首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David W. Hale 《Chromosoma》1986,94(6):425-432
The patterns of chromosomal pairing and chiasma distribution were analyzed in male Sitka deer mice (Peromyscus sitkensis) polymorphic for terminally positioned pericentric inversions of chromosomes 6 and 7. Gand C-banding of somatic metaphases indicated that the inversions involved 30% and 40% of chromosomes 6 and 7, respectively. Analysis of silver-stained synaptonemal complexes in surface-spread zygotene and pachytene nuclei from heterozygous individuals revealed that inversion loops were not formed. The inverted segments proceeded directly to heterosynapsis without an intervening homosynaptic phase, and the heteromorphic bivalents remained straight-paired throughout pachynema. C-banded pachytene nuclei corroborated the occurrence of heterosynapsis, as the heteromorphic bivalents exhibited nonaligned centromeres. Analysis of diplonema and diakinesis indicated that crossing over had not occurred within the heterosynapsed inverted segments. The observation of chiasma suppression within the inversions indicates that pericentric inversion heterozygosity does not lead to the production of unbalanced gametes. Heterosynapsis of the inverted segments during zygonema and pachynema and the resulting chiasma suppression therefore represent a meiotic mechanism for the maintenance of pericentric inversion polymorphisms in this population of P. sitkensis.  相似文献   

2.
D W Hale  I F Greenbaum 《Génome》1988,30(1):44-47
The pattern of chromosomal pairing was analyzed in male deer mice (Peromyscus maniculatus and Peromyscus sitkensis) heterozygous for the presence of heterochromatic short arms. G- and C-banding of somatic metaphases indicated that the presence of heterochromatic short arms increased the length of chromosome 4 by 15% in P. sitkensis and that of chromosome 8 by 9% in P. maniculatus. Analysis of silver-stained late zygotene and early pachytene nuclei revealed a low frequency of unequal axial lengths in the synaptonemal complexes corresponding to the heteromorphic bivalents. All mid- and late pachytene nuclei, however, exhibited fully paired synaptonemal complexes with equalized axial lengths. These observations suggest the existence of an adjustment mechanism which functions to equalize the lengths of the two axes of the heteromorphic synaptonemal complex.  相似文献   

3.
Electron microscopy of synaptonemal complexes in three Gallus domesticus cockerels that were heterokaryotypic for a pericentric inversion in chromosome 2 revealed a low incidence of homologous pairing and a high incidence of nonhomologous pairing. The significance of these results are related to the finding that heterokaryotypic parents have fertility rates that are normal or above normal and produce only balanced gametes. One cockerel apparently had both normal cells and cells with a heteromorphic bivalent 2 in its germ line.  相似文献   

4.
Analysis of meiotic pairing configurations in a deer mouse heterozygous for both a pericentric inversion and the presence of a heterochromatic short arm at chromosome 15 revealed straight-paired synaptonemal complexes with equal axial lengths in a majority of the pachytene nuclei. Nonhomologous pairing in this bivalent occurs by direct heterosynapsis of the inverted segments followed by synaptic adjustment of the heterochromatin heteromorphism.  相似文献   

5.
In some populations of the grasshopper Keyacris scurra, there are many individuals heterozygous for centromere position polymorphisms. From a consideration of chiasma positions these are almost certainly due to pericentric inversions. In this species, as in other grasshoppers, the deleterious effects of chiasmata within these heterozygous regions are avoided by non-homologous, straight pairing. Reconstruction of synaptonemal complexes from two adjacent pachytene nuclei in an individual heterozygous for centromere position (telo/metacentric) on the second longest (CD) bivalent by electron microscopy of serial sections allowed the identification of all the bivalents. The centromeres were identified by characteristic densestaining material. The synaptonemal complex was found to form straight through the heteromorphic region, including both centromere positions. The pairing was clearly non-homologous at these asymmetrical centromere positions, and probably therefore, in the presumably inverted region between them. This regular non-homologous pairing explains why chiasmata never form in the heterozygous region, but does not conclusively prove that the rearrangement is an inversion rather than a centric transposition.  相似文献   

