首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While current dogma argues that vitamin D prodrugs require side-chain activation by liver enzymes, recent data suggest that hydroxylation may also occur extrahepatically. We used keratinocytes and recombinant human enzyme to test if the 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) is capable of target cell activation and inactivation of a model prodrug, 1alpha-hydroxyvitamin D2 (1alpha(OH)D2) in vitro. Mammalian cells stably transfected with CYP24A1 (V79-CYP24A1) converted 1alpha(OH)D2 to a series of metabolites similar to those observed in murine keratinocytes and the human cell line HPK1A-ras, confirming the central role of CYP24A1 in metabolism. Products of 1alpha(OH)D2 included the active metabolites 1alpha,24-dihydroxyvitamin D2 (1alpha,24(OH)2D2) and 1alpha,25-dihydroxyvitamin D2 (1alpha,25(OH)2D2); the formation of both indicating the existence of distinct activation pathways. A novel water-soluble metabolite, identified as 26-carboxy-1alpha,24(OH)2D2, was the presumed terminal degradation product of 1alpha(OH)D2 synthesized by CYP24A1 via successive 24-hydroxylation, 26-hydroxylation and further oxidation at C-26. This acid was absent in keratinocytes from Cyp24a1 null mice. Slower clearance rates of 1alpha(OH)D2 and 1alpha,24(OH)2D2 relative to 1alpha,25(OH)2D2 and 1alpha,25(OH)2D3 were noted, arguing for a role of 24-hydroxylated metabolites in the altered biological activity profile of 1alpha(OH)D2. Our findings suggest that CYP24A1 can activate and inactivate vitamin D prodrugs in skin and other target cells in vitro, offering the potential for treatment of hyperproliferative disorders such as psoriasis by topical administration of these prodrugs.  相似文献   

2.
Sphingomyelin hydrolysis seems to be a ubiquitous pathway generating ceramide, an important cell response modifier. Upon agonist-stimulation this pathway is linked to biological responses as inhibition of proliferation, promotion of differentiation and induction of apoptosis. One of the agonists described is 1alpha,25-dihydroxyvitamin D3. Recently, we could demonstrate the existence of sphingomyelin hydrolysis in human primary keratinocytes as well as in the human keratinocyte cell line HaCaT after treatment with 1alpha,25-dihydroxyvitamin D3. In the present study we tested four vitamin D analogues on HaCaT keratinocytes for their ability to inhibit cell proliferation and to induce sphingomyelin hydrolysis. These analogues, calcipotriol, EB 1213, GS 1500 and tacalcitol inhibit cell growth after 48 hrs. of incubation and trigger the hydrolysis of sphingomyelin. Moreover, all analogues tested induce apoptotic cell death in HaCaT keratinocytes after 24 hrs. of incubation. This study indicates that sphingomyelin hydrolysis, subsequently leading to the elevation of cellular ceramide levels, may represent an important signal transduction pathway for 1alpha,25-dihydroxyvitamin D3 and its analogues in human keratinocytes. Possible differences of the mechanism underlying vitamin D-induced sphingomyelin hydrolysis has to be studied in more detail and may contribute to the antipsoriatic action of these analogues.  相似文献   

