首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computer simulations suggest that the translocation of arginine through the hydrocarbon core of a lipid membrane proceeds by the formation of a water-filled defect that keeps the arginine molecule hydrated even at the center of the bilayer. We show here that adding additional arginine molecules into one of these water defects causes only a small change in free energy. The barrier for transferring multiple arginines through the membrane is approximately the same as for a single arginine and may even be lower depending on the exact geometry of the system. We discuss these results in the context of arginine-rich peptides such as antimicrobial and cell-penetrating peptides.  相似文献   

2.
Most membrane proteins contain a transmembrane (TM) domain made up of a bundle of lipid-bilayer-spanning α-helices. TM α-helices are generally composed of a core of largely hydrophobic amino acids, with basic and aromatic amino acids at each end of the helix forming interactions with the lipid headgroups and water. In contrast, the S4 helix of ion channel voltage sensor (VS) domains contains four or five basic (largely arginine) side chains along its length and yet adopts a TM orientation as part of an independently stable VS domain. Multiscale molecular dynamics simulations are used to explore how a charged TM S4 α-helix may be stabilized in a lipid bilayer, which is of relevance in the context of mechanisms of translocon-mediated insertion of S4. Free-energy profiles for insertion of the S4 helix into a phospholipid bilayer suggest that it is thermodynamically favorable for S4 to insert from water to the center of the membrane, where the helix adopts a TM orientation. This is consistent with crystal structures of Kv channels, biophysical studies of isolated VS domains in lipid bilayers, and studies of translocon-mediated S4 helix insertion. Decomposition of the free-energy profiles reveals the underlying physical basis for TM stability, whereby the preference of the hydrophobic residues of S4 to enter the bilayer dominates over the free-energy penalty for inserting charged residues, accompanied by local distortion of the bilayer and penetration of waters. We show that the unique combination of charged and hydrophobic residues in S4 allows it to insert stably into the membrane.  相似文献   

3.
Accurate determination of the free energy of transfer of a helical segment from an aqueous into a transmembrane (TM) conformation is essential for understanding and predicting the folding and stability of membrane proteins. Until recently, direct thermodynamically sound measurements of free energy of insertion of hydrophobic TM peptides were impossible due to peptide aggregation outside the lipid bilayer. Here, we overcome this problem by using fluorinated surfactants that are capable of preventing aggregation but, unlike detergents, do not themselves interact with the bilayer. We have applied the fluorescence correlation spectroscopy methodology to study surfactant-chaperoned insertion into preformed POPC (palmitoyloleoylphosphatidylcholine) vesicles of the two well-studied dye-labeled TM peptides of different lengths: WALP23 and WALP27. Extrapolation of the apparent free-energy values measured in the presence of surfactants to a zero surfactant concentration yielded free-energy values of -9.0±0.1 and -10.0±0.1 kcal/mol for insertion of WALP23 and WALP27, respectively. Circular dichroism measurements confirmed helical structure of peptides in lipid bilayer, in the presence of surfactants, and in aqueous mixtures of organic solvents. From a combination of thermodynamic and conformational measurements, we conclude that the partitioning of a four-residue L-A-L-A segment in the context of a continuous helical conformation from an aqueous environment into the hydrocarbon core of the membrane has a favorable free energy of 1 kcal/mol. Our measurements, combined with the predictions of two independent experimental hydrophobicity scales, indicate that the per-residue cost of transfer of the helical backbone from water to the hydrocarbon core of the lipid bilayer is unfavorable and is equal to +2.13±0.17 kcal/mol.  相似文献   

4.
Continuum electrostatic approaches have been extremely successful at describing the charged nature of soluble proteins and how they interact with binding partners. However, it is unclear whether continuum methods can be used to quantitatively understand the energetics of membrane protein insertion and stability. Recent translation experiments suggest that the energy required to insert charged peptides into membranes is much smaller than predicted by present continuum theories. Atomistic simulations have pointed to bilayer inhomogeneity and membrane deformation around buried charged groups as two critical features that are neglected in simpler models. Here, we develop a fully continuum method that circumvents both of these shortcomings by using elasticity theory to determine the shape of the deformed membrane and then subsequently uses this shape to carry out continuum electrostatics calculations. Our method does an excellent job of quantitatively matching results from detailed molecular dynamics simulations at a tiny fraction of the computational cost. We expect that this method will be ideal for studying large membrane protein complexes.  相似文献   