6.
Surface-spread, silver-stained primary spermatocytes from individuals of the Sitka deer mouse (Peromyscus sitkensis) were analyzed by electron microscopy. Pairing of the X and Y chromosomes is initiated at early pachynema and is complete by mid pachynema. The pattern of sex chromosome pairing is unique in that it is initiated at an interstitial position, with subsequent synapsis proceeding in a unidirectional fashion towards the telomeres of the homologous segments. One-third the length of the X and two-thirds the length of the Y are involved in the synaptonemal complex of the sex bivalent. Various morphological complexities develop in the heteropycnotic (unpaired) segments as pachynema progresses, but desynapsis is not initiated until diplonema. Analysis of C-banded diakinetic nuclei indicated that sex chromosome pairing involves the heterochromatic short arm of the X and the long arm of the heterochromatic Y. An interstitial chiasma between the X and Y was observed in the majority of the diakinetic nuclei. The observation of a substantial pairing region and chiasma formation between the sex chromosomes of these deer mice is interpreted as indicating homology between the short arm of the X and the long arm of the Y.  相似文献   

7.
Analysis of microspread, silver-stained primary spermatocytes from chromosomally and phenotypically normal Peromyscus sitkensis revealed the occurrence of XYY zygotene and pachytene nuclei at low frequency in three of eight individuals examined. Observed pairing configurations of sex chromosomes included a trivalent and a Y bivalent-X univalent. The data suggest that premeiotic nondisjunction may be involved in the origination of XYY chromosomal conditions.  相似文献   

8.
Chromosomal pairing and chiasma formation were studied two individuals of Peromyscus beatae heterozygous for the presence of a large block of interstitial heterochromatin. Although the modified chromosome was of medium size, analysis of C-banded diakinetic configurations revealed that it was the homolog of one of the smallest autosomes. Analysis of silver stained synaptonemal complexes indicated that synapsis was either unidirectional from initiation at one set of telomeres or was bidirectional from initiation at both sets of telomeres. Each pattern resulted in characteristic heteromorphic pairing configurations (interstitial asynapsis or terminally positioned unpaired segments) in early pachynema. These configurations underwent synaptic adjustment and, by mid-pachynema, the lateral elements of the polymorphic bivalent either appeared typical of homomorphic bivalents or exhibited regional heteropycnosis in one or both axes. Synaptonemal complex data for Peromyscus and many other mammalian species reflect an apparent need for fully paired, linear bivalents prior to the end of pachynema.  相似文献   

9.
The pairing behavior of the Z and W chromosomes in the female northern bobwhite quail (Colinus virginianus) was analyzed by electron microscopy of silver-stained synaptonemal complexes (SCs). After autosomal pairing was completed, synapsis of the sex chromosomes initiated at the short-arm end of the W chromosome and one end of the Z chromosome. Synapsis then progressed unidirectionally, producing a sex bivalent in which the entire length of the W axis was paired with an equivalent length of the Z axis. Progressive contraction and asymmetrical twisting of the Z axis ultimately resulted in a fully paired configuration with aligned axial ends. Further contraction of the Z axis reduced the extent of asymmetrical twisting such that only the nonaligned centromeric regions distinguished the SC of the ZW bivalent from SCs of similar-sized autosomes in late-pachytene nuclei. Quantitative analyses indicated that the length of the Z axis shortened significantly during the adjustment process, whereas no significant difference occurred in the length of the W axis. The nonalignment of the centromeric regions during transitional stages of ZW synapsis indicates that direct heterosynapsis of nonhomologous segments, followed by axial equalization of the length inequality, is responsible for the length adjustment during synapsis in the sex chromosomes of the bobwhite quail.  相似文献   

10.
Somatic and meiotic chromosomal and synaptonemal complex techniques were used to characterize the chromosomal complement and to study the fission heteromorphism of chromosome 4 in the FM2 cytotype of Sceloporus grammicus. Analysis of silver-stained somatic metaphases revealed that the nucleolar organizer region in this cytotype is located at the distal end of a pair of medium-sized acrocentric chromosomes, rather than on the largest acrocentric chromosomal pair, as previously reported. This condition is hypothesized to be the result of at least two sequential rearrangements. Analysis of surface-spread zygotene and pachytene nuclei indicated that the components of the chromosome 4 trivalent initiated synapsis at their distal telomeric regions. Although synapsis of the fission trivalent was synchronous with that of the homomorphic autosomal pairs, completion of synapsis was delayed in the trivalent. Associations between the fission trivalent and other autosomal or sex-chromosomal elements occurred in approximately one third of the pachytene nuclei examined. Analysis of secondary spermatocytes (metaphase II configurations) revealed low levels of nondisjunction in fission heterozygotes. These analyses indicate that FM2 individuals heterozygous for the fission rearrangement of chromosome 4 suffer no meiotic deficit.  相似文献   