3.
1alpha,25-Dihydroxyvitamin D(3)-3-bromoacetate (1, 25(OH)(2)D(3)-3-BE), an affinity labeling analog of 1alpha, 25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), displayed stronger antiproliferative activities than 1,25(OH)(2)D(3) at 10(-10)-10(-6) M dose levels in cultured human keratinocytes (CHK). Additionally, preincubation of the cells with 10(-6) M 1,25(OH)(2)D(3), followed by treatment with various doses of 1,25(OH)(2)D(3)-3-BE, resulted in a significantly stronger antiproliferative activity by the mixture than individual reagents at every dose level. To search for a mechanism of this observation, we determined that [(14)C]1, 25(OH)(2)D(3)-3-BE covalently labeled human recombinant 1alpha, 25-dihydroxyvitamin D(3) receptor (reVDR) swiftly (<1 min) with a 1:1 stoichiometry and induced conformational changes (in VDR) that are different from 1,25(OH)(2)D(3), by limited tryptic digestion. Furthermore, a protein band, corresponding to reVDR, was specifically labeled by [(14)C]1,25(OH)(2)D(3)-3-BE in CHK extract, indicating that VDR is the main target of [(14)C]1, 25(OH)(2)D(3)-3-BE. The above-mentioned observations suggest that a rapid covalent labeling of VDR in CHK might alter the interaction between the holo-VDR and 1,25(OH)(2)D(3)-controlled genes. Furthermore, we observed that 1,25(OH)(2)D(3)-3-BE significantly decreased the binding of VDR to human osteocalcin vitamin D responsive element (hOCVDRE), as well as the dissociation rate of VDR from hOCVDRE, compared with 1,25(OH)(2)D(3) in COS-1 cells, transiently transfected with a VDR construct. Additionally, 1, 25(OH)(2)D(3)-3-BE was found to be more potent in inducing 1alpha, 25-dihydroxyvitamin D(3)-24-hydroxylase (24-OHase) promoter activity and mRNA expression in keratinocytes. The accumulation of 24-OHase message was also prolonged by the analog. Collectively these results indicated that rapid covalent labeling of VDR in keratinocytes (by 1, 25(OH)(2)D(3)-3-BE) might result in the conversion of apo-VDR to a holo-form, with a conformation that is different from that of the 1, 25(OH)(2)D(3)-VDR complex. This resulted in an enhanced stability of the 1,25(OH)(2)D(3)-3-BE/VDR-VDRE complex and contributed to the amplified antiproliferative effect of 1,25(OH)(2)D(3)-3-BE in keratinocytes.  相似文献   

4.
Xie Z  Bikle DD 《Steroids》2001,66(3-5):339-345
Phospholipase C-gamma1 (PLC-gamma1) is the most abundant member of the phospholipase C family expressed in human keratinocytes. PLC-gamma1 is induced by 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) in normal keratinocytes via a DR6-type vitamin D responsive element. This regulation is not observed in transformed keratinocytes. The role of PLC-gamma1 in mediating 1alpha,25(OH)(2)D(3) and calcium-regulated differentiation was then tested. Both specific PLC inhibitors and antisense constructs which selectively block PLC-gamma1 production prevented 1alpha,25(OH)(2)D(3) and calcium from inducing markers of differentiation such as involucrin and transglutaminase. These studies demonstrate that PLC-gamma1 induction by 1alpha,25(OH)(2)D(3) is critical to the ability of this hormone to regulate keratinocyte differentiation.  相似文献   

5.
We have investigated the possible involvement of phosphoinositide turnover in the keratinocyte differentiation induced by 1 alpha,25-dihydroxyvitamin D3 [1 alpha,25(OH)2D3]. The mass contents of inositol 1,4,5-trisphosphate and 1,2-diacylglycerol and intracellular calcium level were measured in murine keratinocytes stimulated with 1 alpha,25(OH)2D3 or its derivatives. Although production of these second messengers was enhanced, there were no significant differences in time- and dose-dependences between 1 alpha,25(OH)2D3 and its derivatives. These vitamin D3 compounds promoted the translocation from the cytosol to membrane of protein kinase C (PKC). Despite such common profiles in the early signal transduction parameters, only 1 alpha,25(OH)2D3 induced formation of a cornified envelope characteristic of keratinocyte differentiation. Down-regulation of PKC by prolonged pretreatment with PDBu or inhibition of the enzyme with H-7 caused marked suppression of 1 alpha,25(OH)2D3-induced formation of cornified envelopes. These findings imply that PKC is necessary but not sufficient for the onset of terminal differentiation by 1 alpha,25(OH)2D3, and also that another as yet unspecified signal generated specifically by the active vitamin D3 is required for keratinocyte differentiation.  相似文献   

