首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Na+/solute symporters are essential membrane integrated proteins that couple the flow of Na+ ions driven by electrochemical Na+ gradients to the transport of solutes across biological membranes. Here, we used a combination of molecular modeling techniques and evolutionary conservation analysis to construct and validate a first model of the Na+/proline symporter PutP of Escherichia coli based on the crystal structure of the bacterial Na+/galactose symporter vSGLT. Ligand docking experiments were employed to gain information about residues involved in proline binding. The proposed model is consistent with the available experimental data and was further validated by amino acid substitutions and kinetic and protein chemical analyses. Combination of the results of molecular modeling and functional studies predicts the location and organization of the Na+ and proline binding sites. Remarkably, as proposed computationally and discovered here experimentally, residues Y140, W244, and Y248 of transmembrane segments 4 and 7 are found to be particularly important for PutP function and suggested to participate in proline binding and/or gating.  相似文献   

2.
The Na+/solute symporter family comprises more than 400 members of pro- and eukaryotic origin. Using the Na+/proline transporter PutP of Escherichia coli as a model, the role of two conserved residues, Ser-340 and Thr-341, is investigated to obtain insights into the mechanism of transport catalyzed by members of this family. Substitution of these amino acids alters the transport kinetics of cells and proteoliposomes containing the PutP variants significantly. In particular, the apparent affinities for Na+ and Li+ are reduced by 2 orders of magnitude or more. Also proline binding is affected, albeit to a lesser extent than ion binding. Thereby, the presence of a hydroxyl group at position 341 is essential for high affinity ligand binding. Furthermore, Cys placed at position 340 or 341 reacts with sulfhydryl reagents of different polarity, indicating accessibility from the water phase. In addition, Cys cross-linking suggests proximity of the residues to other amino acids previously shown to be crucial for ligand binding. For these reasons it is suggested that Ser-340 and Thr-341 are located in a ligand translocation pathway. Furthermore, it is proposed that the side chain of Thr-341 directly participates in Na+ binding.  相似文献   

3.
Selected residues of transmembrane domain (TM) IX were previously shown to play key roles in ligand binding and transport in members of the Na+/solute symporter family. Using the Na+/proline transporter PutP as a model, a complete Cys scanning mutagenesis of TM IX (positions 324 to 351) was performed here to further investigate the functional significance of the domain. G328, S332, Q345, and L346 were newly identified as important for Na+-coupled proline uptake. Placement of Cys at one of these positions altered Km(pro) (S332C and L346C, 3- and 21-fold decreased, respectively; Q345C, 38-fold increased), K0.5(Na+) (S332C, 13-fold decreased; Q345C, 19-fold increased), and/or Vmax [G328C, S332C, Q345C, and L346C, 3-, 22-, 2-, and 8-fold decreased compared to PutP(wild type), respectively]. Membrane-permeant N-ethylmaleimide inhibited proline uptake into cells containing PutP with Cys at distinct positions in the middle (T341C) and cytoplasmic half of TM IX (C344, L347C, V348C, and S351C) and had little or no effect on all other single Cys PutP variants. The inhibition pattern was in agreement with the pattern of labeling with fluorescein-5-maleimide. In addition, Cys placed into the cytoplasmic half of TM IX (C344, L347C, V348C, and S351C) was protected from fluorescein-5-maleimide labeling by proline while Na+ alone had no effect. Membrane-impermeant methanethiosulfonate ethyltrimethylammonium modified Cys in the middle (A337C and T341C) and periplasmic half (L331C) but not in the cytoplasmic half of TM IX in intact cells. Furthermore, Cys at the latter positions was partially protected by Na+ but not by proline. Based on these results, a model is discussed according to which residues of TM IX participate in the formation of ligand-sensitive, hydrophilic cavities in the protein that may reconstitute part of the Na+ and/or proline translocation pathway of PutP.  相似文献   

4.
To elucidate the functional importance of transmembrane domain II in the Na(+)/proline transporter (PutP) of Escherichia coli we analyzed the effect of replacing Ser-54 through Gly-58. Substitution of Asp-55 or Met-56 dramatically reduces the apparent affinity for Na(+) and Li(+) in a cation-dependent manner. Conversely, Cys in place of Gly-58 significantly reduces only the apparent proline affinity while substitution of Ser-57 results in a dramatic reduction of the apparent proline and cation affinities. Interestingly, upon increasing the proline concentration the apparent Na(+) affinity of Ser-57 replacement mutants converges toward the wild-type value, indicating a close cooperativity between cation and substrate site(s). This notion is supported by the fact that Na(+)-stimulated site-specific fluorescence labeling of a single Cys at position 57 is completely reversed by the addition of proline. Similar results are obtained upon labeling of a Cys at position 54 or 58. Taken together, these results indicate that Asp-55 and Met-56 are located at or close to the ion-binding site while Ser-54, Ser-57, and Gly-58 may be close to the proline translocation pathway. In addition, the data prod at an involvement of the latter residues in ligand-induced conformational dynamics that are crucial for cation-coupled transport.  相似文献   

