首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin HY  Kao CH  Lin KM  Kaartinen V  Yang LT 《PloS one》2011,6(1):e15842

Background

Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.

Methodology and Principal Findings

We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.

Significance

our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells.  相似文献   

2.

Background

The Ras and Notch signaling pathways are frequently activated during development to control many diverse cellular processes and are often dysregulated during tumorigenesis. To study the role of Notch and oncogenic Kras signaling in a progenitor cell population, Pdx1-Cre mice were utilized to generate conditional oncogenic KrasG12D mice with ablation of Notch1 and/or Notch2.

Methodology/Principal Findings

Surprisingly, mice with activated KrasG12D and Notch1 but not Notch2 ablation developed skin papillomas progressing to squamous cell carcinoma providing evidence for Pdx1 expression in the skin. Immunostaining and lineage tracing experiments indicate that PDX1 is present predominantly in the suprabasal layers of the epidermis and rarely in the basal layer. Further analysis of keratinocytes in vitro revealed differentiation-dependent expression of PDX1 in terminally differentiated keratinocytes. PDX1 expression was also increased during wound healing. Further analysis revealed that loss of Notch1 but not Notch2 is critical for skin tumor development. Reasons for this include distinct Notch expression with Notch1 in all layers and Notch2 in the suprabasal layer as well as distinctive p21 and β-catenin signaling inhibition capabilities.

Conclusions/Significance

Our results provide strong evidence for epidermal expression of Pdx1 as of yet not identified function. In addition, this finding may be relevant for research using Pdx1-Cre transgenic strains. Additionally, our study confirms distinctive expression and functions of Notch1 and Notch2 in the skin supporting the importance of careful dissection of the contribution of individual Notch receptors.  相似文献   

3.
4.
Koo BK  Yoon MJ  Yoon KJ  Im SK  Kim YY  Kim CH  Suh PG  Jan YN  Kong YY 《PloS one》2007,2(11):e1221

Background

The Notch signaling pathway is an evolutionarily conserved intercellular signaling module essential for cell fate specification that requires endocytosis of Notch ligands. Structurally distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), cooperatively regulate the endocytosis of Notch ligands in Drosophila. However, the respective roles of the mammalian E3 ubiquitin ligases, Neur1, Neur2, Mib1, and Mib2, in mammalian development are poorly understood.

Methodology/Principal Findings

Through extensive use of mammalian genetics, here we show that Neur1 and Neur2 double mutants and Mib2−/− mice were viable and grossly normal. In contrast, conditional inactivation of Mib1 in various tissues revealed the representative Notch phenotypes: defects of arterial specification as deltalike4 mutants, abnormal cerebellum and skin development as jagged1 conditional mutants, and syndactylism as jagged2 mutants.

Conclusions/Significance

Our data provide the first evidence that Mib1 is essential for Jagged as well as Deltalike ligand-mediated Notch signaling in mammalian development, while Neur1, Neur2, and Mib2 are dispensable.  相似文献   

5.
6.

Background

Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC) is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown.

Methodology/Principal Findings

We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells. Analysis of gene expression data representing 176 CCRCCs showed that elevated TGF-β pathway activity correlated significantly with shortened disease specific survival (log-rank test, p = 0.006) and patients with metastatic disease showed a significantly elevated TGF-β signaling activity (two-sided Student''s t-test, p = 0.044). Inhibition of Notch signaling led to attenuation of both basal and TGF-β1 induced TGF-β signaling in CCRCC cells, including an extensive set of genes known to be involved in migration and invasion. Functional analyses revealed that Notch inhibition decreased the migratory and invasive capacity of CCRCC cells.

Conclusion

An extensive cross-talk between the Notch and TGF-β signaling cascades is present in CCRCC and the functional properties of these two pathways are associated with the aggressiveness of this disease.  相似文献   

7.
8.

Background

Descending thoracic aortic aneurysm and dissection (DTAAD) is characterized by progressive medial degeneration, which may result from excessive tissue destruction and insufficient repair. Resistance to tissue destruction and aortic self-repair are critical in preventing medial degeneration. The signaling pathways that control these processes in DTAAD are poorly understood. Because Notch signaling is a critical pathway for cell survival, proliferation, and tissue repair, we examined its activation in DTAAD.