5.
Charged and polar amino acids in the transmembrane domains of integral membrane proteins can be crucial for protein function and also promote helix-helix association or protein oligomerization. Yet, our current understanding is still limited on how these hydrophilic amino acids are efficiently translocated from the Sec61/SecY translocon into the cell membrane during the biogenesis of membrane proteins. In hepatitis C virus, the putative transmembrane segments of envelope glycoproteins E1 and E2 were suggested to heterodimerize via a Lys-Asp ion-pair in the host endoplasmic reticulum. Therefore in this work, we carried out molecular dynamic simulations in explicit lipid bilayer and solvent environment to explore the stability of all possible bridging ion-pairs using the model of H-segment helix dimers. We observed that, frequently, several water molecules penetrated from the interface into the membrane core to stabilize the charged and polar pairs. The hydration time and amount of water molecules in the membrane core depended on the position of the charged residues as well as on the type of ion-pairs. Similar microsolvation events were observed in simulations of the putative E1-E2 transmembrane helix dimers. Simulations of helix monomers from other members of the Flaviviridae family suggest that these systems show similar behaviors. Thus this study illustrates the important contribution of water microsolvation to overcome the unfavorable energetic cost of burying charged and polar amino acids in membrane lipid bilayers. Also, it emphasizes the novel role of bridging charged or polar interactions stabilized by water molecules in the hydrophobic lipid bilayer core that has an important biological function for helix dimerization in several envelope glycoproteins from the family of Flaviviridae viruses.  相似文献   

6.
Alamethicin is a hydrophobic helical peptide of 20 residues, which oligomerizes to form ion-conducting channels in membranes. The behavior of an intact alamethicin channel in POPC bilayers was recently studied, using 2 ns molecular dynamics (MD) simulations of a model hexameric channel. These simulations produced numerous conformations of the channel. In the present study, we used 11 of these channel conformations and carried out continuum-solvent model calculations, similar to those used for the monomers in our previous studies, to investigate the energetics of the channel inside the lipid bilayer. Our results suggest that, out of the 11 channel conformations produced by the MD simulations, only four are stable inside the lipid bilayer, with water-to-membrane free energies of transfer ranging from ~–6 to ~–10 kcal/mol. Analysis of the results suggests two causes for the apparent instability of the remainder of the structures inside the lipid bilayer, both resulting from the desolvation of channel polar groups (i.e. their transfer from the aqueous phase into the bilayer). The first is specific, uncompensated backbone hydrogen bonds, which exist in the region of the channel exposed to the hydrocarbon of the lipid bilayer. The second is exposure of intra-pore water molecules to the surrounding lipid. Thus, the association of these structures with the membrane involves a large electrostatic desolvation free-energy penalty. The apparent conflict between continuum-solvent and MD calculations, and its significance for the interpretation of membrane proteins simulations, are discussed.  相似文献   

7.
Bond PJ  Wee CL  Sansom MS 《Biochemistry》2008,47(43):11321-11331
Experimental and computational studies have indicated that hydrophobicity plays a key role in driving the insertion of transmembrane alpha-helices into lipid bilayers. Molecular dynamics simulations allow exploration of the nature of the interactions of transmembrane alpha-helices with their lipid bilayer environment. In particular, coarse-grained simulations have considerable potential for studying many aspects of membrane proteins, ranging from their self-assembly to the relation between their structure and function. However, there is a need to evaluate the accuracy of coarse-grained estimates of the energetics of transmembrane helix insertion. Here, three levels of complexity of model system have been explored to enable such an evaluation. First, calculated free energies of partitioning of amino acid side chains between water and alkane yielded an excellent correlation with experiment. Second, free energy profiles for transfer of amino acid side chains along the normal to a phosphatidylcholine bilayer were in good agreement with experimental and atomistic simulation studies. Third, estimation of the free energy profile for transfer of an arginine residue, embedded within a hydrophobic alpha-helix, to the center of a lipid bilayer gave a barrier of approximately 15 kT. Hence, there is a substantial barrier to membrane insertion for charged amino acids, but the coarse-grained model still underestimates the corresponding free energy estimate (approximately 29 kT) from atomistic simulations (Dorairaj, S., and Allen, T. W. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 4943-4948). Coarse-grained simulations were then used to predict the free energy profile for transfer of a simple model transmembrane alpha-helix (WALP23) across a lipid bilayer. The results indicated that a transmembrane orientation was favored by about -70 kT.  相似文献   