11.
Chromosome pairing behaviour of the natural allotetraploid Aegilops biuncialis (genome UUMM) and a triploid hybrid Ae. biuncialis x Secale cereale (genome UMR) was analyzed by electron microscopy in surface-spread prophase I nuclei. Synaptonemal-complex analysis at zygotene and pachytene revealed that synapsis in the allotetraploid was mostly between homologous chromosomes, although a few quadrivalents were also formed. Only homologous bivalents were observed at metaphase I. In contrast, homoeologous and heterologous chromosome associations were common at prophase I and metaphase I of the triploid hybrid. It is concluded that the mechanism controlling bivalent formation in Ae. biuncialis acts mainly at zygotene by restricting pairing to homologous chromosomes, but also acts at pachytene by preventing chiasma formation in the homoeologous associations. In the hybrid the mechanism fails at both stages. Key words : Aegilops biuncialis, allotetraploid, intergeneric hybrid, pairing control, synaptonemal complex.  相似文献   

12.
Uzi Nur 《Chromosoma》1968,25(2):198-214
A male grasshopper, Camnula pellucida (Scudder), was found to be heterozygous for a paracentric inversion occupying approximately 10% of the length of one of the two longest chromosomes. Analysis of 297 cells in pachytene revealed inversion loops, suspected inversion loops, asynapsis, and straight pairing in 1.0, 2.7, 8.4, and 87.9% of the analyzable cells, respectively. The frequency of straight pairing (87.9%) indicated a high degree of non-homologous pairing. Analysis of 603 cells in anaphase I and II, and in telophase I and II for the presence of acentric fragments and dicentric chromatid bridges indicated that crossing over within the inversion region occured in about 8% of the cells. The difference between the frequency of the observed plus suspected inversion loops in pachytene and that of the dicentric chromatid bridges and acentric fragments in anaphase I or subsequent stages was not statistically significant. The correspondence between the presence of inversion loops and crossovers within the region of the inversion is thus similar to that observed by Maguire (1966) for a short paracentric inversion in maize. The reasons for this correspondence are considered.Supported by grants GB 1585 and GB 6745 from the National Science Foundation, Washington, D.C.  相似文献   

13.
A L Cerro  A Fernández  J L Santos 《Génome》1994,37(6):1035-1040
Meiotic pairing behaviour of one and two B isochromosomes (iso-Bs) in the grasshopper Omocestus burri was analysed by electron microscopy in surface-spread prophase I nuclei and compared with light microscopic observations of metaphase I. Iso-Bs display a peripheral location in the surface-spread nuclei and early pairing relative to that of the long members of the A set. Single iso-Bs undergo foldback pairing to give symmetrical hairpin loops. Two iso-Bs may show interarm pairing, mterchromosome pairing, or combinations of the two. Pericentromeric interarm pairing can be delayed in one or both Bs and this delay is mostly observed in bivalents with pairing partner switches. The iso-B bivalent frequencies observed in the three males analysed were 64, 44, and 41%, respectively; the two latter values were significantly lower than the 66% predicted by the random-end-pairing model. There is a reduction in the frequencies of iso-ring univalents (in 1B males) and bivalents (in 2B males) from pachytene to metaphase I. Similarities and differences between the pairing behaviour of iso-Bs from different species are also discussed.  相似文献   

14.
Electron microscopic analysis of synaptonemal complexes in bouble heterozygotes for the partially overlapping inversions In(1) 1Rk and In(1)12Rk in chromosome 1 of the house mouse was carried out. A great variety of synaptic configurations with complicated combinations of homologously and non-homologously paired segments was observed. Analysis of these configurations revealed at least five independent pairing regions in chromosome 1. Interrelationships between these regions with respect to their pairing ability were estimated. Pairings in the distal non-inverted segment and in inversions inhibit each other, while pairing in either inverted segment facilitates synapsis in the other. In other words, pairing initiations in different parts of the same bivalent are not independent events.by H.C. MacgregorDedicated to Dr. Ann Chandley in view of her important contributions to the study of meiosis  相似文献   

