首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of proteome-wide studies rely on the high separation power of two-dimensional liquid chromatography-tandem mass spectrometry (2D LC-MS/MS), often combined with protein prefractionation. Alternative approaches would be advantageous in order to reduce the analysis time and the amount of sample required. On the basis of the recent advances in chromatographic and mass spectrometric instrumentation, thousands of proteins can be identified in a single-run LC-MS/MS experiment using ultralong gradients. Consequently, the analysis of simple proteomes or clinical samples in adequate depth becomes possible by performing single-run LC-MS/MS experiments. Here we present a generally applicable protocol for protein analysis from unseparated whole-cell extracts and discuss its potential and limitations. Demonstrating the practical applicability of the method, we identified 2,761 proteins from a HeLa cell lysate, requiring around 10 h of nanoLC-MS/MS measurement time.  相似文献   

2.
Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that is an important human and animal pathogen. Experimental information on T. gondii membrane proteins is limited, and the majority of gene predictions with predicted transmembrane motifs are of unknown function. A systematic analysis of the membrane proteome of T. gondii is important not only for understanding this parasite's invasion mechanism(s), but also for the discovery of potential drug targets and new preventative and therapeutic strategies. Here we report a comprehensive analysis of the membrane proteome of T. gondii, employing three proteomics strategies: one-dimensional gel liquid chromatography-tandem MS analysis (one-dimensional gel electrophoresis LC-MS/MS), biotin labeling in conjunction with one-dimensional gel LC-MS/MS analysis, and a novel strategy that combines three-layer "sandwich" gel electrophoresis with multidimensional protein identification technology. A total of 2241 T. gondii proteins with at least one predicted transmembrane segment were identified and grouped into 841 sequentially nonredundant protein clusters, which account for 21.8% of the predicted transmembrane protein clusters in the T. gondii genome. A large portion (42%) of the identified T. gondii membrane proteins are hypothetical proteins. Furthermore, many of the membrane proteins validated by mass spectrometry are unique to T. gondii or to the Apicomplexa, providing a set of gene predictions ripe for experimental investigation, and potentially suitable targets for the development of therapeutic strategies.  相似文献   

3.
We have developed a proteomics technology featuring on-line three-dimensional liquid chromatography coupled to tandem mass spectrometry (3D LC-MS/MS). Using 3D LC-MS/MS, the yeast-soluble, urea-solubilized peripheral membrane and SDS-solubilized membrane protein samples collectively yielded 3019 unique yeast protein identifications with an average of 5.5 peptides per protein from the 6300-gene Saccharomyces Genome Database searched with SEQUEST. A single run of the urea-solubilized sample yielded 2255 unique protein identifications, suggesting high peak capacity and resolving power of 3D LC-MS/MS. After precipitation of SDS from the digested membrane protein sample, 3D LC-MS/MS allowed the analysis of membrane proteins. Among 1221 proteins containing two or more predicted transmembrane domains, 495 such proteins were identified. The improved yeast proteome data allowed the mapping of many metabolic pathways and functional categories. The 3D LC-MS/MS technology provides a suitable tool for global proteome discovery.  相似文献   

4.
Automated multidimensional capillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been increasingly applied in various large scale proteome profiling efforts. However, comprehensive global proteome analysis remains technically challenging due to issues associated with sample complexity and dynamic range of protein abundances, which is particularly apparent in mammalian biological systems. We report here the application of a high efficiency cysteinyl peptide enrichment (CPE) approach to the global proteome analysis of human mammary epithelial cells (HMECs) which significantly improved both sequence coverage of protein identifications and the overall proteome coverage. The cysteinyl peptides were specifically enriched by using a thiol-specific covalent resin, fractionated by strong cation exchange chromatography, and subsequently analyzed by reversed-phase capillary LC-MS/MS. An HMEC tryptic digest without CPE was also fractionated and analyzed under the same conditions for comparison. The combined analyses of HMEC tryptic digests with and without CPE resulted in a total of 14 416 confidently identified peptides covering 4294 different proteins with an estimated 10% gene coverage of the human genome. By using the high efficiency CPE, an additional 1096 relatively low abundance proteins were identified, resulting in 34.3% increase in proteome coverage; 1390 proteins were observed with increased sequence coverage. Comparative protein distribution analyses revealed that the CPE method is not biased with regard to protein M(r) , pI, cellular location, or biological functions. These results demonstrate that the use of the CPE approach provides improved efficiency in comprehensive proteome-wide analyses of highly complex mammalian biological systems.  相似文献   

