首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A panel of 13 sugar beet lines and one genotype each of the Beta vulgaris cultivars red beet and Swiss chard, and B. vulgaris ssp. maritima were used to identify polymorphisms in alignments of genomic DNA sequences derived from 315 EST- and 43 non-coding RFLP-derived loci. In sugar beet lines, loci of expressed genes showed an average SNP frequency of 1/72 bp, 1 in 58 bp in non-coding sequences, increasing to 1/47 bp upon the addition of the remaining genotypes. Within analysed DNA fragments, alleles at different SNP positions displayed linkage disequilibrium indicative of haplotype structures. On average 2.7 haplotypes were found in sugar beet lines, and haplotype conservation in expressed genes appeared to exceed 500 bp in length. Seven different genotyping techniques including SNP detection by MALDI-TOF mass spectrometry, pyrosequencing and fluorescence scanning of labelled nucleotides were employed to perform 712 segregation analyses for 538 markers in three F2 populations. Functions were predicted for 492 mapped sequences. Genetic maps comprised 305 loci covering 599.8 cM in population K1, 241 loci distributed over 636.6 cM in population D2, and 166 loci over 507.1 cM in population K2, respectively. Based on 156 markers common to more than one population an integrated map was constructed with 524 loci covering 664.3 cM. For 377 loci the genome positions of the most similar sequences from A. thaliana were identified, but little evidence for previously presented ancestral genome structures was found. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Susceptibility to foliar pathogens commonly causes significant reductions in productivity of the important temperate forage perennial ryegrass. Breeding for durable disease resistance involves not only the deployment of major genes but also the additive effects of minor genes. An approach based on in vitro single nucleotide polymorphism (SNP) discovery in candidate defence response (DR) genes has been used to develop potential diagnostic genetic markers. SNPs were predicted, validated and mapped for representatives of the pathogenesis-related (PR) protein-encoding and reactive oxygen species (ROS)-generating gene classes. The F(1)(NA(6) x AU(6)) two-way pseudo-test cross population was used for SNP genetic mapping and detection of quantitative trait loci (QTLs) in response to a crown rust field infection. Novel resistance QTLs were coincident with mapped DR gene SNPs. QTLs on LG3 and LG7 also coincided with both herbage quality QTLs and candidate genes for lignin biosynthesis. Multiple DR gene SNP loci additionally co-located with QTLs for grey leaf spot, bacterial wilt and crown rust resistance from other published studies. Further functional validation of DR gene SNP loci using methods such as fine-mapping and association genetics will improve the efficiency of parental selection based on superior allele content.  相似文献   

3.
Recently developed plant genomics approaches (LD mapping and genome-wide selection) require many molecular markers distributed throughout the plant genome. As a result, the availability of an increasing number of markers is essential for maintaining highly efficient and accurate plant breeding programs. In this study, we identified SNP loci in sunflower using a genotyping by sequencing (GBS) approach in an intraspecific F2 mapping population. A total of 271,445,770 reads were generated by the Genome Analyzer II next-generation sequencing platform and 29.2 % of the reads were aligned to unique locations in the genome. A total of 46,278 SNP loci were identified and 7646 SNP loci were validated in an F2 population. In addition, a SNP-based linkage map was constructed. This is the first report of SNP discovery in sunflower by GBS. The SNP markers and SNP-based linkage map will be valuable molecular genetics tools for sunflower breeding.  相似文献   

4.
Single-nucleotide polymorphisms (SNPs) are the most frequent variations in the genome of any organism. SNP discovery approaches such as resequencing or data mining enable the identification of insertion deletion (indel) polymorphisms. These indels can be treated as biallelic markers and can be utilized for genetic mapping and diagnostics. In this study 655 indels have been identified by resequencing 502 maize (Zea mays) loci across 8 maize inbreds (selected for their high allelic variation). Of these 502 loci, 433 were polymorphic, with indels identified in 215 loci. Of the 655 indels identified, single-nucleotide indels accounted for more than half (54.8%) followed by two- and three-nucleotide indels. A high frequency of 6-base (3.4%) and 8-base (2.3%) indels were also observed. When analysis is restricted to the B73 and Mo17 genotypes, 53% of the loci analyzed contained indels, with 42% having an amplicon size difference. Three novel miniature inverted-repeat transposable element (MITE)-like sequences were identified as insertions near genes. The utility of indels as genetic markers was demonstrated by using indel polymorphisms to map 22 loci in a B73 × Mo17 recombinant inbred population. This paper clearly demonstrates that the resequencing of 3 EST sequence and the discovery and mapping of indel markers will position corresponding expressed genes on the genetic map.  相似文献   

