首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Computed tomographic (CT) airway lumen narrowing is associated with lower lung function. Although volumetric CT measures of airways (wall volume [WV] and lumen volume [LV]) compared to cross sectional measures can more accurately reflect bronchial morphology, data of their use in never smokers is scarce. We hypothesize that native tracheobronchial tree morphology as assessed by volumetric CT metrics play a significant role in determining lung function in normal subjects. We aimed to assess the relationships between airway size, the projected branching generation number (BGN) to reach airways of <2mm lumen diameter –the site for airflow obstruction in smokers- and measures of lung function including forced expiratory volume in 1 second (FEV1) and forced expiratory flow between 25% and 75% of vital capacity (FEF 25–75).

Methods

We assessed WV and LV of segmental and subsegmental airways from six bronchial paths as well as lung volume on CT scans from 106 never smokers. We calculated the lumen area ratio of the subsegmental to segmental airways and estimated the projected BGN to reach a <2mm-lumen-diameter airway assuming a dichotomized tracheobronchial tree model. Regression analysis was used to assess the relationships between airway size, BGN, FEF 25–75, and FEV1.

Results

We found that in models adjusted for demographics, LV and WV of segmental and subsegmental airways were directly related to FEV1 (P <0.05 for all the models). In adjusted models for age, sex, race, LV and lung volume or height, the projected BGN was directly associated with FEF 25–75 and FEV1 (P = 0.001) where subjects with lower FEV1 had fewer calculated branch generations between the subsegmental bronchus and small airways. There was no association between airway lumen area ratio and lung volume.

Conclusion

We conclude that in never smokers, those with smaller central airways had lower airflow and those with lower airflow had less parallel airway pathways independent of lung size. These findings suggest that variability in the structure of the tracheobronchial tree may influence the risk of developing clinically relevant smoking related airway obstruction.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0181-y) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

Previous studies showed that heparin''s anti-allergic activity is molecular weight dependent and resides in oligosaccharide fractions of <2500 daltons.

Objective

To investigate the structural sequence of heparin''s anti-allergic domain, we used nitrous acid depolymerization of porcine heparin to prepare an oligosaccharide, and then fractionated it into disaccharide, tetrasaccharide, hexasaccharide, and octasaccharide fractions. The anti-allergic activity of each oligosaccharide fraction was tested in allergic sheep.

Methods

Allergic sheep without (acute responder) and with late airway responses (LAR; dual responder) were challenged with Ascaris suum antigen with and without inhaled oligosaccharide pretreatment and the effects on specific lung resistance and airway hyperresponsiveness (AHR) to carbachol determined. Additional inflammatory cell recruitment studies were performed in immunized ovalbumin-challenged BALB/C mice with and without treatment.

Results

The inhaled tetrasaccharide fraction was the minimal effective chain length to show anti-allergic activity. This fraction showed activity in both groups of sheep; it was also effective in inhibiting LAR and AHR, when administered after the antigen challenge. Tetrasaccharide failed to modify the bronchoconstrictor responses to airway smooth muscle agonists (histamine, carbachol and LTD4), and had no effect on antigen-induced histamine release in bronchoalveolar lavage fluid in sheep. In mice, inhaled tetrasaccharide also attenuated the ovalbumin-induced peribronchial inflammatory response and eosinophil influx in the bronchoalveolar lavage fluid. Chemical analysis identified the active structure to be a pentasulfated tetrasaccharide ([IdoU2S (1→4)GlcNS6S (1→4) IdoU2S (1→4) AMan-6S]) which lacked anti-coagulant activity.

Conclusions

These results demonstrate that heparin tetrasaccharide possesses potent anti-allergic and anti-inflammatory properties, and that the domains responsible for anti-allergic and anti-coagulant activity are distinctly different.  相似文献   

3.

Background

Inflammation in the airways and lung parenchyma underlies fixed airway obstruction in chronic obstructive pulmonary disease. The exact role of smoking as promoting factor of inflammation in chronic obstructive pulmonary disease is not clear, partly because studies often do not distinguish between current and ex-smokers.

Methods

We investigated airway inflammation in sputum and bronchial biopsies of 34 smokers with chronic obstructive pulmonary disease (9 Global initiative for Chronic Obstructive Lung Disease stage 0, 9 stage I, 10 stage II and 6 stage III) and 26 asymptomatic smokers, and its relationship with past and present smoking habits and airway obstruction.

Results

Neutrophil percentage, interleukin-8 and eosinophilic-cationic-protein levels in sputum were higher in chronic obstructive pulmonary disease (stage I-III) than asymptomatic smokers. Inflammatory cell numbers in bronchial biopsies were similar in both groups. Current smoking correlated positively with macrophages: in bronchial biopsies in both groups, and in sputum in chronic obstructive pulmonary disease. Pack-years smoking correlated positively with biopsy macrophages only in chronic obstructive pulmonary disease.