5.
Yeast remains an important model for systems biology and for evaluating proteomics strategies. In-depth shotgun proteomics studies have reached nearly comprehensive coverage, and rapid, targeted approaches have been developed for this organism. Recently, we demonstrated that single LC-MS/MS analysis using long columns and gradients coupled to a linear ion trap Orbitrap instrument had an unexpectedly large dynamic range of protein identification (Thakur, S. S., Geiger, T., Chatterjee, B., Bandilla, P., Frohlich, F., Cox, J., and Mann, M. (2011) Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol. Cell Proteomics 10, 10.1074/mcp.M110.003699). Here we couple an ultra high pressure liquid chromatography system to a novel bench top Orbitrap mass spectrometer (Q Exactive) with the goal of nearly complete, rapid, and robust analysis of the yeast proteome. Single runs of filter-aided sample preparation (FASP)-prepared and LysC-digested yeast cell lysates identified an average of 3923 proteins. Combined analysis of six single runs improved these values to more than 4000 identified proteins/run, close to the total number of proteins expressed under standard conditions, with median sequence coverage of 23%. Because of the absence of fractionation steps, only minuscule amounts of sample are required. Thus the yeast model proteome can now largely be covered within a few hours of measurement time and at high sensitivity. Median coverage of proteins in Kyoto Encyclopedia of Genes and Genomes pathways with at least 10 members was 88%, and pathways not covered were not expected to be active under the conditions used. To study perturbations of the yeast proteome, we developed an external, heavy lysine-labeled SILAC yeast standard representing different proteome states. This spike-in standard was employed to measure the heat shock response of the yeast proteome. Bioinformatic analysis of the heat shock response revealed that translation-related functions were down-regulated prominently, including nucleolar processes. Conversely, stress-related pathways were up-regulated. The proteomic technology described here is straightforward, rapid, and robust, potentially enabling widespread use in the yeast and other biological research communities.  相似文献   

6.
Proteome analysis of developing mice diastema region   总被引:1,自引:0,他引:1  
Chae YM  Jin YJ  Kim HS  Gwon GJ  Sohn WJ  Kim SH  Kim MO  Lee S  Suh JY  Kim JY 《BMB reports》2012,45(6):337-341
Different from humans, who have a continuous dentition of teeth, mice have only three molars and one incisor separated by a toothless region called the diastema in the hemi mandibular arch. Although tooth buds form in the embryonic diastema, they regress and do not develop into teeth. In this study, we evaluated the proteins that modulate the diastema formation through comparative analysis with molar-forming tissue by liquid chromatography-tandem mass spectroscopy (LC-MS/MS) proteome analysis. From the comparative and semi-quantitative proteome analysis, we identified 147 up- and 173 down-regulated proteins in the diastema compared to the molar forming proteins. Based on this proteome analysis, we selected and evaluated two candidate proteins, EMERIN and RAB7A, as diastema tissue specific markers. This study provides the first list of proteins that were detected in the mouse embryonic diastema region, which will be useful to understand the mechanisms of tooth development.  相似文献   

7.
Cowpox virus (CPXV) causes most zoonotic orthopoxvirus (OPV) infections in Europe and Northern as well as Central Asia. The virus has the broadest host range of OPV and is transmitted to humans from rodents and other wild or domestic animals. Increasing numbers of human CPXV infections in a population with declining immunity have raised concerns about the virus’ zoonotic potential. While there have been reports on the proteome of other human-pathogenic OPV, namely vaccinia virus (VACV) and monkeypox virus (MPXV), the protein composition of the CPXV mature virion (MV) is unknown. This study focused on the comparative analysis of the VACV and CPXV MV proteome by label-free single-run proteomics using nano liquid chromatography and high-resolution tandem mass spectrometry (nLC-MS/MS). The presented data reveal that the common VACV and CPXV MV proteome contains most of the known conserved and essential OPV proteins and is associated with cellular proteins known to be essential for viral replication. While the species-specific proteome could be linked mainly to less genetically-conserved gene products, the strain-specific protein abundance was found to be of high variance in proteins associated with entry, host-virus interaction and protein processing.  相似文献   

