首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The thiopeptide class of antibiotics targets the GTPase-associated center (GAC) of the ribosome to inhibit translation factor function. Using X-ray crystallography, we have determined the binding sites of thiostrepton (Thio), nosiheptide (Nosi), and micrococcin (Micro), on the Deinococcus radiodurans large ribosomal subunit. The thiopeptides, by binding within a cleft located between the ribosomal protein L11 and helices 43 and 44 of the 23S rRNA, overlap with the position of domain V of EF-G, thus explaining how this class of drugs perturbs translation factor binding to the ribosome. The presence of Micro leads to additional density for the C-terminal domain (CTD) of L7, adjacent to and interacting with L11. The results suggest that L11 acts as a molecular switch to control L7 binding and plays a pivotal role in positioning one L7-CTD monomer on the G' subdomain of EF-G to regulate EF-G turnover during protein synthesis.  相似文献   

3.
Thiopeptides are a growing class of sulfur-rich, highly modified heterocyclic peptides that are mainly active against Gram-positive bacteria including various drug-resistant pathogens. Recent studies also reveal that many thiopeptides inhibit the proliferation of human cancer cells, further expanding their application potentials for clinical use. Thiopeptide biosynthesis shares a common paradigm, featuring a ribosomally synthesized precursor peptide and conserved posttranslational modifications, to afford a characteristic core system, but differs in tailoring to furnish individual members. Identification of new thiopeptide gene clusters, by taking advantage of increasing information of DNA sequences from bacteria, may facilitate new thiopeptide discovery and enrichment of the unique biosynthetic elements to produce novel drug leads by applying the principle of combinatorial biosynthesis. In this study, we have developed a web-based tool ThioFinder to rapidly identify thiopeptide biosynthetic gene cluster from DNA sequence using a profile Hidden Markov Model approach. Fifty-four new putative thiopeptide biosynthetic gene clusters were found in the sequenced bacterial genomes of previously unknown producing microorganisms. ThioFinder is fully supported by an open-access database ThioBase, which contains the sufficient information of the 99 known thiopeptides regarding the chemical structure, biological activity, producing organism, and biosynthetic gene (cluster) along with the associated genome if available. The ThioFinder website offers researchers a unique resource and great flexibility for sequence analysis of thiopeptide biosynthetic gene clusters. ThioFinder is freely available at http://db-mml.sjtu.edu.cn/ThioFinder/.  相似文献   

4.
Thiostrepton, a macrocyclic thiopeptide antibiotic, inhibits prokaryotic translation by interfering with the function of elongation factor G (EF-G). Here, we have used 70S ribosome binding and GTP hydrolysis assays to study the effects of thiostrepton on EF-G and a newly described translation factor, elongation factor 4 (EF4). In the presence of thiostrepton, ribosome-dependent GTP hydrolysis is inhibited for both EF-G and EF4, with IC(50) values equivalent to the 70S ribosome concentration (0.15 μM). Further studies indicate the mode of thiostrepton inhibition is to abrogate the stable binding of EF-G and EF4 to the 70S ribosome. In support of this model, an EF-G truncation variant that does not possess domains IV and V was shown to possess ribosome-dependent GTP hydrolysis activity that was not affected by the presence of thiostrepton (>100 μM). Lastly, chemical footprinting was employed to examine the nature of ribosome interaction and tRNA movements associated with EF4. In the presence of non-hydrolyzable GTP, EF4 showed chemical protections similar to EF-G and stabilized a ratcheted state of the 70S ribosome. These data support the model that thiostrepton inhibits stable GTPase binding to 70S ribosomal complexes, and a model for the first step of EF4-catalyzed reverse-translocation is presented.  相似文献   

5.
Thiostrepton binds with high affinity and with a 1 : 1 stoichiometry to a complex formed between Escherichia coli 23-S ribosomal RNA and ribosomal protein L11 of E. coli or the homologous protein BM-L11 of Bacillus megaterium. In the presence of T1 ribonuclease, protein BM-L11 and thiostrepton protect from degradation a fragment of E. coli 23-S RNA estimated to be about 50 nucleotides in length.  相似文献   