Methods

We studied descending thoracic aortic tissue from patients with sporadic thoracic aortic aneurysm (TAA; n = 14) or chronic thoracic aortic dissection (TAD; n = 16) and from age-matched organ donors (n = 12). Using western blot, real-time RT-PCR, and immunofluorescence staining, we examined aortic tissue samples for the Notch ligands Delta-like 1, Delta-like 4 (DLL1/4), and Jagged1; the Notch receptor 1 (Notch1); the Notch1 intracellular domain (NICD); and Hes1, a downstream target of Notch signaling.

Results

Western blots and RT-PCR showed higher levels of the Notch1 protein and mRNA and the NICD and Hes1 proteins in both TAA and TAD tissues than in control tissue. However, immunofluorescence staining showed a complex pattern of Notch signaling in the diseased tissue. The ligand DLL1/4 and Notch1 were significantly decreased and NICD and Hes1 were rarely detected in medial vascular smooth muscle cells (VSMCs) in both TAA and TAD tissues, indicating downregulation of Notch signaling in aortic VSMCs. Interestingly Jagged1, NICD, and Hes1 were highly present in CD34+ stem cells and Stro-1+ stem cells in aortas from TAA and TAD patients. NICD and Hes1 were also detected in most fibroblasts and macrophages that accumulated in the aortic wall of DTAAD patients.

Conclusions

Notch signaling exhibits a complex pattern in DTAAD. The Notch pathway is impaired in medial VSMCs but activated in stem cells, fibroblasts, and macrophages.  相似文献   

9.
Shi M  Liu Z  Lv Y  Zheng M  Du F  Zhao G  Huang Y  Chen J  Han H  Ding Y 《PloS one》2011,6(1):e14570

Background

A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown.

Methodology/Principal Findings

In this study, the neural tubes of HH10-11 chick embryos were in ovo electroporated with various Notch transgenes of activating or inhibiting Notch signaling, and then their effects on commissural axon outgrowth across the floor plate midline in the chick developing central nerve system were investigated. Our results showed that forced expression of Notch intracellular domain, constitutively active form of RBPJ, or full-length Hes1 in the rostral hindbrain, diencephalon and spinal cord at stage HH10-11 significantly inhibited commissural axon outgrowth. On the other hand, inhibition of Notch signaling by ectopically expressing a dominant-negative form of RBPJ promoted commissural axonal growth along the circumferential axis. Further results revealed that these Notch signaling-mediated axon outgrowth defects may be not due to the alteration of axon guidance since commissural axon marker TAG1 was present in the axons in floor plate midline, and also not result from the changes in cell fate determination of commissural neurons since the expression of postmitotic neuron marker Tuj1 and specific commissural markers TAG1 and Pax7 was unchanged.

Conclusions/Significance

We first used an in vivo system to provide evidence that forced Notch signaling negatively regulates commissural axon outgrowth.  相似文献   

10.
W Zhang  E Dang  X Shi  L Jin  Z Feng  L Hu  Y Wu  G Wang 《PloS one》2012,7(7):e40797

Background

To investigate the regulation of K17 expression by the pro-inflammatory cytokine IL-22 in keratinocytes and its important role in our previously hypothesized “K17/T cell/cytokine autoimmune loop” in psoriasis.

Materials and Methods

K17 expression was examined in the IL-22-treated keratinocytes by real-time quantitative PCR, ELISA, Western blot and Immunofluorescence. In addition, the signaling pathways involved in K17 regulation were investigated with related inhibitors and siRNAs. In addition, K17 expression was examined in the epidermis of IL-22-injected mouse skin.

Results

IL-22-induced K17 expression was confirmed in keratinocytes and the epidermis of IL-22-injected mouse skin at both mRNA and protein levels, which is an important complement to the autoimmune loop. We further investigated the regulatory mechanisms and found that both STAT3 and ERK1/2 were involved in the up-regulation of K17 expression induced by IL-22.