8.
Protein expression profiles vary considerably between human cell lines and tissues, which is in part a reflection of their specialized roles within an organism. It is of considerable practical use to establish which proteins constitute the primary components of the respective proteomes. When compiled into databases, such information can facilitate the assessment of selectivity and specificity of a wide range of proteomic experiments. Here we describe the major constituents of proteomes of six human immortalized cell lines. By employing a combination of one-dimensional SDS-PAGE and nanocapillary liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified up to 1785 non-redundant cytoplasmic and nuclear proteins from a single cell line using 50 and 30 microg of total protein from the corresponding fractions. Up to 38 proteins could be identified from a single band in one liquid chromatography-MS/MS experiment. When combined with systematic gridding of gel lanes into 48 slices, a dynamic range for protein identification of approximately 1:2000 can be envisaged for this approach. Identified proteins range from 4-553 kDa in size, cover the pI range between 3.4 and 12.8, and include 255 proteins with predicted transmembrane domains. Repeated analysis of peptides derived from the same gel band showed that the reproducibility of nanocapillary liquid chromatography-MS/MS of such complex mixtures is about 60-70% suggesting that a particular analytical experiment would need to be repeated about three times to arrive at a representative estimate of the set of highly abundant proteins in a given proteome. Given its technical simplicity, sensitivity, and wealth of generated information, we have adopted this experimental approach to characterize every cell line and tissue that is the subject of experimentation in our laboratory. The combined dataset for the six cell lines consists of 2341 non-redundant human proteins and thus constitutes one of the largest collections of human proteomic data published to date.  相似文献   

9.
Highly complex protein mixtures can be directly analyzed after proteolysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). In this paper, we have utilized the combination of strong cation exchange (SCX) and reversed-phase (RP) chromatography to achieve two-dimensional separation prior to MS/MS. One milligram of whole yeast protein was proteolyzed and separated by SCX chromatography (2.1 mm i.d.) with fraction collection every minute during an 80-min elution. Eighty fractions were reduced in volume and then re-injected via an autosampler in an automated fashion using a vented-column (100 microm i.d.) approach for RP-LC-MS/MS analysis. More than 162,000 MS/MS spectra were collected with 26,815 matched to yeast peptides (7,537 unique peptides). A total of 1,504 yeast proteins were unambiguously identified in this single analysis. We present a comparison of this experiment with a previously published yeast proteome analysis by Yates and colleagues (Washburn, M. P.; Wolters, D.; Yates, J. R., III. Nat. Biotechnol. 2001, 19, 242-7). In addition, we report an in-depth analysis of the false-positive rates associated with peptide identification using the Sequest algorithm and a reversed yeast protein database. New criteria are proposed to decrease false-positives to less than 1% and to greatly reduce the need for manual interpretation while permitting more proteins to be identified.  相似文献   

10.
11.
12.
Microorganisms release effector molecules that modulate the host machinery enabling survival, replication, and dissemination of a pathogen. Here we characterized the extracellular proteome of Paracoccidioides brasiliensis at its pathogenic yeast phase. Cell-free culture supernatants from the Pb18 isolate, cultivated in defined medium, were separated into vesicle and vesicle-free fractions, digested with trypsin, and analyzed by liquid chromatography-tandem mass spectrometry. In vesicle and vesicle-free preparations we identified, respectively, 205 and 260 proteins with two or more peptides, including 120 overlapping identifications. Almost 70% of the sequences were predicted as secretory, mostly using nonconventional secretory pathways, and many have previously been localized to fungal cell walls. A total of 72 proteins were considered as commonly transported by extracellular vesicles, considering that orthologues have been reported in at least two other fungal species. These sequences were mostly related to translation, carbohydrate and protein metabolism, oxidation/reduction, transport, response to stress, and signaling. This unique proteomic analysis of extracellular vesicles and vesicle-free released proteins in a pathogenic fungus provides full comparison with other fungal extracellular vesicle proteomes and broadens the current view on fungal secretomes.  相似文献   