6.
Cancer stem cells (CSCs) play an important role in cancer treatment resistance and disease progression. Identifying an effective anti‐CSC agent may lead to improved disease control. We used CSC‐associated gene signatures to identify drug candidates that may inhibit CSC growth by reversing the CSC gene signature. Thiostrepton, a natural cyclic oligopeptide antibiotic, was the top‐ranked candidate. In non–small‐cell lung cancer (NSCLC) cells, thiostrepton inhibited CSC growth in vitro and reduced protein expression of cancer stemness markers, including CD133, Nanog and Oct4A. In addition, metastasis‐associated Src tyrosine kinase signalling, cell migration and epithelial‐to‐mesenchymal transition (EMT) were all inhibited by thiostrepton. Mechanistically, thiostrepton treatment led to elevated levels of tumour suppressor miR‐98. Thiostrepton combined with gemcitabine synergistically suppressed NSCLC cell growth and induced apoptosis. The inhibition of NSCLC tumours and CSC growth by thiostrepton was also demonstrated in vivo. Our findings indicate that thiostrepton, an established drug identified in silico, is an inhibitor of CSC growth and a potential enhancer of chemotherapy in NSCLC.  相似文献   

7.
8.
The antibiotics thiostrepton and micrococcin bind to the GTPase region in domain II of 23S rRNA, and inhibit ribosomal A-site associated reactions. When bound to the ribosome, these antibiotics alter the accessibility of nucleotides 1067A and 1095A towards chemical reagents. Plasmid-coded Escherichia coli 23S rRNAs with single mutations at positions 1067 or 1095 were expressed in vivo. Mutant ribosomes are functional in protein synthesis, although those with transversion mutations function less effectively. Antibiotics were bound under conditions where wild-type and mutant ribosomes compete in the same reaction for drug molecules; binding was analysed by allele-specific footprinting. Transversion mutations at 1067 reduce thiostrepton binding more than 1000-fold. The 1067G substitution gives a more modest decrease in thiostrepton binding. The changes at 1095 slightly, but significantly, lower the affinity of ribosomes for thiostrepton, again with the G mutation having the smallest effect. Micrococcin binding to ribosomes is reduced to a far greater extent than thiostrepton by all the 1067 and 1095 mutations. Extrapolating these results to growing cells, mutation of nucleotide 1067A confers resistance towards micrococcin and thiostrepton, while substitutions at 1095A confer micrococcin resistance, and increase tolerance towards thiostrepton. These data support an rRNA tertiary structure model in which 1067A and 1095A lie in close proximity, and are key components in the drug binding site. None of the mutations alters either the higher order rRNA structure or the binding of r-proteins. We therefore conclude that thiostrepton and micrococcin interact directly with 1067A and 1095A.  相似文献   

9.
Initially discovered in the mid-twentieth century, thiopeptides constitute a diverse family of bacterially produced natural products exhibiting a remarkable array of biological properties. Only in the last several years have the details of thiopeptide biosynthesis been uncovered by a combination of genomic, genetic, and biochemical approaches. Thiopeptides are now known to be ribosomally synthesized and subsequently densely modified to carry azol(in)es, dehydro amino acids, and various other pathway-specific decorations. The defining feature of thiopeptides is a central six-membered nitrogenous ring that constrains peptide macrocycles of varying sequences and sizes. Recent landmark studies have defined the precisely orchestrated posttranslational modification cascade culminating in thiopeptide product formation. Because diverse thiopeptides are processed by a relatively small number of well-conserved enzymes, it has been suggested that artificial diversification of the precursor peptide could allow a vast new chemical space to be explored for clinically important activities. The success of this strategy depends on the plasticity of thiopeptide processing machinery, an open question that warrants further investigation. There is an urgent need therefore to leverage established thiopeptide research platforms to investigate substrate-enzyme specificity and devise intelligent diversification strategies for library generation. Meanwhile, the distinct genomic signatures of conserved thiopeptide-associated genes will enable the continued mining of nature for novel compounds and processing enzymes.  相似文献   