Conclusion

IL-22 up-regulates K17 expression in keratinocytes in a dose-dependent manner through STAT3- and ERK1/2-dependent mechanisms. These findings indicated that IL-22 was also involved in the K17/T cell/cytokine autoimmune loop and may play an important role in the progression of psoriasis.  相似文献   

11.
12.
Xie G  Zhang H  Du G  Huang Q  Liang X  Ma J  Jiao R 《PloS one》2012,7(4):e36362

Background

Notch signaling is a highly conserved pathway in multi-cellular organisms ranging from flies to humans. It controls a variety of developmental processes by stimulating the expression of its target genes in a highly specific manner both spatially and temporally. The diversity, specificity and sensitivity of the Notch signaling output are regulated at distinct levels, particularly at the level of ligand-receptor interactions.

Methodology/Principal Findings

Here, we report that the Drosophila gene uninflatable (uif), which encodes a large transmembrane protein with eighteen EGF-like repeats in its extracellular domain, can antagonize the canonical Notch signaling pathway. Overexpression of Uif or ectopic expression of a neomorphic form of Uif, Uif*, causes Notch signaling defects in both the wing and the sensory organ precursors. Further experiments suggest that ectopic expression of Uif* inhibits Notch signaling in cis and acts at a step that is dependent on the extracellular domain of Notch. Our results suggest that Uif can alter the accessibility of the Notch extracellular domain to its ligands during Notch activation.

Conclusions/Significance

Our study shows that Uif can modulate Notch activity, illustrating the importance of a delicate regulation of this signaling pathway for normal patterning.  相似文献   

13.
14.
15.
Amarir S  Marx M  Calothy G 《PloS one》2010,5(10):e13572

Background

We have been investigating how interruption of differentiation contributes to the oncogenic process and the possibility to reverse the transformed phenotype by restoring differentiation. In a previous report, we correlated the capacity of intracellular Notch (ICN) to suppress v-Src-mediated transformation of quail neuroretina (QNR/v-srcts) cells with the acquisition by these undifferentiated cells of glial differentiation markers.

Methodology/Principal Findings

In this work, we have identified autocrine TGF-β3 signaling activation as a major effector of Notch-induced phenotypic changes, sufficient to induce transition in differentiation markers expression, suppress morphological transformation and significantly inhibit anchorage-independent growth. We also show that this signaling is constitutive of and contributes to ex-vivo autonomous QNR cell differentiation and that its down-regulation is essential to achieve v-Src-induced transformation.

Conclusions/Significance

These results support the possibility that Notch signaling induces differentiation and suppresses transformation by a novel mechanism, involving secreted proteins. They also underline the importance of extracellular signals in controlling the balance between normal and transformed phenotypes.  相似文献   

16.
Zhang M  Liu NY  Wang XE  Chen YH  Li QL  Lu KR  Sun L  Jia Q  Zhang L  Zhang L 《PloS one》2011,6(9):e25143

Background

Activin B has been reported to promote the proliferation and migration of keratinocytes in vitro via the RhoA-JNK signaling pathway, whereas its in vivo role and mechanism in wound healing process has not yet been elucidated.

Principal Findings

In this study, we explored the potential mechanism by which activin B induces epithelial wound healing in mice. Recombinant lentiviral plasmids, with RhoA (N19) and RhoA (L63) were used to infect wounded KM mice. The wound healing process was monitored after different treatments. Activin B-induced cell proliferation on the wounded skin was visualized by electron microscopy and analyzed by 5′-bromodeoxyuridine (BrdU) incorporation assay. Protein expression of p-JNK or p-cJun was determined by immunohistochemical staining and immunoblotting analysis. Activin B efficiently stimulated the proliferation of keratinocytes and hair follicle cells at the wound area and promoted wound closure. RhoA positively regulated activin B-induced wound healing by up-regulating the expression of p-JNK and p-cJun. Moreover, suppression of RhoA activation delayed activin B-induced wound healing, while JNK inhibition recapitulated phenotypes of RhoA inhibition on wound healing.

Conclusion

These results demonstrate that activin B promotes epithelial wound closure in vivo through the RhoA-Rock-JNK-cJun signaling pathway, providing novel insight into the essential role of activin B in the therapy of wound repair.  相似文献   

17.