8.
《Biophysical journal》2019,116(9):1692-1700
Transmembrane peptides contain polar residues in the interior of the membrane, which may alter the electrostatic environment and favor hydration in the otherwise nonpolar environment of the membrane core. Here, we demonstrate a general, nonperturbative strategy to probe hydration of the peptide backbone at specific depths within the bilayer using a combination of site-specific isotope labels, ultrafast two-dimensional infrared spectroscopy, and spectral modeling based on molecular dynamics simulations. Our results show that the amphiphilic pH-low insertion peptide supports a highly heterogeneous environment, with significant backbone hydration of nonpolar residues neighboring charged residues. For example, a leucine residue located as far as 1 nm into the hydrophobic bulk reports hydrogen-bonded populations as high as ∼20%. These findings indicate that the polar nature of these residues may facilitate the transport of water molecules into the hydrophobic core of the membrane.  相似文献   

9.
The nature of voltage sensing by voltage-activated ion channels is a key problem in membrane protein structural biology. The way in which the voltage-sensor (VS) domain interacts with its membrane environment remains unclear. In particular, the known structures of Kv channels do not readily explain how a positively charged S4 helix is able to stably span a lipid bilayer. Extended (2 x 50 ns) molecular dynamics simulations of the high-resolution structure of the isolated VS domain from the archaebacterial potassium channel KvAP, embedded in zwitterionic and in anionic lipid bilayers, have been used to explore VS/lipid interactions at atomic resolution. The simulations reveal penetration of water into the center of the VS and bilayer. Furthermore, there is significant local deformation of the lipid bilayer by interactions between lipid phosphate groups and arginine side chains of S4. As a consequence of this, the electrostatic field is "focused" across the center of the bilayer.  相似文献   

10.
Mechanism of alamethicin insertion into lipid bilayers.   总被引:8,自引:6,他引:2       下载免费PDF全文
K He  S J Ludtke  W T Heller    H W Huang 《Biophysical journal》1996,71(5):2669-2679
Alamethicin adsorbs on the membrane surface at low peptide concentrations. However, above a critical peptide-to-lipid ratio (P/L), a fraction of the peptide molecules insert in the membrane. This critical ratio is lipid dependent. For diphytanoyl phosphatidylcholine it is about 1/40. At even higher concentrations P/L > or = 1/15, all of the alamethicin inserts into the membrane and forms well-defined pores as detected by neutron in-plane scattering. A previous x-ray diffraction measurement showed that alamethicin adsorbed on the surface has the effect of thinning the bilayer in proportion to the peptide concentration. A theoretical study showed that the energy cost of membrane thinning can indeed lead to peptide insertion. This paper extends the previous studies to the high-concentration region P/L > 1/40. X-ray diffraction shows that the bilayer thickness increases with the peptide concentration for P/L > 1/23 as the insertion approaches 100%. The thickness change with the percentage of insertion is consistent with the assumption that the hydrocarbon region of the bilayer matches the hydrophobic region of the inserted peptide. The elastic energy of a lipid bilayer including both adsorption and insertion of peptide is discussed. The Gibbs free energy is calculated as a function of P/L and the percentage of insertion phi in a simplified one-dimensional model. The model exhibits an insertion phase transition in qualitative agreement with the data. We conclude that the membrane deformation energy is the major driving force for the alamethicin insertion transition.  相似文献   