5.
Proximity relationships within three doubly spin-labeled variants of the Na+/proline transporter PutP of Escherichia coli were studied by means of four-pulse double electron-electron resonance spectroscopy. The large value of 4.8 nm for the interspin distance determined between positions 107 in loop 4 and 223 in loop 7 strongly supports the idea of these positions being located on opposite sides of the membrane. Significant smaller values of between 1.8 and 2.5 nm were found for the average interspin distances between spin labels attached to the cytoplasmic loops 2 and 4 (position 37 and 107) and loops 2 and 6 (position 37 and 187). The large distance distribution widths visible in the pair correlation functions reveal a high flexibility of the studied loop regions. An increase of the distance between positions 37 and 187 upon Na+ binding suggests ligand-induced structural alterations of PutP. The results demonstrate that four-pulse double electron-electron resonance spectroscopy is a powerful means to investigate the structure and conformational changes of integral membrane proteins reconstituted in proteoliposomes.  相似文献   

6.
M Quick  S St?lting  H Jung 《Biochemistry》1999,38(41):13523-13529
The Na+/proline transporter of Escherichia coli (PutP) is a member of a large family of Na+/solute symporters. To investigate the role of Arg residues which are conserved within this family, Arg40 at the cytoplasmic end of transmembrane domain (TM) II and Arg117 in cytoplasmic loop 4 of PutP are subjected to amino acid substitution analysis. Removal of the positive charge at position 40 (PutP-R40C, Q, E) leads to a dramatic decrease of the V(max) of Na(+)-coupled proline uptake (1-10% of PutP-wild-type). The reduced transport rates are accompanied by decreased apparent affinities of the transporter for Na+ and Li+ while the apparent affinity for proline is only slightly altered. Furthermore, single Cys PutP-R40C reacts with N-ethylmaleimide (NEM), and this reaction is partially inhibited by proline and more efficiently by Na+ ions. Remarkably, NEM modification of Cys40 inhibits Na(+)-driven proline uptake almost completely while facilitated influx of proline into deenergized cells is stimulated by this reaction, suggesting an at least partially uncoupled phenotype under these conditions. These results suggest that Arg40 is located close to the site of ion binding and is important for the coupling of ion and proline transport. The observations confirm the functional importance of TM II described in earlier studies [M. Quick and H. Jung (1997) Biochemistry 36, 4631-4636]. In contrast to Arg40, Arg117 is apparently not important for function of the mature protein. The low transport rates observed upon substitution of Arg117 (PutP-R117C, K, Q) can at least partially be attributed to reduced amounts of PutP in the membrane. However, once inserted into the membrane, PutP containing Arg117 replacements shows a stability comparable to the wild-type as indicated by pulse-chase experiments. These observations suggest that Arg117 plays a crucial role at a stage prior to complete functional insertion of PutP into the membrane, i. e., by stabilizing a folding intermediate.  相似文献   

7.
The Na+/proline transporter PutP of Escherichia coli is a member of a large family of Na+/substrate symporters. Previous work on PutP suggests an involvement of the region ranging from Asp-55 to Gly-58 in binding of Na+ and/or proline (Pirch, T., Quick, M., Nietschke, M., Langkamp, M., Jung, H. (2002) J. Biol. Chem. 277, 8790-8796). In this study, a complete Cys scanning mutagenesis of transmembrane domain II (TM II) of PutP was performed to further elucidate the role of the TM in the transport process. Strong defects of PutP function were observed upon substitution of Ala-48, Ala-53, Trp-59, and Gly-63 by Cys in addition to the previously characterized residues Asp-55, Ser-57, and Gly-58. However, except for Asp-55 none of these residues proved essential for function. The activity of eight mutants was sensitive to N-ethylmaleimide inhibition with the sensitive positions clustering predominantly on a hydrophilic face in the cytoplasmic half of TM II. The same face was also highly accessible to the bulky sulfhydryl reagent fluorescein 5-maleimide in randomly oriented membrane vesicles, suggesting an unrestricted accessibility of the corresponding amino acid positions via an aqueous pathway. Na+ stimulated the reactivity of Cys toward fluorescein 5-maleimide at two positions while proline inhibited reaction of the sulfhydryl group at nine positions. Taken together, the results demonstrate that TM II of PutP is of particular functional importance. It is proposed that hydrophilic residues in the cytoplasmic half of TM II participate in the formation of an aqueous cavity in the membrane that allows Na+ and/or proline binding to residues located in the middle of the TM (e.g. Asp-55 and Ser-57). In addition, the data indicate that TM II participates in Na+- and proline-induced conformational alterations.  相似文献   