5.
Polymorphic markers at bovine gene loci facilitate the integration of cattle genetic maps with those of humans and mice. To this end, 31 single nucleotide polymorphism (SNP) markers were developed for seven bovine chemokine genes. Loci were amplified from bovine genomic DNA by the polymerase chain reaction, and candidate amplicons were sequenced to determine their identity. Amplified loci from 24 founding parents and select progeny from a beef cattle reference population were sequenced and analyzed for SNPs. SNP haplotype alleles were determined by examining segregation patterns and used to establish the locus position on the bovine linkage map. Loci for growth-related proteins (GRO3, GRO1, and GROX) were clustered with the related CXC chemokine genes, interleukin (IL) 8, and epithelial cell inflammatory protein 1, at 84 cM from the centromeric end of the bovine chromosome (BTA) 6 linkage group. Bovine loci for a cluster of IL8 receptors, a stromal cell-derived factor 1, interferon-γ, and tumor necrosis factor-α were mapped at 90, 55, 59, and 34 cM, respectively, from the centromeric ends of the BTA 2, 28, 5, and 23 linkage groups. The positions of these bovine loci were compared with those of orthologous loci on the human map to refine the boundaries of conserved synteny. These seven loci provide examples of SNP development in which the efficiency was largely dependent on the availability of bovine genomic or cDNA sequence. The polymorphic nature of these SNP haplotype markers suggests that they will be useful for mapping complex traits in cattle, such as resistance to infectious disease. Received: 30 April 1999 / Accepted: 12 July 1999  相似文献   

6.
7.
A rice mutant with rolling leaf, namely γ-rl, was obtained from M2 progenies of a native indica rice stable strain Qinghuazhan (QHZ) from mutagenesis of dry seeds by γ-rays. Genetic analysis using the F2 population from a cross between this mutant and QHZ indicated the mutation was controlled by a single recessive gene. In order to map the locus for this mutation, another F2 population with 601 rolling leaf plants was constructed from a cross between y-rl and a japonica cultivar 02428. After primary mapping with SSR (simple sequence repeats) markers, the mutated locus was located at the short arm of chromosome 3, flanked by RM6829 and RM3126. A number of SSR, InDel (insertion/deletion) and SNP (single nucleotide polymorphism) markers within this region were further developed for fine mapping. Finally, two markers, SNP121679 and InDe1422395, were identified to be flanked to this locus with genetic distances of 0.08 cM and 0.17 cM respectively, and two SNP markers, SNP75346 and SNPl10263, were found to be co-segregated with this locus. These results suggested that this locus was distinguished from all loci for the rolling leaf mutation in rice reported so far, and thus renamed rl10(t). By searching the rice genome database with closely linked markers using BLAST programs, an e-physical map covering rl10(t) locus spanning about a 50 kb region was constructed. Expression analysis of the genes predicted in this region showed that a gene encoding putative flavin-containing monooxygenase (FMO) was silenced in γ-rl, thus this is the most likely candidate responsible for the rolling leaf mutation.  相似文献   