Introduction

Interleukin (IL)-32 is an inflammatory cytokine induced by Mycobacterium tuberculosis and Mycobacterium bovis in a variety of cell types and discovered in the synovial of patients with rheumatoid arthritis (RA). Thymic stromal lymphopoietin (TSLP) play several roles in the pathogenesis of RA. However, the role of IL-32 and TSLP in RA has not been elucidated.

Methods

We evaluated the specific mechanism of between IL-32 and TSLP in RA using human monocyte cell line, THP-1 cells.

Results

Here we documented for the first time that IL-32 highly increased TSLP production in THP-1 cells and human blood monocytes. TSLP expression was induced by IL-32 via activation of caspase-1 and nuclear factor-κB. TSLP produced by IL-32 increased differentiation of monocytes but depletion of TSLP prevented differentiation of monocytes into macrophage-like cells. Chondroprotective drugs such as chondroitin sulfate (CS) and the traditional Korean medicine, BaekJeol-Tang (BT) decrease production of TSLP and activation of caspase-1 and nuclear factor-κB. In addition, CS and BT inhibited IL-32-induced monocytes differentiation.

Conclusions

Taken together, IL-32 and TSLP are important cytokines involved in the development of RA. The effects of CS and BT were associated with the downregulation of TSLP and caspase-1 through negative regulation of IL-32 pathways in RA.  相似文献   

18.
19.

Background

Atopic dermatitis (AD) is a common chronic inflammatory skin disorder where epidermal barrier dysfunction is a major factor in the pathogenesis. The identification of AD susceptibility genes related to barrier dysfunction is therefore of importance. The epidermal transglutaminases (TGM1, TGM3 and TGM5) encodes essential cross-linking enzymes in the epidermis.

Objective

To determine whether genetic variability in the epidermal transglutaminases contributes to AD susceptibility.

Methods

Forty-seven single nucleotide polymorphisms (SNPs) in the TGM1, TGM3 and TGM5 gene region were tested for genetic association with AD, independently and in relation to FLG genotype, using a pedigree disequilibrium test (PDT) in a Swedish material consisting of 1753 individuals from 539 families. In addition, a German case-control material, consisting of 533 AD cases and 1996 controls, was used for in silico analysis of the epidermal TGM regions. Gene expression of the TGM1, TGM3 and TGM5 gene was investigated by relative quantification with Real Time PCR (qRT-PCR). Immunohistochemical (IHC) analysis was performed to detect TG1, TG3 and TG5 protein expression in the skin of patients and healthy controls.

Results

PDT analysis identified a significant association between the TGM1 SNP rs941505 and AD with allergen-specific IgE in the Swedish AD family material. However, the association was not replicated in the German case-control material. No significant association was detected for analyzed SNPs in relation to FLG genotype. TG1, TG3 and TG5 protein expression was detected in AD skin and a significantly increased TGM3 mRNA expression was observed in lesional skin by qRT-PCR.

Conclusion

Although TGM1 and TGM3 may be differentially expressed in AD skin, the results from the genetic analysis suggest that genetic variation in the epidermal transglutaminases is not an important factor in AD susceptibility.  相似文献   

20.

Background

The regulation of Notch signaling heavily relies on ubiquitination events. Drosophila Su(dx), a member of the HECT family of ubiquitin-ligases, has been described as a negative regulator of Notch signaling, acting on the post-endocytic sorting of Notch. The mammalian ortholog of Su(dx), Itch/AIP4, has been shown to have multiple substrates, including Notch, but the precise events regulated by Itch/AIP4 in the Notch pathway have not been identified yet.

Methodology/Principal Findings

Using Itch-/- fibroblasts expressing the Notch1 receptor, we show that Itch is not necessary for Notch activation, but rather for controlling the degradation of Notch in the absence of ligand. Itch is indeed required after the early steps of Notch endocytosis to target it to the lysosomes where it is degraded. Furthermore Itch/AIP4 catalyzes Notch polyubiquitination through unusual K29-linked chains. We also demonstrate that although Notch is associated with Itch/AIP4 in cells, their interaction is not detectable in vitro and thus requires either a post-translational modification, or a bridging factor that remains to be identified.

Conclusions/Significance

Taken together our results identify a specific step of Notch regulation in the absence of any activation and underline differences between mammalian and Drosophila Notch pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号