Conclusion

Inflammatory effects of current smoking may mask the underlying ongoing inflammatory process pertinent to chronic obstructive pulmonary disease. This may have implications for future studies, which should avoid including mixed populations of smokers and ex-smokers.  相似文献   

4.

Background

A rich microbial environment in infancy protects against asthma [1], [2] and infections precipitate asthma exacerbations [3]. We compared the airway microbiota at three levels in adult patients with asthma, the related condition of COPD, and controls. We also studied bronchial lavage from asthmatic children and controls.

Principal Findings

We identified 5,054 16S rRNA bacterial sequences from 43 subjects, detecting >70% of species present. The bronchial tree was not sterile, and contained a mean of 2,000 bacterial genomes per cm2 surface sampled. Pathogenic Proteobacteria, particularly Haemophilus spp., were much more frequent in bronchi of adult asthmatics or patients with COPD than controls. We found similar highly significant increases in Proteobacteria in asthmatic children. Conversely, Bacteroidetes, particularly Prevotella spp., were more frequent in controls than adult or child asthmatics or COPD patients.

Significance

The results show the bronchial tree to contain a characteristic microbiota, and suggest that this microbiota is disturbed in asthmatic airways.  相似文献   

5.

Background

It is time-consuming to obtain the square root of airway wall area of the hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10), a comparable index of airway dimensions in chronic obstructive pulmonary disease (COPD), from all airways of the whole lungs using 3-dimensional computed tomography (CT) analysis. We hypothesized that √Aaw at Pi10 differs among the five lung lobes and √Aaw at Pi10 derived from one certain lung lobe has a high level of agreement with that derived from the whole lungs in smokers.

Methods

Pulmonary function tests and chest volumetric CTs were performed in 157 male smokers (102 COPD, 55 non-COPD). All visible bronchial segments from the 3rd to 5th generations were segmented and measured using commercially available 3-dimensional CT analysis software. √Aaw at Pi10 of each lung lobe was estimated from all measurable bronchial segments of that lobe.

Results

Using a mixed-effects model, √Aaw at Pi10 differed significantly among the five lung lobes (R2 = 0.78, P<0.0001). The Bland-Altman plots show that √Aaw at Pi10 derived from the right or left upper lobe had a high level of agreement with that derived from the whole lungs, while √Aaw at Pi10 derived from the right or left lower lobe did not.

Conclusion

In male smokers, CT-derived airway wall area differs among the five lung lobes, and airway wall area derived from the right or left upper lobe is representative of the whole lungs.  相似文献   

6.

Background

The link between upper and lower airways in patients with both asthma and allergic rhinitis is still poorly understood. As the biological complexity of these disorders can be captured by gene expression profiling we hypothesized that the clinical expression of rhinitis and/or asthma is related to differential gene expression between upper and lower airways epithelium.

Objective

Defining gene expression profiles of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles.

Methods

This cross-sectional study included 18 subjects (6 allergic asthma and allergic rhinitis; 6 allergic rhinitis; 6 healthy controls). The estimated false discovery rate comparing 6 subjects per group was approximately 5%. RNA was extracted from isolated and cultured epithelial cells from bronchial brushings and nasal biopsies, and analyzed by microarray (Affymetrix U133+ PM Genechip Array). Data were analysed using R and Bioconductor Limma package. For gene ontology GeneSpring GX12 was used.

Results

The study was successfully completed by 17 subjects (6 allergic asthma and allergic rhinitis; 5 allergic rhinitis; 6 healthy controls). Using correction for multiple testing, 1988 genes were differentially expressed between healthy lower and upper airway epithelium, whereas in allergic rhinitis with or without asthma this was only 40 and 301 genes, respectively. Genes influenced by allergic rhinitis with or without asthma were linked to lung development, remodeling, regulation of peptidases and normal epithelial barrier functions.

Conclusions

Differences in epithelial gene expression between the upper and lower airway epithelium, as observed in healthy subjects, largely disappear in patients with allergic rhinitis with or without asthma, whilst new differences emerge. The present data identify several pathways and genes that might be potential targets for future drug development.  相似文献   

7.

Background

Pseudomonas aeruginosa (Pa) infection is an important contributor to the progression of cystic fibrosis (CF) lung disease. The cornerstone treatment for Pa infection is the use of inhaled antibiotics. However, there is substantial lung disease heterogeneity within and between patients that likely impacts deposition patterns of inhaled antibiotics. Therefore, this may result in airways below the minimal inhibitory concentration of the inhaled agent. Very little is known about antibiotic concentrations in small airways, in particular the effect of structural lung abnormalities. We therefore aimed to develop a patient-specific airway model to predict concentrations of inhaled antibiotics and to study the impact of structural lung changes and breathing profile on local concentrations in airways of patients with CF.