10.
Bacterial translation initiation factor IF2 was localized on the ribosome by rRNA cleavage using free Cu(II):1,10-orthophenanthroline. The results indicated proximity of IF2 to helix 89, to the sarcin-ricin loop and to helices 43 and 44, which constitute the "L11/thiostrepton" stem-loops of 23S rRNA. These findings prompted an investigation of the L11 contribution to IF2 activity and a re-examination of the controversial issue of the effect on IF2 functions of thiostrepton, a peptide antibiotic known primarily as a powerful inhibitor of translocation. Ribosomes lacking L11 were found to have wild-type capacity to bind IF2 but a strongly reduced ability to elicit its GTPase activity. We found that thiostrepton caused a faster recycling of this factor on and off the 70S ribosomes and 50S subunits, which in turn resulted in an increased rate of the multiple turnover IF2-dependent GTPase. Although thiostrepton did not inhibit the P-site binding of fMet-tRNA, the A-site binding of the EF-Tu-GTP-Phe-tRNA or the activity of the ribosomal peptidyl transferase center (as measured by the formation of fMet-puromycin), it severely inhibited IF2-dependent initiation dipeptide formation. This inhibition can probably be traced back to a thiostrepton-induced distortion of the ribosomal-binding site of IF2, which leads to a non-productive interaction between the ribosome and the aminoacyl-tRNA substrates of the peptidyl transferase reaction. Overall, our data indicate that the translation initiation function of IF2 is as sensitive as the translocation function of EF-G to thiostrepton inhibition.  相似文献   

11.
L-2-Methyltryptophan was found to be an intermediate in the biosynthesis of the antibiotic thiostrepton. It was isolated from growing cultures and resting cells of Streptomyces laurentii in trapping experiments after the application of labeled L-methionine or L-tryptophan. Its formation from L-tryptophan and S-adenosylmethionine was studied in a cell-free extract of S. laurentii. Although several attempts to purify the soluble methyltransferase by standard methods failed, some of its characteristics could be determined in the crude extract. The enzyme has a sharp pH optimum at pH 7.8. The apparent Km value for S-adenosylmethionine is 120 microM and the Ki value for S-adenosylhomocysteine is 480 microM. The enzyme is not stereoselective with respect to D- or L-tryptophan, but the D-isomer is converted at a slower rate than the L-isomer. Indolepyruvic acid is also methylated, while indole is not a substrate. The methyl group is transferred with retention of its configuration, contrary to most other methyltransferase reactions.  相似文献   

12.
Antibiotics that inhibit ribosomal function may do so by one of several mechanisms, including the induction of incorrect RNA folding or prevention of protein and/or RNA conformational transitions. Thiostrepton, which binds to the ‘GTPase center’ of the large subunit, has been postulated to prevent conformational changes in either the L11 protein or rRNA to which it binds. Scintillation proximity assays designed to look at the binding of the L11 C-terminal RNA-binding domain to a 23S ribosomal RNA (rRNA) fragment, as well as the ability of thiostrepton to induce that binding, were used to demonstrate the role of Mg2+, L11 and thiostrepton in the formation and maintenance of the rRNA fragment tertiary structure. Experiments using these assays with both an Escherichia coli rRNA fragment and a thermostable variant of that RNA show that Mg2+, L11 and thiostrepton all induce the RNA to fold to an essentially identical tertiary structure.  相似文献   