6.
1alpha,25-Dihydroxyvitamin D3 administration to rachitic chicks results in an increase in the chromatin template activity of intestinal target tissue assayed in vitro using Escherichia coli RNA polymerase. The maximum stimulation of template capacity was 12 to 20% over control values and occurred 2 hours after administration of the sterol. This rapid effect preceded the biologic response to 1alpha,25-dihydroxyvitamin D3 in the intestine and was not observed in other tissues such as liver or kidney. The in vivo enhancement of intestinal chromatin template activity was specific for the 1alpha,25-dihydroxyvitamin D3 hormone in that equivalent doses of 25-hydroxyvitamin D3 or vitamin D3 did not elicit a response in 2 to 3 hours. Only 1alpha-hydroxyvitamin D3, a synthetic sterol which is very rapidly metabolized to the 1alpha,25-dihydroxyvitamin D3 form, was able to minic the natural hormone in vivo. To further elucidate the nuclear mechanism of action of 1alpha,25-dihydroxyvitamin D3, the hormone was preincubated at 0 degrees with intestinal cytosol to form hormone-receptor complexes. After addition of the hormone-receptor complexes to purified intestinal mucosa nuclei and incubation for 1 hour at 25 degrees, chromatin isolated from this reconstituted system displayed a significant increase in template activity as compared to chromatin prepared from similar in vitro incubations not containing hormone. This stimulation was 12 to 24% over control values and exhibited an absolute requirement for intestinal cell cytosol. The response was specific for physiologic levels of 1alpha,25-dihydroxyvitamin D3, but occurred with pharmacologic doses of 25-hydroxyvitamin D3. It is concluded that a stimulation of the chromatin template activity of intestinal target tissue by 1alpha,25-dihydroxyvitamin D3 may be an integral part of the ultimate physiologic response of enhanced calcium transport.  相似文献   

7.
Recently, 25-hydroxyvitamin D3-24-hydroxylase (CYP24A1) has been shown to catalyze not only hydroxylation at C-24 but also hydroxylations at C-23 and C-26 of the secosteroid hormone 1alpha, 25-dihydroxyvitamin D3 (1alpha,25(OH)2D3). It remains to be determined whether CYP24A1 has the ability to hydroxylate vitamin D3 compounds at C-25. 1alpha,24(R)-dihydroxyvitamin D3 (1alpha,24(R)(OH)2D3) is a non-25-hydroxylated synthetic vitamin D3 analog that is presently being used as an antipsoriatic drug. In the present study, we investigated the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes in order to examine the ability of CYP24A1 to hydroxylate 1alpha,24(R)(OH)2D3 at C-25. The results indicated that keratinocytes metabolize 1alpha,24(R)(OH)2D3 into several previously known both 25-hydroxylated and non-25-hydroxylated metabolites along with two new metabolites, namely 1alpha,23,24(OH)3D3 and 1alpha,24(OH)2-23-oxo-D3. Production of the metabolites including the 25-hydroxylated ones was detectable only when CYP24A1 activity was induced in keratinocytes 1alpha,25(OH)2D3. This finding provided indirect evidence to indicate that CYP24A1 catalyzes C-25 hydroxylation of 1alpha,24(R)(OH)2D3. The final proof for this finding was obtained through our metabolism studies using highly purified recombinant rat CYP24A1 in a reconstituted system. Incubation of this system with 1alpha,24(R)(OH)2D3 resulted in the production of both 25-hydroxylated and non-25-hydroxylated metabolites. Thus, in our present study, we identified CYP24A1 as the main enzyme responsible for the metabolism of 1alpha,24(R)(OH)2D3 in human keratinocytes, and provided unequivocal evidence to indicate that the multicatalytic enzyme CYP24A1 has the ability to hydroxylate 1alpha,24(R)(OH)2D3 at C-25.  相似文献   

8.
9.
Four possible diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were chemically synthesized and compared with the natural metabolite by high-pressure liquid chromatography. The four synthetic diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone could be separated into three peaks by high-pressure liquid chromatography. The naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum and in vitro incubation of chick kidney homogenates comigrated with 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. The four diastereoisomers of 1 alpha,25-dihydroxyvitamin D3-26,23-lactone were tested against naturally occurring 1 alpha,25-dihydroxyvitamin D3-26,23-lactone to determine their relative competition in the 1 alpha,25-dihydroxyvitamin D3-specific cytosol receptor binding assay for 1 alpha,25-dihydroxyvitamin D3. 23(S)25(S)-1 alpha,25-Dihydroxyvitamin D3-26,23-lactone was the best competitor followed by 23(R)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone and 23(R)25(S)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone, and 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone was the poorest competitor. Natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone isolated from dog serum had almost the same binding affinity as that of 23(S)25(R)-1 alpha,25-dihydroxyvitamin D3-26,23-lactone. These data unequivocally demonstrate that the stereochemistry of the natural 1 alpha,25-dihydroxyvitamin D3-26,23-lactone has the 23(S) and 25(R) configuration.  相似文献   