11.
Abstract

Molecular dynamics (MD) simulations at 37°C have been performed on three phospholipid bilayer systems composed of the lipids DLPE, DOPE, and DOPC. The model used included 24 explicit lipid molecules and explicit waters of solvation in the polar head group regions, together with constant-pressure periodic boundary conditions in three dimensions. Using this model, a MD simulation samples part of an infinite planar lipid bilayer. The lipid dynamics and packing behavior were characterized. Furthermore, using the results of the simulations, a number of diverse properties including bilayer structural parameters, hydrocarbon chain order parameters, dihedral conformations, electron density profile, hydration per lipid, and water distribution along the bilayer normal were calculated. Many of these properties are available for the three lipid systems chosen, making them well suited for evaluating the model and protocols used in these simulations by direct comparisons with experimental data. The calculated MD behavior, chain disorder, and lipid packing parameter, i.e. the ratio of the effective areas of hydrocarbon tails and head group per lipid (at/ah), correctly predict the aggregation preferences of the three lipids observed experimentally at 37°C, namely: a gel bilayer for DLPE, a hexagonal tube for DOPE, and a liquid crystalline bilayer for DOPC. In addition, the model and conditions used in the MD simulations led to good agreement of the calculated properties of the bilayers with available experimental results, demonstrating the reliability of the simulations. The effects of the cis unsaturation in the hydrocarbon chains of DOPE and DOPC, compared to the fully saturated one in DLPE, as well as the effects of the different polar head groups of PC and PE with the same unsaturated chains on the lipid packing and bilayer structure have been investigated. The results of these studies indicate the ability of MD methods to provide molecular-level insights into the structure and dynamics of lipid assemblies.  相似文献   

12.
Although 1-alkanols have long been known to act as penetration enhancers and anesthetics, the mode of operation is not yet understood. In this study, long-time molecular dynamics simulations have been performed to investigate the effect of 1-alkanols of various carbon chain lengths onto the structure and dynamics of dimyristoylphosphatidylcholine bilayers. The simulations were complemented by microcalorimetry, continuous bleaching and film balance experiments. In the simulations, all investigated 1-alkanols assembled inside the lipid bilayer within tens of nanoseconds. Their hydroxyl groups bound preferentially to the lipid carbonyl group and the hydrocarbon chains stretched into the hydrophobic core of the bilayer. Both molecular dynamics simulations and experiments showed that all 1-alkanols drastically affected the bilayer properties. Insertion of long-chain 1-alkanols decreased the area per lipid while increasing the thickness of the bilayer and the order of the lipids. The bilayer elasticity was reduced and the diffusive motion of the lipids within the bilayer plane was suppressed. On the other hand, integration of ethanol into the bilayer enlarged the area per lipid. The bilayer became softer and lipid diffusion was enhanced.  相似文献   

13.
1-Alkanols and membranes: a story of attraction   总被引:1,自引:0,他引:1  
Although 1-alkanols have long been known to act as penetration enhancers and anesthetics, the mode of operation is not yet understood. In this study, long-time molecular dynamics simulations have been performed to investigate the effect of 1-alkanols of various carbon chain lengths onto the structure and dynamics of dimyristoylphosphatidylcholine bilayers. The simulations were complemented by microcalorimetry, continuous bleaching and film balance experiments. In the simulations, all investigated 1-alkanols assembled inside the lipid bilayer within tens of nanoseconds. Their hydroxyl groups bound preferentially to the lipid carbonyl group and the hydrocarbon chains stretched into the hydrophobic core of the bilayer. Both molecular dynamics simulations and experiments showed that all 1-alkanols drastically affected the bilayer properties. Insertion of long-chain 1-alkanols decreased the area per lipid while increasing the thickness of the bilayer and the order of the lipids. The bilayer elasticity was reduced and the diffusive motion of the lipids within the bilayer plane was suppressed. On the other hand, integration of ethanol into the bilayer enlarged the area per lipid. The bilayer became softer and lipid diffusion was enhanced.  相似文献   

14.
Membrane proteins fold, assemble and function within their native fluid lipid environment. Structural studies of fluid lipid bilayers are thus critically important for understanding processes in membranes. Here, we propose a simple approach to visualize the hydrocarbon core using neutron diffraction and deuterated lipids that are commercially available. This method should have broad utility in structural studies of the bilayer response to protein insertion and folding in membranes.  相似文献   