13.
Analysis of the human serum proteome   总被引:1,自引:0,他引:1  
Changes in serum proteins that signal histopathological states, such as cancer, are useful diagnostic and prognostic biomarkers. Unfortunately, the large dynamic concentration range of proteins in serum makes it a challenging proteome to effectively characterize. Typically, methods to deplete highly abundant proteins to decrease this dynamic protein concentration range are employed, yet such depletion results in removal of important low abundant proteins. A multi-dimensional peptide separation strategy utilizing conventional separation techniques combined with tandem mass spectrometry (MS/MS) was employed for a proteome analysis of human serum. Serum proteins were digested with trypsin and resolved into 20 fractions by ampholyte-free liquid phase isoelectric focusing. These 20 peptide fractions were further fractionated by strong cation-exchange chromatography, each of which was analyzed by microcapillary reversed-phase liquid chromatography coupled online with MS/MS analysis. This investigation resulted in the identification of 1444 unique proteins in serum. Proteins from all functional classes, cellular localization, and abundance levels were identified. This study illustrates that a majority of lower abundance proteins identified in serum are present as secreted or shed species by cells as a result of signalling, necrosis, apoptosis, and hemolysis. These findings show that the protein content of serum is quite reflective of the overall profile of the human organism and a conventional multidimensional fractionation strategy combined with MS/MS is entirely capable of characterizing a significant fraction of the serum proteome. We have constructed a publicly available human serum proteomic database (http://bpp.nci.nih.gov) to provide a reference resource to facilitate future investigations of the vast archive of pathophysiological content in serum. These authors contributed equally to this work.  相似文献   

14.
Current diagnostic tools limit a clinician's ability to discriminate between many possible causes of sensorineural hearing loss. This constraint leads to the frequent diagnosis of the idiopathic condition, leaving patients without a clear prognosis and only general treatment options. As a first step toward developing new diagnostic tools and improving patient care, we report the first use of liquid chromatography-tandem mass-spectrometry (LC-MS/MS) to map the proteome of human perilymph. Using LC-MS/MS, we analyzed four samples, two collected from patients with vestibular schwannoma (VS) and two from patients undergoing cochlear implantation (CI). For each cohort, one sample contained pooled specimens collected from five patients and the second contained a specimen obtained from a single patient. Of the 271 proteins identified with high confidence among the samples, 71 proteins were common in every sample and used to conservatively define the proteome of human perilymph. Comparison to human cerebrospinal fluid and blood plasma, as well as murine perilymph, showed significant similarity in protein content across fluids; however, a quantitative comparison was not possible. Fifteen candidate biomarkers of VS were identified by comparing VS and CI samples. This list will be used in future investigations targeted at discriminating between VS tumors associated with good versus poor hearing.  相似文献   

15.
Besides providing nutrition to the newborn, milk also protects the neonate and the mammary gland against infection. As well as the six major proteins, bovine milk contains minor proteins, not all of which have been characterized. In this study, we have subjected bovine skim milk, whey, and milk fat globule membrane (MFGM) fractions to both direct liquid chromatography-tandem mass spectrometry (LC-MS/MS), and two-dimensional electrophoresis (2-DE) followed by matrix assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) of individual protein spots to better characterize the repertoire of minor milk proteins, particularly those involved with host defense. Milk from peak lactation as well as during the period of colostrum formation and during mastitis were analyzed to gain a more complete sampling of the milk proteome. In total, 2903 peptides were detected by LC-MS and 2770 protein spots by 2-DE. From these, 95 distinct gene products were identified, comprising 53 identified through direct LC-MS/MS and 57 through 2-DE-MS. The latter were derived from a total of 363 spots analyzed with 181 being successfully identified. At least 15 proteins were identified that are involved in host defense. These results demonstrate that the proteome of milk is more complex than has previously been reported and a significant fraction of minor milk proteins are involved in protection against infection.  相似文献   

16.
We have developed two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) and 18O proteolytic labeling strategies to identify and compare levels of secretory proteins with low abundance in the conditioned medium of rat adipose cells without or with insulin stimulation. Culture medium was concentrated and secreted proteins were separated on a RP-HPLC followed by LC-MS/MS analysis. For 18O proteolytic labeling, 16O- to 18O-exchange in the digested peptides from eight individual fractions was carried out in parallel in H2(16)O and H(2)18O with immobilized trypsin, and the ratios of isotopically distinct peptides were measured by mass spectrometry. A total of 84 proteins was identified as secreted adipokines. This large number of secretory proteins comprise multiple functional categories. Comparative proteomics of 18O proteolytic labeling allows the detection of different levels of many secreted proteins as exemplified here by the difference between basal and insulin treatment of adipose cells. Taken together, our proteomic approach is able to identify and quantify the comprehensive secretory proteome of adipose cells. Thus, our data support the endocrine role of adipose cells in pathophysiological states through the secretion of signaling molecules.  相似文献   