8.
Summary Recently we proposed that cytoplasmic acidification of low K+ (LK) sheep erythrocytes may stimulate ouabain-resistant Cl-dependent K+ flux (K+Cl cotransport), also known to be activated by cell swelling, treatment with N-ethylmaleimide (NEM), or removal of cellular bivalent cations. Here we studied the dependence of K+ transport on intracellular and extracellular pH (pH i , pH o ) varied either simultaneously or independently using the Cl/HCO 3 exchange inhibitor 4,4, diisothiocyanatostilbene-3,2-disulfonic acid (DIDS). In both control and NEM-treated LK cells volumes were kept near normal by varying extracellular sucrose. Using DIDS as an effective pH clamp, both K+ efflux and influx of Rb+ used as K+ congener were strongly activated at acid pH i and alkaline pH o . A small stimulation of K+ (Rb+) flux was also seen at acid pH i in the absence of DIDS, i.e., when pH i pH o . Anti-L l serum, known to inhibit K+Cl cotransport, prevented the pH i -stimulated K+ (Rb+) fluxes. Subsequent to NEM treatment at pH 6, K+ (Rb+) fluxes were activated only by raising pH, and thus were similar to the pH activation profile of K+ (Rb+) fluxes in DIDS-treated cells with pH o varied at constant physiologic pH i . Anti-L l , which inhibited NEM-stimulated K+ (Rb+) fluxes, failed to do so in NEM-plus DIDS-treated cells. Thus, NEM treatment interferes with the internal but not with the external pH-sensitive site.  相似文献   

9.
A major proline carrier in Escherichia coli encoded by the putP gene mediates proline/Na+ or Li+ symport. Proline carrier mutants with altered cation specificity were obtained by mutagenesis with nitrous acid in vitro of a plasmid carrying the wild-type putP gene. Two mutant strains harboring plasmid pMOP4135 and pMOP4141 could transport proline efficiently only in the presence of an increased concentration of sodium ion. Mutations of these plasmids, putP4135 and putP4141, caused reduction of affinity for Na+ of proline transport and binding, without remarkable change in the affinity for proline or in production of the carriers. Consistent with the lower affinity of the putP4141 carrier for Na+, the mutant carrier was supersensitive to N-ethylmaleimide inhibition. The pH dependence of proline binding was also changed in these mutant carriers. The lesions of putP4135 and putP4141 were located in the N-terminal part of the putP gene (ClaI-PvuII fragment) by in vitro recombination and subsequent examination of the phenotype of the transformants. DNA sequencing of these fragments revealed one base alteration of G to A at nucleotides 299 and 656 in pMOP4141 and pMOP4135, respectively, which corresponded to amino acid changes from Gly22 to glutamic acid and Cys141 to tyrosine, respectively.  相似文献   

10.
The important food-borne pathogen Staphylococcus aureus is distinguished by its ability to grow at low water activity values. Previous work in our laboratory and by others has revealed that proline accumulation via transport is an important osmoregulatory strategy employed by this bacterium. Furthermore, proline uptake by this bacterium has been shown to be mediated by two distinct transport systems: a high-affinity system and a low-affinity system (J.-H. Bae, and K. J. Miller, Appl. Environ. Microbiol. 58:471-475, 1992; D. E. Townsend and B. J. Wilkinson, J. Bacteriol. 174:2702-2710, 1992). In the present study, we report the cloning of the high-affinity proline transport system of S. aureus by functional expression in an Escherichia coli host. The sequence of the staphylococcal proline permease gene was predicted to encode a protein of 497 amino acids which shares 49% identity with the PutP high-affinity proline permease of E. coli. Analysis of hydropathy also indicated a common overall structure for these proteins.  相似文献   