13.
Although eukaryotes are not generally sensitive to thiostrepton, growth of the human malaria parasite Plasmodium falciparum is severely inhibited by the drug. The proposed target in P. falciparum is the ribosome of the plastid-like organelle (35 kb circular genome) of unknown function. Positive identification of the drug target would confirm that the organelle is essential for blood-stage development of Plasmodium and help clarify the plastid's biological role. The action of thiostrepton as an antibiotic relates to its affinity for a conserved domain of eubacterial rRNA. Its effect on organelles is unknown. Because a number of different point mutations within the Escherichia coli domain abrogates thiostrepton binding, extensive sequence differences between eubacterial and plastid domains brings into question the site of drug action. We have examined temperature-dependent hyperchromicity profiles of synthetic RNAs corresponding to domains in the plastid and cytoplasmic RNAs of P. falciparum. Thiostrepton induces a tertiary structure in the plastid-like fragment similar to that seen in eubacterial rRNA, even though the two share only about 60% sequence identity. A single point mutation in the plastid-like fragment removes thiostrepton-dependent tertiary structure formation. Thus, the plastid and eubacterial RNAs share a stabilized tertiary structure induced by the drug. This direct indicator of drug sensitivity in eubacteria suggests that the plastid-encoded ribosome is similarly sensitive to thiostrepton and that the plastid is the site of drug action. Correlation of thiostrepton-sensitive and -resistant phenotypes with physical parameters suggests thiostrepton resistance as a selectable marker for plastid transformation.  相似文献   

14.
Summary The effect of ammonium ions in the medium on production of thiostrepton byStreptomyces laurentii was investigated. In batch cultures, the excessive initial concentration of ammonium ions inhibited thiostrepton production. Moderate feeding of ammonia accelerated, however, not only microbial growth but also thiostrepton production. Fed-batch cultures with various feed rates of ammonia and a kinetic study clarified the effect of ammonium ion consumption rate on thiostrepton production. A modified kinetic model is proposed that takes product inhibition and the influence of maximum thiostrepton content into account.  相似文献   

