首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the past few years, methods have been developed which allow the introduction of exogenous DNA into the human malaria parasite Plasmodium falciparum. This important technical advance known as parasite transfection, provides powerful new tools to study the function of Plasmodium proteins and their roles in biology and disease. Already it has allowed the analysis of promoter function and has been successfully applied to establish the role of particular molecules and/or mutations in the biology of this parasite. This review summarises the current state of the technology and how it has been applied to dissect the function of the P. falciparum genome.  相似文献   

2.
The lethal species of malaria parasite, Plasmodium falciparum, continues to exact a huge toll of mortality and morbidity, particularly in sub-Saharan Africa. Completion of the genome sequence of this organism and advances in proteomics and mass spectrometry have opened up unprecedented opportunities for understanding the complex biology of this parasite and how it responds to drug challenge and other interventions. This review describes recent progress that has been made in applying proteomics technology to this important pathogen and provides a look forward to likely future developments.  相似文献   

3.
Cryo transmission X-ray microscopy in the “water window” of photon energies has recently been introduced as a method that exploits the natural contrast of biological samples. We have used cryo tomographic X-ray imaging of the intra-erythrocytic malaria parasite, Plasmodium falciparum, to undertake a survey of the cellular features of this important human pathogen. We examined whole hydrated cells at different stages of growth and defined some of the structures with different X-ray density, including the parasite nucleus, cytoplasm, digestive vacuole and the hemoglobin degradation product, hemozoin. As the parasite develops from an early cup-shaped morphology to a more rounded shape, puncta of hemozoin are formed; these coalesce in the mature trophozoite into a central compartment. In some trophozoite stage parasites we observed invaginations of the parasite surface and, using a selective permeabilization process, showed that these remain connected to the RBC cytoplasm. Some of these invaginations have large openings consistent with phagocytic structures and we observed independent endocytic vesicles in the parasite cytoplasm which appear to play a role in hemoglobin uptake. In schizont stage parasites staggered mitosis was observed and X-ray-dense lipid-rich structures were evident at their apical ends of the developing daughter cells. Treatment of parasites with the antimalarial drug artemisinin appears to affect parasite development and their ability to produce the hemoglobin breakdown product, hemozoin.  相似文献   

4.
Recent advances have provided a working interactome map for the human malaria parasite Plasmodium falciparum. The aforementioned map, generated from genome-scale analyses, has provided a basis for proteomic studies of the parasite; however, such large-scale approaches commonly suffer from undersampling and lack of coverage. The current map bears no exception, containing only one-quarter of the organism's proteins. Inspired by the needs of the current map and the wealth of bioinformatics data, we assembled a map of 19 979 interactions among 2321 proteins in P. falciparum. The resultant map was generated by computationally inferring protein-protein interactions from evolutionarily conserved protein interactions, underlying domain interactions, and experimental observations. To compile this information into a repository of meaningful data, we assessed interaction quality by applying a logistic regression method, which correlated the presence of an interaction with relevant cellular parameters. Interestingly, it was found that sub-networks from different sources are quite dissimilar in their topologies and overlap to a very small extent. Applying Markov clustering, we observe a typical cluster composition, featuring common cellular functions that were previously reported absent, making this map a valuable resource for understanding the biology of this organism.  相似文献   

5.
Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contributing factor for their pathogenesis in the host. As with other eukaryotes, successful mitosis is an essential requirement for Plasmodium reproduction; however, some aspects of Plasmodium mitosis are quite distinct and not fully understood. In this review, we will discuss the current understanding of the architecture and key events of mitosis in Plasmodium falciparum and related parasites and compare them with the traditional mitotic events described for other eukaryotes.  相似文献   

6.
7.
Genetic mapping in the human malaria parasite Plasmodium falciparum   总被引:2,自引:0,他引:2  
The Plasmodium falciparum genome sequence has boosted hopes for a new era of malaria research and for the application of comprehensive molecular knowledge to disease control, but formidable obstacles remain: approximately 60% of the predicted P. falciparum proteins have no known functions or homologues, and most life cycle stages of this haploid eukaryotic parasite are relatively intractable to cultivation and biochemical manipulation. Genetic mapping based on high-resolution maps saturated with single-nucleotide polymorphisms or microsatellites is now providing effective strategies for discovering candidate genes determining important parasite phenotypes. Here we review classical linkage studies using laboratory crosses and population associations that are now amenable to genome-wide approaches and are revealing multiple candidate genes involved in complex drug responses. Moreover, mapping by linkage disequilibrium is practicable in cases where chromosomal segments flanking drug-selected genes have been preserved in populations during relatively recent P. falciparum evolution. We discuss the advantages and limitations of these various genetic mapping strategies, results from which offer complementary insights to those emerging from gene knockout experiments and/or high-throughput genomic technologies.  相似文献   