10.
In order to study the effects of vitamin D metabolites on bone metabolism, clone MC3T3-E1 cells, which have retained osteoblastic activity, were cultured with various concentrations of the hormone, 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25 (OH)2D3]. A physiological concentration of 1 alpha, 25 (OH)2D3 stimulated alkaline phosphatase (ALP) activity in the cells. Other metabolites--1 alpha, 24-dihydroxyvitamin D3 [1 alpha, 24 (OH)2D3], 1 alpha-hydroxyvitamin D3 [1 alpha (OH)D3], and 24R,25-dihydroxyvitamin D3 [24R,25 (OH)2D3]--also induced increases in ALP activity in a dose-dependent fashion. However, their effective concentrations were 100 or 1,000 times greater than that of 1 alpha, 25 (OH)2D3. Hormone-induced and native ALP activities in the cells were of the same type as that found in newborn mouse calvaria; that is, they were heat-labile, L-homoarginine- and levamisole-sensitive, and L-phenylalanine-insensitive (liver-bone-kidney type). These results show that vitamin D metabolites stimulate bone formation in vitro and that they may be involved in bone formation in vivo as well.  相似文献   

11.
1alpha,25-Dihydroxyvitamin D(3) has been shown to exert its effects by both genomic (minutes to hours) and rapid (seconds to minutes) mechanisms. The genomic effects are mediated by interaction with the nuclear vitamin D receptor. We show that the vitamin D analog, [(14)C]-1alpha,25-dihydroxyvitamin D(3) bromoacetate, is specifically bound to a protein (molecular weight 36 kDa) in the plasma membrane of rat osteoblastlike cells (ROS 24/1). The plasma membrane protein labeled with the bromoacetate analog was identified as annexin II by sequence determination and Western blot. Partially purified plasma membrane proteins (PI 6.9-7.4) and purified annexin II exhibited specific and saturable binding for [(3)H]-1alpha, 25-dihydroxyvitamin D(3). Antibodies to annexin II inhibited [(14)C]-1alpha,25-dihydroxyvitamin D(3) bromoacetate binding to ROS 24/1 plasma membranes, immunoprecipitated the ligand-protein complex, and inhibited 1alpha,25-dihydroxyvitamin D(3)-induced increases in intracellular calcium in ROS 24/1 cells. The results indicate that annexin II may serve as a receptor for rapid actions of 1alpha, 25-dihydroxyvitamin D(3).  相似文献   

12.
The in vitro effect of 1 alpha,25-dihydroxyvitamin D3 on the function of beta cells of the endocrine pancreas was investigated. Neonatal islets maintained in serum-free medium, or medium supplemented with 0.5% fetal bovine serum achieved a 2.5-fold increase in medium insulin levels in response to 10(8) M 1 alpha,25-dihydroxyvitamin D3 (P less than 0.001). The effect of 1,25-dihydroxyvitamin D3 required at least 96 h treatment to become evident and was similar at medium glucose concentrations of 10 and 20 mM. Cell-associated insulin was increased in 1 alpha,25-dihydroxyvitamin D3-treated cultures maintained in 0.5% serum. These data suggest that 1 alpha,25-dihydroxyvitamin D3 may have a direct effect in the beta cell.  相似文献   

13.
14.
1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2) D(3)) imposes cell cycle block in late G1 phase in cultured human keratinocytes. We wanted to identify early vitamin D target genes using a subtractive screening approach. Human foreskin keratinocytes were grown to about 70% confluence, treated with 2 x 10(-7) M 1alpha,25(OH)(2) D(3) or left untreated and RNA from both populations were isolated after 22h of incubation. cDNA was synthesised and cloned into plasmid vectors. For screening of the libraries, cDNA was amplified in vitro using T7 RNA polymerase and then the amplified RNA (driver, control population) and single stranded cDNA (tester) were used for subtractive hybridisation. Heterohybrids were then separated from single stranded nucleotides using a hydroxyapatite column. The radiolabeled single stranded cDNA was used for screening a colony blot. Positive clones were rescreened, plasmid DNA was isolated and used for verifying the results by Northern blot analysis, using RNA isolated from untreated keratinocytes, as well as RNA isolated after 6h, 12h and 24h of vitamin D treatment.  相似文献   