8.
Brown planthopper (BPH) is a destructive insect pest of rice and causes severe yield loss. In attempts to develop a BPH-resistant rice variety, Rathu Heenati (RH), a rice cultivar with a strong BPH resistance, has been used as the donor in breeding programs. Quantitative trait loci analysis was conducted for the area under the curve of BPH damage scores of a backcross (BC3F5) population infested by six different BPH populations. Single nucleotide polymorphism (SNP) markers on chromosome 4, i.e., LecRK2-SNP and LecRK3-SNP, and markers on chromosome 6, i.e., Bph32-SNP and SSR23, were identified to be associated with resistance against five BPH populations. To identify genes on chromosome 6 that are involved in BPH resistance, expression analysis was conducted for genes located in the genomic region of Bph32-SNP and SSR23. Genes that showed differential expression ofRH at 24 h after BPH infestation, when compared to an RH control, were identified. Those that encode proteins putatively involved in the BPH resistance mechanism are LOC_Os06g03240, LOC_Os06g03380, LOC_Os06g03486, LOC_Os06g03514, LOC_Os06g03520, LOC_Os06g03610, LOC_Os06g03676, and LOC_Os06g03890. SNP markers were developed from several differentially expressed genes and were validated by genotyping in the backcross population. The SNP marker developed from LOC_Os06g03514 showed the highest association with BPH resistance and the gene may be involved in the BPH resistance mechanism. This SNP marker will be useful in breeding programs for BPH resistance.  相似文献   

9.
Study of variability of size-age indices and polymorphism of 6 microsatellite loci, 5 loci of SNP, and accidentally amplified polymorphic DNA (RAPD) of sockeye salmon Oncorhynchus nerka of three largest populations from the western coast of Kamchatka Peninsula was performed. The efficiency of using different types of markers for the differentiation of populations and determination of the population belonging of sockeye salmon from lake-river systems of western Kamchatka was analyzed. Significant interpopulation differences were revealed from the frequencies of alleles of genetic markers and from a set of biological indices. It was established that genetic markers are characterized by a better differentiating capacity, as compared to biological characteristics. The most satisfactory results during determination of population belonging of sockeye salmon were obtained using an integrated data base of allele frequencies of microsatellite and SNP loci.  相似文献   

10.
11.

Background

Availability of molecular markers has proven to be an efficient tool in facilitating progress in plant breeding, which is particularly important in the case of less researched crops such as cotton. Considering the obvious advantages of single nucleotide polymorphisms (SNPs) and insertion-deletion polymorphisms (InDels), expressed sequence tags (ESTs) were analyzed in silico to identify SNPs and InDels in this study, aiming to develop more molecular markers in cotton.

Results

A total of 1,349 EST-based SNP and InDel markers were developed by comparing ESTs between Gossypium hirsutum and G. barbadense, mining G. hirsutum unigenes, and analyzing 3′ untranslated region (3′UTR) sequences. The marker polymorphisms were investigated using the two parents of the mapping population based on the single-strand conformation polymorphism (SSCP) analysis. Of all the markers, 137 (10.16%) were polymorphic, and revealed 142 loci. Linkage analysis using a BC1 population mapped 133 loci on the 26 chromosomes. Statistical analysis of base variations in SNPs showed that base transitions accounted for 55.78% of the total base variations and gene ontology indicated that cotton genes varied greatly in harboring SNPs ranging from 1.00 to 24.00 SNPs per gene. Sanger sequencing of three randomly selected SNP markers revealed discrepancy between the in silico predicted sequences and the actual sequencing results.

Conclusions

In silico analysis is a double-edged blade to develop EST-SNP/InDel markers. On the one hand, the designed markers can be well used in tetraploid cotton genetic mapping. And it plays a certain role in revealing transition preference and SNP frequency of cotton genes. On the other hand, the developmental efficiency of markers and polymorphism of designed primers are comparatively low.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1046) contains supplementary material, which is available to authorized users.  相似文献   

12.
We describe 15 single nucleotide polymorphisms (SNPs) isolated in coastal California populations of steelhead (Oncorhynchus mykiss). SNP loci were developed using a 'gene-targeted' approach, which involved the development of primers from functional genes in O. mykiss that were deposited in GenBank or in the published literature. These markers show a wide range of variability in three coastal steelhead populations, and will be useful in population genetic studies and in pedigree reconstruction. Potential applications include evaluation of population structure, introgression between native and hatchery trout, and evaluating reproductive success.  相似文献   