11.
Charge translocation associated with the activity of the Na(+)/proline cotransporter PutP of Escherichia coli was analyzed for the first time. Using a rapid solution exchange technique combined with a solid-supported membrane (SSM), it was demonstrated that Na(+)and/or proline individually or together induce a displacement of charge. This was assigned to an electrogenic Na(+)and/or proline binding process at the cytoplasmic face of the enzyme with a rate constant of k>50s(-1) which preceeds the rate-limiting step. Based on the kinetic analysis of our electrical signals, the following characteristics are proposed for substrate binding in PutP. (1) Substrate binding is electrogenic not only for Na(+), but also for the uncharged cosubstrate proline. The charge displacement associated with the binding of both substrates is of comparable size and independent of the presence of the respective cosubstrate. (2) Both substrates can bind individually to the transporter. Under physiological conditions, an ordered binding mechanism prevails, while at sufficiently high concentrations, each substrate can bind in the absence of the other. (3) Both substrate binding sites interact cooperatively with each other by increasing the affinity and/or the speed of binding of the respective cosubstrate. (4) Proline binding proceeds in a two-step process: low affinity (approximately 1mM) electroneutral substrate binding followed by a nearly irreversible electrogenic conformational transition.  相似文献   

12.
Mechanisms of Li+ stimulation of proline transport were studied in cells of Escherichia coli 7 and NR70, a mutant of strain 7 lacking adenosine triphosphatase (EC 3.6.1.3). An electrochemical potential difference of Li+ induced in an inward direction of energy-depleted cells caused a transient uptake of proline depending on the driving force provided. When proline was added to unbuffered cell suspensions under anaerobic conditions, the medium was found to be acidified only in the presence of Li+ but not in the presence of Na+ or K+. This acidification was abolished by the addition of a permeant anion, SCN-, to the medium containing Li+, but this was not demonstrated with cells of a mutant strain deficient in a carrier protein specific for proline. These results support the assumption that proline is taken up by a mechanism of Li+-proline cotransport in E. coli.  相似文献   

13.
The role of the co-transported cation in the coupling mechanism of the melibiose permease of Escherichia coli has been investigated by analysing its sugar-binding activity, facilitated diffusion reactions and energy-dependent transport reactions catalysed by the carrier functioning either as an H+, Na+ or Li(+)-sugar symporter. The results suggest that the coupling cation not only acts as an activator for sugar-binding on the carrier but also regulates the rate of dissociation of the co-substrates in the cytoplasm by controlling the stability of the ternary complex cation-sugar-carrier facing the cell interior. Furthermore, there is some evidence that the membrane potential enhances the rate of symport activity by increasing the rate of dissociation of the co-substrates from the carrier in the cellular compartment. Identification of the melibiose permease as a membrane protein of 39 kDa by using a T7 RNA polymerase/promoter expression system is described. Site-directed mutagenesis has been used to replace individual carrier histidine residues by arginine to probe the functional contribution of each of the seven histidine residues to the symport mechanism. Only substitution of arginine for His94 greatly interferes with the carrier function. It is finally shown that mutations affecting the glutamate residue in position 361 inactivate translocation of the co-substrates but not their recognition by the permease.  相似文献   

14.
We describe the genetically engineered overproduction of Escherichia coli tRNA(2Gln), its purification by high pressure liquid chromatography (HPLC), and its subsequent use in the growth of crystals of the E. coli glutaminyl-tRNA synthetase-tRNA(Gln) complex. The overproduced tRNA represents 60 to 70% of the total tRNA extracted from the engineered strain. A single anion exchange HPLC column is then sufficient to increase the purity of this isoacceptor to 90 to 95%. Crystals of this material complexed with the monomeric E. coli glutaminyl-tRNA synthetase enzyme were obtained by vapor diffusion from solutions containing sodium citrate as the precipitating agent. The crystals diffract to beyond 2.8 A resolution (1 A = 0.1 nm) and are of the orthorhombic space group C222(1) with unit cell parameters a = 240.5 A, b = 93.9 A, c = 115.7 A. Gel electrophoresis of dissolved crystals demonstrates the presence of both protein and tRNA.  相似文献   

15.
BetP is an Na(+)-coupled betaine-specific transporter of the betaine-choline-carnitine (BCC) transporter family involved in the response to hyperosmotic stress. The crystal structure of BetP revealed an overall fold of two inverted structurally related repeats (LeuT-fold) that BetP shares with other sequence-unrelated Na(+)-coupled symporters. Numerous structures of LeuT-fold transporters in distinct conformational states have contributed substantially to our understanding of the alternating access mechanism of transport. Nevertheless, coupling of substrate and co-transported ion fluxes has not been structurally corroborated to the same extent. We converted BetP by a single-point mutation--glycine to aspartate--into an H(+)-coupled choline-specific transporter and solved the crystal structure of this mutant in complex with choline. The structure of BetP-G153D demonstrates a new inward-facing open conformation for BetP. Choline binding to a location close to the second, low-affinity sodium-binding site (Na2) of LeuT-fold transporters is facilitated by the introduced aspartate. Our data confirm the importance of a cation-binding site in BetP, playing a key role in a proposed molecular mechanism of Na(+) and H(+) coupling in BCC transporters.  相似文献   