15.
16.
E B Mawer  J L Berry  J Bessone  S Shany  H Smith  A White 《Steroids》1985,46(2-3):741-754
The preparation of high-affinity and high-specificity monoclonal antibodies to 1 alpha,25-dihydroxyvitamin D is described. Monoclonal antibodies were derived from Balb-c mice immunised with either 1 alpha-hydroxy-25,26,27-trinor-24-cholecalcioic acid or with 1 alpha-hydroxy-26,27-dinor-cholecalciferol-25-oxime, and spleen cells were hybridised with mouse myeloma cells. From six fusions nine monoclonal antibodies (MAb's) were selected from 676 antibody-secreting hybrids. Antibodies varied widely in their ability to bind 1 alpha,25-dihydroxyvitamin D3 (50% displacement of radioligand ranged from 25 - 900 pg); two had particularly useful characteristics for 1 alpha,25-dihydroxyvitamin D assay. MAb 5F2 has high affinity (Ka = 1.39 X 10(10) M-1) and does not discriminate between 1 alpha,25-dihydroxyvitamin D2 and D3, thus enabling the two forms to be measured together. MAb 1G7 is highly specific, having no cross-reactivity with 25-hydroxy-, 24,25-dihydroxy- or 25,26-dihydroxyvitamin D at concentrations found in normal human serum; this MAb has the potential to eliminate the lengthy extraction procedures involved in currently available assays for 1 alpha,25-dihydroxyvitamin D.  相似文献   

17.
An efficient synthesis of several diastereomers of 2-hydroxy substituted 1alpha,25-dihydroxyprevitamin D3 derivatives was accomplished utilizing a practical route to the A-ring synthon. The biological activity of the analogues was evaluated in vitro. All the synthesized derivatives demonstrated low affinity for the vitamin D receptor and vitamin D-binding protein compared with 1alpha,25-dihydroxyvitamin D3, the natural hormone. 1alpha,2beta,25-trihydroxy-19-nor-pre-D3 was the most potent of the analogues in inhibiting proliferation of MCF-7 cells but requires higher EC50 concentrations than 1alpha,25-dihydroxyvitamin D3.  相似文献   

18.
It has been previously shown that keratinocytes express a high level of 25-hydroxyvitamin D(3) (25-OHD(3)) 1alpha-hydroxylase (1alpha-hydroxylase). 1alpha-Hydroxylase catalyzes the conversion of 25-OHD(3) to 1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)]. 1,25(OH)(2)D(3) is both antiproliferative (i.e., suppresses cell growth) and prodifferentiative (i.e., induces cell differentiation) in many cell types. We hypothesized that local production of 1,25(OH)(2)D(3) by keratinocytes may suppress their growth and induce their differentiation in an autocrine fashion. To test this hypothesis, we inactivated both 1alpha-hydroxylase alleles in a ras-transformed keratinocyte cell line, HPK1Aras, which typically produces squamous carcinoma in nude mice. To inactivate 1alpha-hydroxylase expression by HPK1Aras cells, we disrupted both alleles of the 1alpha-hydroxylase gene by homologous recombination. Lack of expression and activity of 1alpha-hydroxylase was confirmed by Northern blot analysis and detected conversion of 25-OHD(3) to 1,25(OH)(2)D(3). We then examined the effect of substrate 25-OHD(3) on parameters of growth and differentiation in the double knockout cell line as compared to wild-type HPK1Aras cells in vitro. It was found that 1alpha-hydroxylase inactivation blocked the antiproliferative and prodifferentiative effect of 25-OHD(3). These in vitro effects were further analyzed in vivo by injecting knockout or control cells subcutaneously in severely compromised immunodeficient mice. Tumor growth was accelerated and differentiation was inhibited in mice given injections of knockout cells as compared to control cells in the presence of substrate 25-OHD(3). Our results demonstrate, for the first time, that 1alpha-hydroxylase expression by keratinocytes plays an important role in autocrine growth and differentiation of these cells, and suggest that expression of this enzyme may modulate tumor growth in squamous carcinomas.  相似文献   