13.
A maize genetic linkage map was generated using SSR and SNP markers in a F7:8 recombinant inbred line (RIL) population derived from a cross of waxy corn (KW7) and dent corn (Mo17). A total of 465 markers, including 459 SSR and 6 SNP markers, were assigned to 10 linkage groups which spanned 2,656.5 cM with an average genetic distance between markers of 5.7 cM, and the number of loci per linkage group ranged from 39 to 55. The SSR (85.4%) and SNP (83.3%) markers showed Mendelian segregation ratios in the RIL population at a 5% significance threshold. In linkage analysis of six SNP loci associated with kernel starch synthesis genes (ae1, bt2, sh1, sh2, su1, and wx1), all six loci were successfully mapped and are closely linked with SSR markers in chromosomes 3 (sh2), 4 (su1 and bt2), 5 (ae1), and 9 (sh1 and wx1). The SSR markers linked with genes in starch synthesis may be utilized in marker assisted breeding programs. The resulting genetic map will be useful in dissection of quantitative traits and the identification of superior QTLs from the waxy hybrid corn. Additionally, these data support further genetic analysis and development of maize breeding programs.  相似文献   

14.
Single nucleotide polymorphisms (SNPs) represent the most abundant type of genetic variation that can be used as molecular markers. The SNPs that are hidden in sequence databases can be unlocked using bioinformatic tools. For efficient application of these SNPs, the sequence set should be error-free as much as possible, targeting single loci and suitable for the SNP scoring platform of choice. We have developed a pipeline to effectively mine SNPs from public EST databases with or without quality information using QualitySNP software, select reliable SNP and prepare the loci for analysis on the Illumina GoldenGate genotyping platform. The applicability of the pipeline was demonstrated using publicly available potato EST data, genotyping individuals from two diploid mapping populations and subsequently mapping the SNP markers (putative genes) in both populations. Over 7000 reliable SNPs were identified that met the criteria for genotyping on the GoldenGate platform. Of the 384 SNPs on the SNP array approximately 12% dropped out. For the two potato mapping populations 165 and 185 SNPs segregating SNP loci could be mapped on the respective genetic maps, illustrating the effectiveness of our pipeline for SNP selection and validation.  相似文献   

15.
Single nucleotide polymorphisms (SNPs) are thought to be well suitable for genetic and evolutionary studies. In this study, we reported the first set of SNP markers in a commercially important crab species, Scylla paramamosain. A total of 12,500 base pairs high quality DNA sequences were obtained from 15 genes, and thirty-seven SNPs were identified, representing one SNP every 338 base pairs. Twenty-four SNPs were successfully genotyped in a single population. All loci had two alleles and the minor allele frequency ranged from 0.02 to 0.44. The observed and expected heterozygosity ranged from 0.04 to 0.59 and from 0.04 to 0.50, respectively. No significant departures from Hardy–Weinberg equilibrium at each locus was found. The linkage disequilibrium was detected in six loci pairs, but absent after sequential Bonferroni correction. These SNP markers will provide a useful addition to the genetic tools for genetic and evolutionary studies for S. paramamosain.  相似文献   

16.
17.
Estimation of DNA sequence diversity in bovine cytokine genes   总被引:4,自引:0,他引:4  
DNA sequence variation provides the fundamental material for improving livestock through selection. In cattle, single nucleotide polymorphisms and small insertions/deletions (collectively referred to here as SNPs) have been identified in cytokine genes and scored in a reference population to determine linkage map positions. The aim of the present study was twofold: first, to estimate the SNP frequency in a reference population of beef cattle, and second, to determine cytokine haplotypes in a group of sires from commercial populations. Forty-five SNP markers in DNA segments from nine cytokine gene loci were analyzed in 26 reference parents. Comparison of all 52 haploid genomes at each PCR amplicon locus revealed an average of one SNP per 143 bp of sequence, whereas comparison of any two chromosomes identified heterozygous sites, on average, every 443 bp. The combination of these 45 SNP genotypes was sufficient to uniquely identify each of the 26 animals. The average number of haplotype alleles (4.4) per PCR amplicon (688 bp) and the percentage heterozygosity among founding parents (50%) were similar to those for microsatellite markers in the same population. For 49 sires from seven common breeds of beef cattle, SNP genotypes (1225 total) were obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) at three amplicon loci. All three of the amplicon haplotypes were correctly deduced for each sire without the use of parent or progeny genotypes. The latter allows a wide range of genetic studies in commercial populations of cattle where genotypic information from relatives may not be available. Received: 16 June 2000 / Accepted: 23 August 2000  相似文献   