16.
The GltS Na+/glutamate permease of Escherichia coli is the most extensively studied member of the ESS family of bacterial glutamate:Na+ symporters. This paper presents the membrane topology analysis of the GltS with translational alkaline phosphatase and beta-galactosidase gene fusions generated by TnphoA, nested deletions and targeted fusions. The topology model suggested by the translational fusion technique is compared with the MemGen model and discussed in detail.  相似文献   

17.
18.
Previously, we cloned and sequenced a DNA fragment from Vibrio parahaemolyticus and found four open reading frames (ORFs). Here, we clearly demonstrate that one of the ORFs, ORF1, is the gene (sglS) encoding a Na+/glucose symporter (SglS). We characterize the Na+/glucose symporter produced in Escherichia coli mutant (JM1100) cells which lack original glucose transport activity and galactose transport activity. We also show that phlorizin, a potent inhibitor of the SGLT1 Na+/glucose symporter of animal cells, inhibited glucose transport, but not galactose transport, via the SglS system.  相似文献   

19.
Wegener C  Tebbe S  Steinhoff HJ  Jung H 《Biochemistry》2000,39(16):4831-4837
With respect to the functional importance attributed to the N-terminal part of the Na(+)/proline transporter of Escherichia coli (PutP), we report here on the structural arrangement and functional dynamics of transmembrane domains (TMs) II and III and the adjoining loop regions. Information on membrane topography was obtained by analyzing the residual mobility of site-specifically-attached nitroxide spin label and by determination of collision frequencies of the nitroxide with oxygen and a polar metal ion complex using electron paramagnetic resonance (EPR) spectroscopy. The studies suggest that amino acids Phe45, Ser50, Ser54, Trp59, and Met62 are part of TM II while Gly39 and Arg40 are located at a membrane-water interface probably forming the cytoplasmic cap of the TM. Also Ala67 and Glu75 are at a membrane-water interface, suggesting a location close to the periplasmic ends of TMs II and III, respectively. Ser71 between these residues is clearly in a water-exposed loop (periplasmic loop 3). Spin labels attached to positions 80, 86, and 91 show EPR properties typical for a TM location (TM III). Leu97 may be part of a structured loop region while Ala107 is clearly located in a water-exposed loop (cytoplasmic loop 4). Finally, spin labels attached to the positions of Asp33 and Leu37 are clearly on the surface of the transporter and are directed into an apolar environment. These findings strongly support the recently proposed 13-helix model of PutP [Jung, H., Rübenhagen, R., Tebbe, S., Leifker, K., Tholema, N., Quick, M., and Schmid, R. (1998) J. Biol. Chem. 273, 26400-26407] and suggest that TMs II and III of the transporter are formed by amino acids Ser41 to Gly66 and Ser76 to Gly95, respectively. In addition to the topology analysis, it is shown that binding of Na(+) and/or proline to the transporter alters the mobility of the nitroxide group at the positions of Leu37 and Phe45. From these findings, it is concluded that binding of the ligands induces conformational alterations of PutP that involve at least parts of TM II and the preceding cytoplasmic loop.  相似文献   

20.
Addition of polyamines or their analogs to newly confluent LLC-PK1 cells resulted in down-regulation of Na+-glucose transport (symport) activity. Polyamines prevented the induction of this symporter by the differentiation inducer hexamethylene bisacetamide (HMBA) but did not influence induction by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Partial depletion of endogenous polyamines after addition of α -difluoromethylornithine (DFMO) resulted in a 4 to 5-fold increase in symporter expression. Symporter induction by either HMBA or DFMO was inhibited by the protein kinase inhibitor H-7 but H-7 did not affect symporter induction by IBMX. Changes in symporter activity were accompanied by changes in levels of the 75 kD symporter subunit detected by Western blot. Cultures exposed to HMBA exhibited reduced levels of ornithine decarboxylase activity. Our results suggest that induction of symporter expression by HMBA may be mediated in part by its effects on polymine metabolism, and point to parallel roles of polyamines and cyclic AMP in regulating the expression of this physiologically important renal transport system. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号