19.
Deficiency in Vitamin D and its metabolites leads to a failure in bone formation primarily caused by dysfunctional mineralization, suggesting that Vitamin D analogs might stimulate osteoblastic bone formation and mineralization. In this study, we compare the effect of selected Vitamin D analogs and active metabolite, 1alpha,25-dihydroxyvitamin D(3), 19-nor-1alpha, 25-dihydroxyvitamin D(2), and 1alpha-hydroxyvitamin D(2) or 1alpha,25-dihydroxyvitamin D(2) on bone formation and resorption. In a mouse calvariae bone primary organ culture system, all Vitamin D analogs and metabolite tested-stimulated collagen synthesis in a dose-dependent manner and 19-nor-1alpha, 25-dihydroxyvitamin D(2) was the most efficacious among three. 19-nor-1alpha, 25-dihydroxyvitamin D(2) and 1alpha,25-dihydroxyvitamin D(2) showed similar potencies and 1alpha,25-dihydroxyvitamin D(3) was less potent than others. Osteocalcin was also up-regulated in a dose-dependent manner, suggesting that the three Vitamin D analogs have the equal potencies on bone formation. 25-Hydroxyvitamin D-24-hydroxylase expression was induced in a dose-dependent manner and 19-nor-1alpha, 25-dihydroxyvitamin D(2) was less potent than other two compounds. In a mouse calvariae organ culture, all induced a net calcium release from calvariae in a dose-dependent manner, but the potency is in the order of 1alpha,25-dihydroxyvitamin D(2) congruent with1alpha,25-dihydroxyvitamin D(3)>19-nor-1alpha, 25-dihydroxyvitamin D(2). In a Vitamin D/calcium-restricted rat model, all caused an elevation in serum calcium in a dose-dependent manner. There is no significant difference between 1alpha,25-dihydroxyvitamin D(3) and 1alpha-hydroxyvitamin D(2) in potencies, but 19-nor-1alpha, 25-dihydroxyvitamin D(2) is at least 10-fold less potent than the other two compounds. Our results suggest that Vitamin D analogs have direct effects on bone resorption and formation, and 19-nor-1alpha, 25-dihydroxyvitamin D(2) may be more effective than 1alpha,25-dihydroxyvitamin D(3) and 1alpha-hydroxyvitamin D(2) on stimulating anabolic bone formation.  相似文献   

20.
Calcitroic acid (1 alpha-hydroxy-23 carboxy-24,25,26,27-tetranorvitamin D(3)) is known to be the major water-soluble metabolite produced during the deactivation of 1 alpha,25-dihydroxyvitamin D(3). This deactivation process involves a series of oxidation reactions at C(24) and C(23) leading to side-chain cleavage and, ultimately, formation of the calcitroic acid. Like 1 alpha,25-dihydroxyvitamin D(3), 1 alpha,25-dihydroxyvitamin D(2) is also known to undergo side-chain oxidation; however, to date there has been no evidence suggesting that 1 alpha,25-dihydroxyvitamin D(2) undergoes side-chain cleavage. To investigate this possibility, we studied 1 alpha,25-dihydroxyvitamin D(2) metabolism in HPK1A-ras cells as well as the well characterized perfused rat kidney system. Lipid and aqueous-soluble metabolites were prepared for characterization. Aqueous-soluble metabolites were subjected to reverse-phase HPLC analysis. The major aqueous-soluble metabolite from both the kidney and cell incubations comigrated with authentic calcitroic acid on two reverse-phase HPLC columns of different chemistry. The putative calcitroic acid from the cell and kidney incubations was methylated and found to comigrate with methylated authentic standard on straight-phase and reverse-phase HPLC columns. The identity of the methylated metabolite from cell incubations was also confirmed by mass spectral analysis. These data show, for the first time, that calcitroic acid is a major terminal product for the deactivation of 1 alpha,25-dihydroxyvitamin D(2). Intermediates leading to the formation of the calcitroic acid in the 1 alpha,25-dihydroxyvitamin D(2) metabolism pathway are currently being studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号