15.
In a family in which a large pericentric inversion of chromosome 7 is segregating, two of the four progeny of inversion heterozygotes show severe psychomotor retardation and have the karyotype 46,XX,rec(7),dup q,inv(7)(p22q32), derived from crossing-over within the inversion. Meiotic analysis in one of the heterozygotes revealed no evidence of inversion loops in well-spread pachytene cells. In approximately 20% of cells in diakinesis, the presumptive bivalent 7 had only one chiasma. Two alternatives to the reversed loop mode of meiotic pairing of inversions are proposed. Review of the literature supports the view that "small" pericentric inversions have a much better genetic prognosis than "large" pericentric inversions.  相似文献   

16.
C. B. Gillies 《Chromosoma》1973,43(2):145-176
Aldehyde fixation followed by staining with phosphotungstic acid produces differential contrast between the synaptonemal complex and the chromatin of maize pachytene bivalents. Centromeres, heterochromatic knobs and large chromomeres are easily recognised. With this and other staining techniques the nucleolus organizer region can be differentiated into two components. — Microsporocyte nuclei at pachytene were serially sectioned and all ten bivalents reconstructed in five nuclei. An idiogram was derived from the mean chromosome (= synaptonemal complex) lengths, the arm ratios, positions of knobs and the nucleolus organizer region. The idiogram agrees well with that published from light microscopic analyses. However, bivalent lengths are only two thirds of those observed by light microscopy of squash preparations. Many telomeres of the bivalents are connected via chromatin to the nuclear envelope, but a varying number of free bivalent ends are observed in all five reconstructed nuclei. — Bivalents heterozygous for inversion 3b were reconstructed. In the presence of abnormal chromosome 10 (K10) the lateral components of the synaptonemal complex of chromosome 3 formed a typical inversion loop, while in one of the nuclei having no K10 the two lateral components of the long arms of chromosome 3 remained unpaired in the region of inversion heterozygosity. The presence of K10, which increases crossing-over frequencies and promotes intimate pairing at the light microscopic level, was thus found to permit formation of complete synaptonemal complexes in the inverted region. The extra terminal portion of the K10 chromosome folded back on itself and formed a morphologically normal synaptonemal complex in this — possibly non-homologously paired — region. The chromatin of centromeres and knobs from different bivalents were sometimes found to fuse, but the synaptonemal complexes transversing the fused centromeres or knobs retained their individuality.  相似文献   

17.
The relationship between diploid and triploid forms of Colocasia antiquorum Schott. was assessed through comparative meiotic and pollen mitotic studies. Owing to poor spreading of the chromosomes of both materials, karyological observations on pachytene nuclei were limited to a few chromosomes. Among the two nucleolar chromosomes and a metacentric, telochromomere-bearing chromosome of the diploid, the latter and one of the nucleolar chromosomes characterized by a heteropycnotic short arm were identified in both bivalent and trivalent associations in the triploid. The homologues in these cases were homomorphic and intimately paired. Two types of heteromorphic bivalents exhibiting partial pairing of homomorphic segments were also recorded in the triploid. Among the 14 bivalents of the diploid at diakinesis, two were nucleolus-associated. In the triploid, chromosomal associations at diakinesis included trivalents (2 to 9), bivalents and univalents, and the chiasma frequency per paired chromosome was lower than in the diploids. In 21.6 percent of the PMCs at this stage intragenomic pairing of one or two chromosomes was observed. Post-diakinesis stages in the diploid were regular while in the triploid they were marked by various irregularities in a majority of the cells. However, fertility (stainability), size and divisional frequency of pollen in both materials were remarkably similar. Chromosome numbers in pollen nuclei in the triploid ranged from 8 to 25. Based on these data an autopolyploid origin for the triploid Colocasia and a lower base number than the gametic chromosome number for this genus are advanced.  相似文献   