18.
Reduced representation genome sequencing such as restriction‐site‐associated DNA (RAD) sequencing is finding increased use to identify and genotype large numbers of single‐nucleotide polymorphisms (SNPs) in model and nonmodel species. We generated a unique resource of novel SNP markers for the European eel using the RAD sequencing approach that was simultaneously identified and scored in a genome‐wide scan of 30 individuals. Whereas genomic resources are increasingly becoming available for this species, including the recent release of a draft genome, no genome‐wide set of SNP markers was available until now. The generated SNPs were widely distributed across the eel genome, aligning to 4779 different contigs and 19 703 different scaffolds. Significant variation was identified, with an average nucleotide diversity of 0.00529 across individuals. Results varied widely across the genome, ranging from 0.00048 to 0.00737 per locus. Based on the average nucleotide diversity across all loci, long‐term effective population size was estimated to range between 132 000 and 1 320 000, which is much higher than previous estimates based on microsatellite loci. The generated SNP resource consisting of 82 425 loci and 376 918 associated SNPs provides a valuable tool for future population genetics and genomics studies and allows for targeting specific genes and particularly interesting regions of the eel genome.  相似文献   

19.
Available information on genetically assigned molecular markers is not sufficient for efficient construction of a high-density linkage map in wheat. Here, we report on application of high resolution melting (HRM) analysis using a real-time PCR apparatus to develop single nucleotide polymorphism (SNP) markers linked to a hybrid necrosis gene, Net2, located on wheat chromosome 2D. Based on genomic information on barley chromosome 2H and wheat expressed sequence tag libraries, we selected wheat cDNA sequences presumed to be located near the Net2 chromosomal region, and then found SNPs between the parental Ae. tauschii accessions of the synthetic wheat mapping population. HRM analysis of the PCR products from F(2) individuals' DNA enabled us to assign 44.4% of the SNP-representing cDNAs to chromosome 2D despite the presence of the A and B genomes. In addition, the designed SNP markers were assigned to chromosome 2D of Ae. tauschii. The order of the assigned SNP markers in synthetic hexaploid wheat was confirmed by comparison with the markers in barley and Ae. tauschii. Thus, the SNP-genotyping method based on HRM analysis is a useful tool for development of molecular markers at target loci in wheat.  相似文献   

20.
The implications of transitioning to single nucleotide polymorphism (SNPs) from microsatellite markers (MSs) have been investigated in a number of population genetics studies, but the effect of genomic location on the amount of information each type of marker reveals has not been explored in detail. We developed novel SNP markers flanking 1 kb regions of 13 genic (within gene or <1 kb away from gene) and 13 nongenic (>10 kb from annotated gene) MSs in the threespine stickleback genome to obtain comparable data for both types of markers. We analysed patterns of genetic diversity and divergence on various geographic scales after converting the SNP loci within each genomic region into haplotypes. Marker type (SNP haplotype or MS) and location (genic or nongenic) significantly affected most estimates of population diversity and divergence. Between‐lineage divergence was significantly higher in SNP haplotypes (genic and nongenic), however, within‐lineage divergence was similar between marker types. Most divergence and diversity measures were uncorrelated between markers, except for population differentiation which was correlated between MSs and SNP haplotypes (both genic and nongenic). Broad‐scale population structure and assignment were similarly resolved by both marker types, however, only the MSs were able to delimit fine‐scale population structuring, particularly when genic and nongenic markers were combined. These results demonstrate that estimates of genetic variability and differentiation among populations can be strongly influenced by marker type, their genomic location in relation to genes and by the interaction of these two factors. This highlights the importance of having an awareness of the inherent strengths and limitations associated with different molecular tools to select the most appropriate methods for accurately addressing various ecological and evolutionary questions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号