15.
16.
Thiopeptide antibiotics are an important class of natural products resulting from posttranslational modifications of ribosomally synthesized peptides. Cyclothiazomycin is a typical thiopeptide antibiotic that has a unique bridged macrocyclic structure derived from an 18-amino-acid structural peptide. Here we reported cloning, sequencing, and heterologous expression of the cyclothiazomycin biosynthetic gene cluster from Streptomyces hygroscopicus 10-22. Remarkably, successful heterologous expression of a 22.7-kb gene cluster in Streptomyces lividans 1326 suggested that there is a minimum set of 15 open reading frames that includes all of the functional genes required for cyclothiazomycin production. Six genes of these genes, cltBCDEFG flanking the structural gene cltA, were predicted to encode the enzymes required for the main framework of cyclothiazomycin, and two enzymes encoded by a putative operon, cltMN, were hypothesized to participate in the tailoring step to generate the tertiary thioether, leading to the final cyclization of the bridged macrocyclic structure. This rigorous bioinformatics analysis based on heterologous expression of cyclothiazomycin resulted in an ideal biosynthetic model for us to understand the biosynthesis of thiopeptides.The thiopeptides are a family of highly modified, sulfur-containing macrocyclic peptides, such as thiostrepton, thiocillins, and micrococcinic acid (3, 11). Their structures have several common features: a tri- or tetrasubstituted nitrogen heterocycle central domain, a macrocyclic framework, and heavily modified amino acid residues, including thiazoles, oxazoles, and dehydroamino acids (Fig. (Fig.1)1) (3). Members of this family exhibit various biological properties, such as inhibition of ribosomal protein synthesis (24), rennin inhibitory activity (2), and induction of TipA (20). Moreover, many thiopeptide antibiotics show bioactivity against some bacterial strains resistant to most conventional treatments, including methicillin-resistant Staphylococcus aureus (MRSA), penicillin-resistant Streptococcus pneumoniae (PRSP), and vancomycin-resistant enterococci (VRE) (3, 17).Open in a separate windowFIG. 1.Structures of thiostrepton, thiocillin, microncoccinate, and cyclothiazomycin (3).Early in vitro investigations of these special heterocycles of thiopeptides were performed by organic chemists and included stereoselective synthesis of a γ-lactam acidic hydrolysate of cyclothiazomycin (4) and total synthesis of thiostrepton (21). Extensive research on microccins (5, 19) and lantibiotics (6, 29) described biosynthesis of the thiazole- and dehydroamino acid-containing polypeptides that were derived from ribosomally synthesized prepeptides. Similarly, Lee et al. described a widely conserved gene cluster for toxin biosynthesis and suggested a ribosome biosynthetic pathway for the modified polypeptide containing thiazoles and oxazoles (16).Recently, Wieland Brown et al. (28) and Kelly et al. (14) identified the gene clusters encoding thiocillin and thiostrepton, respectively, with a probe that targeted hypothetic prepeptide genes, whereas Liao and coworkers (17) took advantage of the conservation of one putative cyclodehydratase. Although most of the biochemical reactions involved in the biosynthetic pathway remain obscure, it is clear that thiopeptides are synthesized ribosomally and then there is a series of posttranslational modifications.Cyclothiazomycin, which was isolated as a novel selective inhibitor of human plasma rennin, is a unique bridged macrocyclic thiopeptide (2) whose stereo structure was recently revealed by degradation experiments and spectroscopic analysis (10). It contains a dehydroserine, two dehydrothreonine residues, three thiazolines, three thiazoles, and a trisubstituted pyridine. Compared with common thiopeptides, it lacks the characteristic 2- and 3-azole substituent on the central pyridine domain; instead, it has an alanine-derived heterocyclic residue with the (R) configuration, a quaternary sulfide, and two macrocyclic peptide loops (Fig. (Fig.1).1). Moreover, a pair of convertible isomers of cyclothiazomycin B, the cyclothiazomycin analogues produced by Streptomyces sp. strain A307 (10), were identified as Z and E configurations caused by the tautomerization of the dehydrated threonine. These structural traits may indicate that some new genetic elements are likely involved in posttranslational modification.Here we reported cloning and sequencing of the cyclothiazomycin biosynthetic gene cluster of Streptomyces hygroscopicus 10-22 (23). In addition, an analysis of heterologous expression in Streptomyces lividans 1326 and a deletion analysis were also performed, which indicated that a gene cluster at least 22.7 kb long is required for biosynthesis. A bioinformatics-based approach to analysis of this gene cluster postulated that there is a posttranslational modification pathway in which eight proteins are involved in the biosynthetic machinery.  相似文献   

17.
Mutacin II, elaborated by group II Streptococcus mutans, is a ribosomally synthesized and posttranslationally modified polypeptide antibiotic containing unusual thioether and didehydro amino acids. To ascertain the role of specific amino acid residues in mutacin II antimicrobial activity, we developed a streptococcal expression system that facilitates the replacement of the mutA gene with a single copy of a mutated variant gene. As a result, variants of mutacin II can be designed and expressed. The system was tested by constructing the following mutant peptides: ΔN1, V7A, P9A, T10A, T10S, C15A, C26A, and C27A. All of these mutacin II variants except ΔN1 and T10A, which were not secreted, were isolated, and their identities were verified by mass spectrometry. Variants P9A, C15A, C26A, and C27A failed to exert antimicrobial activity. Because the P9A and T10A variants comprise the “hinge” region of mutacin II, these observations suggest that in addition to the thioether and didehydro amino acids, the hinge region is essential for biological activity and biosynthesis or export of the peptide. Tandem mass spectrometry of the N-terminal part of the wild-type molecule and its C15A variant confirmed that the threonine at position 10 is dehydrated and present as a didehydrobutyrine residue. This analysis of the active T10S variant further suggested that a didehydro amino acid at this position is specific for antimicrobial activity and that the biosynthetic machinery does not discriminate between threonine and serine. In contrast, the lack of production of mutacin variants with alanine substituted for threonine at position 10, as well as the deletion of asparagine at the N terminus (ΔN1), indicates that specific residues in the propeptide may be crucial for certain steps in the biosynthetic pathway of this lantibiotic.  相似文献   