15.
This study reports the solid-state NMR spectroscopic characterization of the amino-proximate transmembrane domain (TM-A) of a diverged microsomal delta12-desaturase (CREP-1) in a phospholipid bilayer. A series of TM-A peptides were synthesized with 2H-labeled side chains (Ala-53, -56, and -63, Leu-62, Val-50), and their dynamic properties were studied in 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) bilayers at various temperatures. At 6 mol % peptide to lipid, 31P NMR spectra indicated that the peptides did not significantly disrupt the phospholipid bilayer in the L(alpha) phase. The 2H NMR spectra from Ala-53 and Ala-56 samples revealed broad Pake patterns with quadrupolar splittings of 16.9 kHz and 13.3 kHz, respectively, indicating restricted motion confined within the hydrocarbon core of the phospholipid bilayer. Conversely, the deuterated Ala-63 sample revealed a peak centered at 0 kHz with a linewidth of 1.9 kHz, indicating increased side-chain motion and solvent exposure relative to the spectra of the other Ala residues. Val-50 and Leu-62 showed Pake patterns, with quadrupolar splittings of 3.5 kHz and 3.7 kHz, respectively, intermediate to Ala-53/Ala-56 and Ala-63. This indicates partial motional averaging and supports a model with the Val and Leu residues embedded inside the lipid bilayer. Solid-state NMR spectroscopy performed on the 2H-labeled Ala-56 TM-A peptide incorporated into magnetically aligned phospholipid bilayers indicated that the peptide is tilted 8 degrees with respect to the membrane normal of the lipid bilayer. Snorkeling and anchoring interactions of Arg-44 and Tyr-60, respectively, with the polar region or polar hydrophobic interface of the lipid bilayer are suggested as control elements for insertional depth and orientation of the helix in the lipid matrix. Thus, this study defines the location of key residues in TM-A with respect to the lipid bilayer, describes the conformation of TM-A in a biomembrane mimic, presents a peptide-bilayer model useful in the consideration of local protein folding in the microsomal desaturases, and presents a model of arginine and tyrosine control of transmembrane protein stability and insertion.  相似文献   

16.
Molecular dynamics (MD) simulations of a mono-cis-unsaturated 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer and a POPC bilayer containing 50mol% cholesterol (POPC-Chol50) were carried out for 200ns to compare the spatial organizations of the pure POPC bilayer and the POPC bilayer saturated with Chol. The results presented here indicate that saturation with Chol significantly narrows the distribution of vertical positions of the center-of-mass of POPC molecules and POPC atoms in the bilayer. In the POPC-Chol50 bilayer, the same moieties of the lipid molecules are better aligned at a given bilayer depth, forming the following clearly separated membrane regions: the polar headgroup, the rigid core consisting of steroid rings and upper fragments of the acyl chains, and the fluid hydrocarbon core consisting of Chol chains and the lower fragments of POPC chains. The membrane surface of the POPC-Chol50 bilayer is smooth. The results have biological significance because the POPC-Chol50 bilayer models the bulk phospholipid portion of the fiber-cell membrane in the eye lens. It is hypothesized that in the eye lens cholesterol-induced smoothing of the membrane surface decreases light-scattering and helps to maintain lens transparency.  相似文献   

17.
Charged amino acids are known to be important in controlling the actions of integral and peripheral membrane proteins and cell disrupting peptides. Atomistic molecular dynamics studies have shed much light on the mechanisms of membrane binding and translocation of charged protein groups, yet the impact of the full diversity of membrane physico-chemical properties and topologies has yet to be explored. Here we have performed a systematic study of an arginine (Arg) side chain analog moving across saturated phosphatidylcholine (PC) bilayers of variable hydrocarbon tail length from 10 to 18 carbons. For all bilayers we observe similar ion-induced defects, where Arg draws water molecules and lipid head groups into the bilayers to avoid large dehydration energy costs. The free energy profiles all exhibit sharp climbs with increasing penetration into the hydrocarbon core, with predictable shifts between bilayers of different thickness, leading to barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons. For lipids of 10 and 12 carbons we observe narrow transmembrane pores and corresponding plateaus in the free energy profiles. Allowing for movements of the protein and side chain snorkeling, we argue that the energetic cost for burying Arg inside a thin bilayer will be small, consistent with recent experiments, also leading to a dramatic reduction in pK(a) shifts for Arg. We provide evidence that Arg translocation occurs via an ion-induced defect mechanism, except in thick bilayers (of at least 18 carbons) where solubility-diffusion becomes energetically favored. Our findings shed light on the mechanisms of ion movement through membranes of varying composition, with implications for a range of charged protein-lipid interactions and the actions of cell-perturbing peptides. This article is part of a Special Issue entitled: Membrane protein structure and function.  相似文献   