8.
Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD) tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP) and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA) at its C-terminus. The tagged protein demonstrated an important modulation of its expression.  相似文献   

9.
Protein tyrosine kinases (PTKs) are believed to be implicated in the parasite growth, maturation and differentiation functions. Protein tyrosine kinase activity was found to be distributed in all the stages of P. falciparum parasite maturation. Membrane bound PTK activity was found to be increased during maturation process (ring stage to trophozoite stage) in chloroquine sensitive strains. In vivo conversion of the schizont stage to ring stage via release of merozoites was associated with a decrease in PTK activity. Chloroquine inhibited the membrane bound PTK activity in a dose dependent manner (IC50 = 45 microM). Kinetic studies show that chloroquine is a competitive inhibitor of PTK with respect to peptide substrate and noncompetitive with respect to ATP indicating that chloroquine inhibits PTK activity by binding with protein substrate binding site. The results suggest that maturation of malaria parasite is related to PTK and inhibition of this activity by chloroquine could provide a hypothesis to explain the mechanism of action of chloroquine.  相似文献   

10.
Ineffective erythropoiesis in acute human P. falciparum malaria   总被引:5,自引:0,他引:5  
P D?rmer  M Dietrich  P Kern  R D Horstmann 《Blut》1983,46(5):279-288
An analysis of erythroblast cell kinetics utilizing quantitative 14C-autoradiography has been performed in five cases of acute Plasmodium falciparum malaria prior to and, in four patients, 3 or 6 days after the onset of antimalarial therapy. Associated with no or only moderate anemia were changes of erythroblast morphology, a considerable shift in the frequency of red and white blood cell precursors in the bone marrow, and a reduced rate of erythroblast proliferation. There was a marked loss of polychromatic erythroblasts, which was smaller but still detectable during the therapeutic phase. The results provide some quantitative data on the extent of "parenchymal damage" of bone marrow and stress the impact of ineffective erythropoiesis and reduced rate of erythropoietic proliferation on the emergence of anemia in Plasmodium falciparum malaria.  相似文献   

11.
In eukaryotes, the origin recognition complex (ORC) is essential for the initiation of DNA replication. The largest subunit of this complex (ORC1) has a regulatory role in origin activation. Here we report the cloning and functional characterization of Plasmodium falciparum ORC1 homolog. Using immunofluorescence and immunoelectron microscopy, we show here that PfORC1 is expressed in the nucleus during the late trophozoite and schizont stages where maximum amount of DNA replication takes place. Homology modelling of the carboxy terminal region of PfORC1 (781-1033) using Saccharomyces pombe Cdc6/Cdc18 homolog as a template reveals the presence of a similar AAA+ type nucleotide-binding fold. This region shows ATPase activity in vitro that is important for the origin activity. To our knowledge, this is the first evidence of an individual ORC subunit that shows ATPase activity. These observations strongly suggest that PfORC1 might be involved in DNA replication initiation during the blood stage of the parasitic life cycle.  相似文献   

12.
13.
The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.  相似文献   

14.
15.
Infections with the malaria parasite Plasmodium falciparum typically comprise multiple strains, especially in high-transmission areas where infectious mosquito bites occur frequently. However, little is known about the dynamics of mixed-strain infections, particularly whether strains sharing a host compete or grow independently. Competition between drug-sensitive and drug-resistant strains, if it occurs, could be a crucial determinant of the spread of resistance. We analysed 1341 P. falciparum infections in children from Angola, Ghana and Tanzania and found compelling evidence for competition in mixed-strain infections: overall parasite density did not increase with additional strains, and densities of individual chloroquine-sensitive (CQS) and chloroquine-resistant (CQR) strains were reduced in the presence of competitors. We also found that CQR strains exhibited low densities compared with CQS strains (in the absence of chloroquine), which may underlie observed declines of chloroquine resistance in many countries following retirement of chloroquine as a first-line therapy. Our observations support a key role for within-host competition in the evolution of drug-resistant malaria. Malaria control and resistance-management efforts in high-transmission regions may be significantly aided or hindered by the effects of competition in mixed-strain infections. Consideration of within-host dynamics may spur development of novel strategies to minimize resistance while maximizing the benefits of control measures.  相似文献   