18.
H Wallace  B M Wallace 《Génome》1995,38(6):1105-1111
The longest chromosome (number 1) of Trituturus cristatus carries a heteromorphic segment, a heterozygosity perpetuated by a balanced lethal system. The heteromorphic segment is regarded as achiasmate and has been claimed to be asynaptic. Direct observations of chromosome pairing in spermatocytes and oocytes yield some cases where all homologous chromosomes appear to be completely paired, but the individual bivalents could not be identified as pachytene is not particularly clear in this species. The long arms of bivalent 1 usually remain attached by a terminal chiasma in spermatocytes of T. c. cristatus but the corresponding chiasma is only rarely present in T. c. carnifex spermatocytes. Synaptonemal complexes have been measured in both spermatocytes and oocytes of T. c. cristatus. A karyotype constructed from these measurements matches the main features of somatic and lampbrush chromosome karyotypes, indicating that all chromosomes must be completely paired and proportionately represented as synaptonemal complex. The total length of synaptonemal complex is much the same in spermatocytes and oocytes and is similar to the length in spermatocytes of Xenopus laevis. These two amphibian examples supplement a recent survey of other vertebrate classes to reinforce its conclusion that synaptonemal complex length is not related to genome size in vertebrates.  相似文献   

19.
The chromosomes of the newly discovered South American marsupial frogGastrotheca pseustes were analyzed by conventional methods and by various banding techniques. This species is characterized by XY/XX sex chromosomes and the existence of two different morphs of Y chromosomes. Whereas in type A males the XYA chromosomes are still homomorphic, in type B males the YB chromosome displays a large heterochromatic region at the long arm telomere which is absent in the X. In male meiosis, the homomorphic XYA chromosomes exhibit the same pairing configuration as the autosomal bivalents. On the other hand, the heteromorphic XYB chromosomes form a sex bivalent by pairing their short arm telomeres in a characteristic end-to-end arrangement. Analysis of the karyotypes by C-banding and DNA base pair-specific fluorochromes reveals enormous interindividual size variability of the autosomal heterochromatin.  相似文献   

20.
In order to clarify the relationship between meiotic pairing and progress of spermatogenesis, an analysis of male meiotic pairing was carried out in four reciprocal translocation heterozygotes and two double heterozygotes for two semi-identical reciprocal translocations. The reciprocal translocations were chosen to range from fertility (T70H/+) through almost complete sterility (T31H/+) to complete sterility (T32H/+, T42/H+). If meiotic pairing in the translocation multivalent was incomplete, it concerned terminal or probably more often proximal chromosome segments (Chain IV). If both segments failed to pair the multivalent symbol is Chain III+I. Complete pairing is symbolized by Ring IV. To contrast and complement observations of this type, the double heterozygotes were introduced. Males of this type in theory possess two heteromorphic bivalents with a central area of incomplete meiotic pairing (loop formation). Of the T70H/T1Wa double heterozygotes, 36% of the males are capable of inducing at least one decidual reaction in two females whereas for T26H/T2Wa, 79% of the males can do so. For the reciprocal translocations, it was found that proximity of the multivalent to the sex bivalent during pachytene increased in the order Ring IV, Chain IV, Chain III+I. The degree of spermatogenic impairment as measured from cell counts in histological sections and tubular whole mounts, is positively related to the frequency of proximity between the sex chromosomes and the translocation multivalent and thus to lack of meiotic pairing within the multivalent. The meiotic pairing analysis of the double heterozygotes yielded the following findings. For the long heteromorphic bivalents a true loop was never seen in T70H/T1Wa and only rarely observed in T26H/T2Wa. Small marker bivalents of both types were usually recognizable by the following criteria: (i) pairing confined to distal or proximal segments, (ii) both distal and proximal segments pairing and loop formation and (iii) pairing covering the entire length of both homologues but the longer one often with a thickened lateral element. The same positive correlation between the absence of pairing (proximal, distal or central) and the proximity of the small marker bivalent synaptonemal complex to the sex bivalent has been found as for unpaired segments within reciprocal translocation multivalents. One unexpected finding was the occurrence of diploid spermatids and spermatozoa especially in T32H/+ males (70–91%) but also in T31H/+ (3–39%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号