17.
The fission yeast Schizosaccharomyces pombe (S. pombe) is a unicellular eukaryote and contains many genes and regulatory mechanisms that are close to those of mammals. In this study, we performed a global proteomic analysis of the fission yeast S. pombe wild type h(-S) L 972 proteome. More than 1,500 protein spots were visualized on silver stained 2-D gels in the 3-10 pI range with a high resolution and high reproducibility. Protein identification was carried out by MALDI-TOF-MS and/or nanoLC-MS/MS. Advantage of the complementarity of these two MS approaches was used to enhance the identification quality. So far, 364 proteins (representing 157 different proteins) have been identified. We report here the identification of 117 new proteins on our 2-D reference map of this yeast compared to the first reference map. Of these identified proteins, 40.1% were involved in metabolism. The present work provides a very useful tool for all studies relying on S. pombe as a model organism and is a considerable complement to the first reference map of S. pombe published recently by Sun and coworkers (Sun, N., Jang, J., Lee, S., Kim, S. et al.., Proteomics 2005, 5, 1574-1579).  相似文献   

18.
Label-free methods streamline quantitative proteomics of tissues by alleviating the need for metabolic labeling of proteins with stable isotopes. Here we detail and implement solutions to common problems in label-free data processing geared toward tissue proteomics by one-dimensional gel electrophoresis followed by liquid chromatography tandem mass spectrometry (geLC MS/MS). Our quantification pipeline showed high levels of performance in terms of duplicate reproducibility, linear dynamic range, and number of proteins identified and quantified. When applied to the liver of an adenomatous polyposis coli (APC) knockout mouse, we demonstrated an 8-fold increase in the number of statistically significant changing proteins compared to alternative approaches, including many more previously unidentified hydrophobic proteins. Better proteome coverage and quantification accuracy revealed molecular details of the perturbed energy metabolism.  相似文献   

19.
Proteomic analyses of different subcellular compartments, so-called organellar proteomics, facilitate the understanding of cellular functions on a molecular level. In this work, various orthogonal multidimensional separation techniques both on the protein and on the peptide level are compared with regard to the number of identified proteins as well as the classes of proteins accessible by the respective methodology. The most complete overview was achieved by a combination of such orthogonal techniques as shown by the analysis of the yeast mitochondrial proteome. A total of 851 different proteins (PROMITO dataset) were identified by use of multidimensional LC-MS/MS, 1D-SDS-PAGE combined with nano-LC-MS/MS and 2D-PAGE with subsequent MALDI-mass fingerprinting. Our PROMITO approach identified the 749 proteins, which were found in the largest previous study on the yeast mitochondrial proteome, and additionally 102 proteins including 42 open reading frames with unknown function, providing the basis for a more detailed elucidation of mitochondrial processes. Comparison of the different approaches emphasizes a bias of 2D-PAGE against proteins with very high isoelectric points as well as large and hydrophobic proteins, which can be accessed more appropriately by the other methods. While 2D-PAGE has advantages in the possible separation of protein isoforms and quantitative differential profiling, 1D-SDS-PAGE with nano-LC-MS/MS and multidimensional LC-MS/MS are better suited for efficient protein identification as they are less biased against distinct classes of proteins. Thus, comprehensive proteome analyses can only be realized by a combination of such orthogonal approaches, leading to the largest dataset available for the mitochondrial proteome of yeast.  相似文献   

20.
Early detection of cancer can greatly improve prognosis. Identification of proteins or peptides in the circulation, at different stages of cancer, would greatly enhance treatment decisions. Mass spectrometry (MS) is emerging as a powerful tool to identify proteins from complex mixtures such as plasma that may help identify novel sets of markers that may be associated with the presence of tumors. To examine this feature we have used a genetically modified mouse model, Apc(Min), which develops intestinal tumors with 100% penetrance. Utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identified total plasma proteome (TPP) and plasma glycoproteome (PGP) profiles in tumor-bearing mice. Principal component analysis (PCA) and agglomerative hierarchial clustering analysis revealed that these protein profiles can be used to distinguish between tumor-bearing Apc(Min) and wild-type control mice. Leave-one-out cross-validation analysis established that global TPP and global PGP profiles can be used to correctly predict tumor-bearing animals in 17/19 (89%) and 19/19 (100%) of cases, respectively. Furthermore, leave-one-out cross-validation analysis confirmed that the significant differentially expressed proteins from both the TPP and the PGP were able to correctly predict tumor-bearing animals in 19/19 (100%) of cases. A subset of these proteins was independently validated by antibody microarrays using detection by two color rolling circle amplification (TC-RCA). Analysis of the significant differentially expressed proteins indicated that some might derive from the stroma or the host response. These studies suggest that mass spectrometry-based approaches to examine the plasma proteome may prove to be a valuable method for determining the presence of intestinal tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号