18.
Bacitracin is a peptide antibiotic produced by several Bacillus licheniformis strains that is most active against other Gram-positive microorganisms, but not against the producer strain itself. Recently, heterologous expression of the bacitracin resistance mediating BcrABC transporter in Bacillus subtilis and Escherichia coli was described. In this study we could determine that the transporter encoding bcrABC genes are localized about 3 kb downstream of the 44-kb bacitracin biosynthetic operon bacABC. Between the bac operon and the bcrABC genes two orfs, designated bacR and bacS, were identified. They code for proteins with high homology to regulator and sensor proteins of two-component systems. A disruption mutant of the bacRS genes was constructed. While the mutant displayed no effects on the bacitracin production it exhibited highly increased bacitracin sensitivity compared to the wild-type strain. Western blot analysis of the expression of BcrA, the ATP-binding cassette of the transporter, showed in the wild-type a moderate BcrA induction in late stationary cells that accumulate bacitracin, whereas in the bacRS mutant cells the BcrA expression was constitutive. A comparison of bacitracin stressed and nonstressed wild-type cells in Western blot analysis revealed increasing amounts of BcrA and a decrease in BacR in the stressed cells. From these findings we infer that BacR acts as a negative regulator for controlling the expression of the bcrABC transporter genes.  相似文献   

19.
Thiopeptides are small (12- to 17-amino-acid), heavily modified peptides of bacterial origin. This antibiotic family, with more than 100 known members, is characterized by the presence of sulfur-containing heterocyclic rings and dehydrated residues within a macrocyclic peptide structure. Thiopeptides, including micrococcin P1, have garnered significant attention in recent years for their potent antimicrobial activity against bacteria, fungi, and even protozoa. Micrococcin P1 is known to target the ribosome; however, like those of other thiopeptides, its biosynthesis and mechanisms of self-immunity are poorly characterized. We have discovered an isolate of Staphylococcus epidermidis harboring the genes for thiopeptide production and self-protection on a 24-kb plasmid. Here we report the characterization of this plasmid, identify the antimicrobial peptide that it encodes, and provide evidence of a target replacement-mediated mechanism of self-immunity.  相似文献   

20.
The visA gene of Streptomyces virginiae has been thought to be a part of the virginiamycin S (VS) biosynthetic gene cluster based on its location in the middle of genes that encode enzymes highly similar to those participating in the biosynthesis of streptogramin-type antibiotics. Heterologous expression of the visA gene was achieved in Escherichia coli by an N-terminal fusion with thioredoxin (TrxA), and the intact recombinant VisA protein (rVisA) was purified after cleavage with enterokinase to remove the TrxA moiety. The purified rVisA showed clear L-lysine 2-aminotransferase activity with an optimum pH of around 8.0 and an optimum temperature at 35 degrees C, with 2-oxohexanoate as the best amino acceptor, indicating that VisA converts L-lysine into Delta(1)-piperidine 2-carboxylic acid. A visA deletion mutant of S. virginiae was created by homologous recombination, and the in vivo function of the visA gene was studied by phenotypic comparison between the wild type and the visA deletion mutant. No differences in growth in liquid media or in morphological behavior on solid media were observed, indicating that visA is not involved in primary metabolism or morphological differentiation. However, the visA mutant failed to produce VS while maintaining the production of virginiamycin M(1) at a level comparable to that of the parental wild-type strain, demonstrating that visA is essential to VS biosynthesis. These results, together with the observed recovery of the defect in VS production by the external addition of 3-hydroxypicolinic acid (3-HPA), a starter molecule in VS biosynthesis, suggest that VisA is the first enzyme of the VS biosynthetic pathway and that it supplies 3-HPA from L-lysine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号