18.
Carbon nanotubes have been proposed to be efficient nanovectors able to deliver genetic or therapeutic cargo into living cells. However, a direct evidence of the molecular mechanism of their translocation across cell membranes is still needed. Here, we report on an extensive computational study of short (5 nm length) pristine and functionalized single-walled carbon nanotubes uptake by phospholipid bilayer models using all-atom molecular dynamics simulations. Our data support the hypothesis of a direct translocation of the nanotubes through the phospholipid membrane. We find that insertion of neat nanotubes within the bilayer is a "nanoneedle" like process, which can often be divided in three consecutive steps: landing and floating, penetration of the lipid headgroup area and finally sliding into the membrane core. The presence of functional groups at moderate concentrations does not modify the overall scheme of diffusion mechanism, provided that their deprotonated state favors translocation through the lipid bilayer.  相似文献   

19.
A L MacDonald  D A Pink 《Biochemistry》1987,26(7):1909-1917
We have developed a model of glycophorin in a phospholipid bilayer membrane in order to study the thermodynamics of this system and to understand the detailed behavior of recent calorimetric data. We assume that the larger glycophorin polar group can be considered as either adopting a pancakelike conformation at the bilayer interface (D state) or be directed generally away from the interface (U state) [Ruppel, D., Kapitza, H.G., Galla, H.J., Sixl, F., & Sackmann, E. (1982) Biochim. Biophys. Acta 692, 1-17]. Lipid hydrocarbon chains are described either as excited (e state) with high energy and relatively many gauche conformers or as generally extended (g state) with low energy. We performed a Monte-Carlo simulation using the Glauber and Kawasaki procedures on a triangular lattice which represents the plane of half of the bilayer. Lattice sites can be occupied either by lipid hydrocarbon chains or by model glycophorin alpha-helical hydrophobic cores. The states D and U are represented by hexagons of different sizes in the plane of the lattice, and the hard core repulsion between two such polar groups is accounted for by forbidding hexagon-hexagon overlap. We have studied the effect of having the glycophorin polar group interact in various ways with the lipid bilayer. We find that the protein polar group in its D state interacts, either directly or indirectly, with the lipid bilayer so as to reduce the effective lateral pressure acting on the lipid hydrocarbon chains by about 3 dyn/cm. Polar groups in their U states do not reduce this lateral pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Structural properties of signal peptides and their membrane insertion   总被引:5,自引:0,他引:5  
Garnier J  Gaye P  Mercier JC  Robson B 《Biochimie》1980,62(4):231-239
Structural properties of the amino acid sequences from 22 signal peptides have been analyzed and compared with peptides known to interact with biological membranes and liposomes, melittin, a lytic peptide of bee venom, and the non-polar C-terminal segment of cytochrome b5. All these peptides evidence a double amphipatic structure with an hydrophobic core of 9 to 24 amino acid residues and two charged polar ends. They all exhibit a high potential for making alpha-helix and, to a lesser degree, extended or beta-sheet conformation with low or negative potentials for making reverse turns or aperiodic conformation. A model of spontaneous insertion of these peptides into the lipid bilayer without specific surface receptor protein is proposed, where the two polar ends interact with each polar face of the lipid bilayer and the hydrophobic core inserts into the non-hydrogen bonding environment of the fatty acid side chains. This insertion could be the molecular trigger for ribophorin assembly around the signal peptide and subsequent attachment to the ribosome prior to the transfer of the polypeptide chain through the endoplasmic reticulum membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号