16.
In the present study, we investigated whether Plasmodium falciparum 1-Cys peroxiredoxin (Prx) (Pf1-Cys-Prx), a cytosolic protein expressed at high levels during the haem-digesting stage, can act as an antioxidant to cope with the oxidative burden of haem (ferriprotoporphyrin IX; FP). Recombinant Pf1-Cys-Prx protein (rPf1-Cys-Prx) competed with glutathione (GSH) for FP and inhibited FP degradation by GSH. When rPf1-Cys-Prx was added to GSH-mediated FP degradation, the amount of iron released was reduced to 23% of the reaction without the protein (P < 0.01). The rPf1-Cys-Prx bound to FP-agarose at pH 7.4, which is the pH of the parasite cytosol. The rPf1-Cys-Prx could completely protect glutamine synthetase from inactivation by the dithiothreitol-Fe(3+)-dependent mixed-function oxidation system, and it also protected enolase from inactivation by coincubation with FP/GSH. Incubation of white ghosts of human red blood cells and FP with rPf1-Cys-Prx reduced formation of membrane associations with FP to 75% of the incubation without the protein (P < 0.01). The findings of the present study suggest that Pf1-Cys-Prx protects the parasite against oxidative stresses by binding to FP, slowing the rate of GSH-mediated FP degradation and consequent iron generation, protecting proteins from iron-derived reactive oxygen species, and interfering with formation of membrane-associated FP.  相似文献   

17.
18.
Five polymorphic proteins, detected by two-dimensional electrophoresis, were analysed in the parents and progeny of a cross between two clones of the malaria parasite Plasmodium falciparum. The information obtained showed that different forms of each protein were determined by allelic variants of each respective gene. One protein was identified as the parasite enzyme adenosine deaminase. Recombinant parasites were produced at a higher than expected frequency.  相似文献   

19.
Because of their inability to synthesize purines de novo, malaria parasites rely on purine phosphoribosyltransferases (PRTases) to convert purine bases salvaged from the host cell (the erythrocyte) into the corresponding purine nucleoside monophosphates. Our studies with late trophozoites of the human malaria parasite, Plasmodium falciparum, showed that virtually all of the purine PRTase activity is accounted for by two distinct enzymes. One enzyme utilizes hypoxanthine, guanine and xanthine (Queen, S.A., Vander Jagt, D. and Reyes, P. (1988) Mol. Biochem. Parasitol. 30, 123-134). The second enzyme utilizes only adenine and is the subject of this paper. This latter enzyme exhibits a biphasic pH-activity profile and is moderately to weakly inhibited by several divalent metal ions. Several of the properties of the P. falciparum enzyme were found to differ significantly from those of human erythrocyte adenine PRTase. (1) The molecular weight (18,000) of the parasite enzyme is smaller than that of the host cell enzyme. (2) The parasite enzyme, unlike the erythrocyte enzyme, is not significantly inhibited by sulfhydryl reagents. (3) 6-Mercaptopurine and 2,6-diaminopurine proved to be competitive inhibitors of the parasite enzyme (Ki 0.70 and 1.0 mM, respectively); on the other hand, the human enzyme is not inhibited by these agents. (4) The Km for adenine (0.80 microM) and 5-phosphoribosyl-1-pyrophosphate (0.70 microM) displayed by the parasite enzyme are significantly smaller than the corresponding Km values shown by the erythrocyte enzyme. These distinctions between the parasite and host enzymes point to the possibility that adenine PRTase of P. falciparum may represent a potential target for chemotherapeutic attack.  相似文献   

20.
The human malaria parasite Plasmodium falciparum is responsible for the death of more than a million people each year. The emergence of strains of malarial parasite resistant to conventional drug therapy has stimulated searches for antimalarials with novel modes of action. S-Adenosyl-L-homocysteine hydrolase (SAHH) is a regulator of biological methylations. Inhibitors of SAHH affect the methylation status of nucleic acids, proteins, and small molecules. P.falciparum SAHH (PfSAHH) inhibitors are expected to provide a new type of chemotherapeutic agent against malaria. Despite the pressing need to develop selective PfSAHH inhibitors as therapeutic drugs, only the mammalian SAHH structures are currently available. Here, we report the crystal structure of PfSAHH complexed with the reaction product adenosine (Ado). Knowledge of the structure of the Ado complex in combination with a structural comparison with Homo sapiens SAHH (HsSAHH) revealed that a single substitution between the PfSAHH (Cys59) and HsSAHH (Thr60) accounts for the differential interactions with nucleoside inhibitors. To examine roles of the Cys59 in the interactions with nucleoside inhibitors, a mutant PfSAHH was prepared. A replacement of Cys59 by Thr results in mutant PfSAHH, which shows HsSAHH-like nucleoside inhibitor sensitivity. The present structure should provide opportunities to design potent and selective PfSAHH inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号