medium chain length (4-9 carbons) aliphatic aldehydes. The substrate and coenzyme specificity, immunochemical properties, effect of disulfiram, pH profile, and isoelectric point of cornea aldehyde dehydrogenase are identical to those of tumor-associated aldehyde dehydrogenase, the prototype class 3 enzyme. The substrate and coenzyme preferences are consistent with a role for cornea aldehyde dehydrogenase in the oxidation of a variety of aldehydes generated by lipid metabolism, including lipid peroxidation.  相似文献   

2.
3.
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring duringhepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 110 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusions, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

4.
Characterization of aldehyde dehydrogenase from HTC rat hepatoma cells   总被引:1,自引:0,他引:1  
We have proposed developing rat hepatoma cell lines as an in vitro model for studying the regulation of changes in aldehyde dehydrogenase activity occurring during hepatocarcinogenesis. Aldehyde dehydrogenase purified in a single step from HTC rat hepatoma cells is identical to the aldehyde dehydrogenase isolated from rat hepatocellular carcinomas. HTC aldehyde dehydrogenase is a 100 kDa dimer composed of 54-kDa subunits, prefers NADP+ as coenzyme, and preferentially oxidizes benzaldehyde-like aromatic aldehydes but not phenylacetaldehyde. The substrate and coenzyme specificity, effects of disulfiram, pH profile and isoelectric point of HTC aldehyde dehydrogenase are also identical to these same properties of the tumor aldehyde dehydrogenase. In immunodiffusion, both isozymes are recognized with complete identity by anti-HTC aldehyde dehydrogenase antibodies. Having established that HTC aldehyde dehydrogenase is very similar, if not identical, to the aldehyde dehydrogenase found in hepatocellular carcinomas, simplifies the development of molecular probes for examination of the regulation of tumor aldehyde dehydrogenase activity in vivo and in vitro.  相似文献   

5.
6.
7.
Cytoplasmic male sterility is a maternally transmitted inability to produce viable pollen. Male sterility occurs in Texas (T) cytoplasm maize as a consequence of the premature degeneration of the tapetal cell layer during microspore development. This sterility can be overcome by the combined action of two nuclear restorer genes, rf1 and rf2a. The rf2a gene encodes a mitochondrial aldehyde dehydrogenase (ALDH) that is capable of oxidizing a variety of aldehydes. Six additional ALDH genes were cloned from maize and Arabidopsis. In vivo complementation assays and in vitro enzyme analyses demonstrated that all six genes encode functional ALDHs. Some of these ALDHs are predicted to accumulate in the mitochondria, others in the cytosol. The intron/exon boundaries of these genes are highly conserved across maize and Arabidopsis and between mitochondrial and cytosolic ALDHs. Although animal, fungal, and plant genomes each encode both mitochondrial and cytosolic ALDHs, it appears that either the gene duplications that generated the mitochondrial and the cytosolic ALDHs occurred independently within each lineage or that homogenizing gene conversion-like events have occurred independently within each lineage. All studied plant genomes contain two confirmed or predicted mitochondrial ALDHs. It appears that these mitochondrial ALDH genes arose via independent duplications after the divergence of monocots and dicots or that independent gene conversion-like events have homogenized the mitochondrial ALDH genes in the monocot and dicot lineages. A computation approach was used to identify amino acid residues likely to be responsible for functional differences between mitochondrial and cytosolic ALDHs.  相似文献   

8.
J P Rose  J Hempel  I Kuo  R Lindahl  B C Wang 《Proteins》1990,8(4):305-308
NAD-linked aldehyde dehydrogenases (A1DH) (EC 1.2.1.3) catalyze the irreversible oxidation of a wide variety of aldehydes to their respective carboxylic acids. Crystals of a class 3 AIDH (from an Escherichia coli expression system) suitable for X-ray analysis have been obtained. These crystals, which can be grown to a size of 0.8 x 0.3 x 0.2 mm, diffract to 2.5 A resolution. Analysis of the diffraction pattern indicates that the crystals belong to the monoclinic space group P21, with cell parameters a = 65.11 A, b = 170.67 A, c = 47.15 A, and beta = 110.5 degrees. Assuming one dimer per asymmetric unit, the value Vm is calculated to be 2.45 and the solvent content of the crystal is estimated to be 50%. A self-rotation function study produced significant rotation peaks (58% of the origin) on the kappa = 180 section at psi = 90 degrees and phi = 71 degrees and 341 degrees, indicating that the pseudo-dimer axis is (or is very nearly) perpendicular to the b-axis.  相似文献   

9.
10.
11.
12.
13.
The free-living protist Euglena gracilis showed an enhanced growth when cultured in the dark with high concentrations of ethanol as carbon source. In a medium containing glutamate/malate plus 1% ethanol, E. gracilis reached a density of 3 x 10(7) cells/ml after 100 h of culture, which was 5 times higher than that attained with glutamate/malate or ethanol separately. This observation suggested the involvement of a highly active aldehyde dehydrogenase in the metabolism of ethanol. Purification of the E. gracilis aldehyde dehydrogenase from the mitochondrial fraction by affinity chromatography yielded an enrichment of 34 times and recovery of 33% of the total mitochondrial activity. SDS-PAGE and molecular exclusion chromatography revealed a native tetrameric protein of 160 kDa. Kinetic analysis showed Km values of 5 and 50 microM for propionaldehyde and NAD(+), respectively, and a Vm value of 1,300 nmol (min x mg protein)(-1). NAD(+) and NADH stimulated the esterase activity of the purified aldehyde dehydrogenase. The present data indicated that the E. gracilis aldehyde dehydrogenase has kinetic and structural properties similar to those of human aldehyde dehydrogenases class 1 and 2.  相似文献   

14.
1. The activity of liver microsomal high Km-ALDH and mitochondrial low Km-ALDH, which may be primarily responsible for the oxidation of acetaldehyde after ethanol administration was found to be predominantly distributed in the centrilobular area. 2. The activities of other ALDH isozymes in mitochondrial and soluble fractions were evenly distributed in periportal and perivenous regions. 3. The activity of ADH which is involved in production of acetaldehyde was predominantly located in the periportal area. 4. From these results it seems unlikely that a concentration of acetaldehyde after ethanol ingestion is higher in perivenous hepatocytes than in periportal ones. Additional data would be needed to understand fully the mechanism by which ethanol induces predominantly centrilobular liver injury.  相似文献   

15.
16.
Genomic structure of the human cytosolic aldehyde dehydrogenase gene   总被引:1,自引:0,他引:1  
L C Hsu  W C Chang  A Yoshida 《Genomics》1989,5(4):857-865
  相似文献   

17.
Genomic structure of the human mitochondrial aldehyde dehydrogenase gene   总被引:8,自引:0,他引:8  
We have isolated and characterized four overlapping clones from two cosmid human genomic libraries, which span about 90 kilobase pairs (kbp) and contain the entire human mitochondrial aldehyde dehydrogenase (ALDH2) gene. Restriction maps of the genomic clones were elucidated utilizing cDNA probes and specific oligonucleotide probes. The organization of exons and introns was established by DNA sequencing of each exon and splicing junctions. The ALDH2 gene is about 44 kbp in length and contains at least 13 exons which encode 517 amino acid residues. Except for the signal NH2-terminal peptide, which is absent in the mature enzyme, the amino acid sequence deduced from the exons coincided with the reported primary structure of human liver ALDH2 (J. Hempel, R. Kaiser, and H. J?rnvall, 1985, Eur. J. Biochem. 153: 13-28). Several introns contain Alu repetitive sequences. A TATA-like sequence (TTATAAAA) and a CAAT-like sequence (GTCATCAT) are located 473 and 515 bp, respectively, upstream from the translation initiation codon. Primer extension and S1 nuclease mapping were performed to characterize the 5'-region of the gene.  相似文献   

18.
Aldehyde dehydrogenase activities in liver mitochondria isolated from rats given ethanol at hourly intervals by gastric intubation showed a brief lag period followed by a rapid increase in specific activities until a maximum was attained at about 3h.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号