Methods

In- and expiratory CT-scans of children with CF (5–17 years) were scored (CF-CT score), segmented and reconstructed into 3D airway models. Computational fluid dynamic (CFD) simulations were performed on 40 airway models to predict local Aztreonam lysine for inhalation (AZLI) concentrations. Patient-specific lobar flow distribution and nebulization of 75 mg AZLI through a digital Pari eFlow model with mass median aerodynamic diameter range were used at the inlet of the airway model. AZLI concentrations for central and small airways were computed for different breathing patterns and airway surface liquid thicknesses.

Results

In most simulated conditions, concentrations in both central and small airways were well above the minimal inhibitory concentration. However, small airways in more diseased lobes were likely to receive suboptimal AZLI. Structural lung disease and increased tidal volumes, respiratory rates and larger particle sizes greatly reduced small airway concentrations.

Conclusions

CFD modeling showed that concentrations of inhaled antibiotic delivered to the small airways are highly patient specific and vary throughout the bronchial tree. These results suggest that anti-Pa treatment of especially the small airways can be improved.  相似文献   

8.

Background

The parameters RN (Newtonian resistance), G (tissue damping), and H (tissue elastance) of the constant phase model of respiratory mechanics provide information concerning the site of altered mechanical properties of the lung. The aims of this study were to compare the site of allergic airway narrowing implied from respiratory mechanics to a direct assessment by morphometry and to evaluate the effects of exogenous surfactant administration on the site and magnitude of airway narrowing.

Methods

We induced airway narrowing by ovalbumin sensitization and challenge and we tested the effects of a natural surfactant lacking surfactant proteins A and D (Infasurf®) on airway responses. Sensitized, mechanically ventilated Brown Norway rats underwent an aerosol challenge with 5% ovalbumin or vehicle. Other animals received nebulized surfactant prior to challenge. Three or 20 minutes after ovalbumin challenge, airway luminal areas were assessed on snap-frozen lungs by morphometry.

Results

At 3 minutes, RN and G detected large airway narrowing whereas at 20 minutes G and H detected small airway narrowing. Surfactant inhibited RN at the peak of the early allergic response and ovalbumin-induced increase in bronchoalveolar lavage fluid cysteinyl leukotrienes and amphiregulin but not IgE-induced mast cell activation in vitro.

Conclusion

Allergen challenge triggers the rapid onset of large airway narrowing, detected by RN and G, and subsequent peripheral airway narrowing detected by G and H. Surfactant inhibits airway narrowing and reduces mast cell-derived mediators.  相似文献   

9.

Objectives

To prospectively evaluate quantitative airway wall measurements of thin-section CT for the diagnosis of Bronchiolitis Obliterans Syndrome (BOS) following lung transplantation.

Materials and Methods

In 141 CT examinations, bronchial wall thickness (WT), the wall area percentage (WA%) calculated as the ratio of the bronchial wall area and the total area (sum of bronchial wall area and bronchial lumen area) and the difference of the WT on inspiration and expiration (WTdiff) were automatically measured in different bronchial generations. The measurements were correlated with the lung function parameters. WT and WA% in CT examinations of patients with (n = 25) and without (n = 116) BOS, were compared using the unpaired t-test and univariate analysis of variance, while also considering the differing lung volumes.

Results

Measurements could be performed in 2,978 bronchial generations. WT, WA%, and WTdiff did not correlate with the lung function parameters (r<0.5). The WA% on inspiration was significantly greater in patients with BOS than in patients without BOS, even when considering the dependency of the lung volume on the measurements. WT on inspiration and expiration and WA% on expiration did not show significant differences between the groups.

Conclusion

WA% on inspiration was significantly greater in patients with than in those without BOS. However, WA% measurements were significantly dependent on lung volume and showed a high variability, thus not allowing the sole use of bronchial wall measurements to differentiate patients with from those without BOS.  相似文献   

10.

Background

It is not known whether parasympathetic outflow simultaneously acts on bronchial tone and cardiovascular system waxing and waning both systems in parallel, or, alternatively, whether the regulation is more dependent on local factors and therefore independent on each system. The aim of this study was to evaluate the simultaneous effect of different kinds of stimulations, all associated with parasympathetic activation, on bronchomotor tone and cardiovascular autonomic regulation.

Methods

Respiratory system resistance (Rrs, forced oscillation technique) and cardio-vascular activity (heart rate, oxygen saturation, tissue oxygenation index, blood pressure) were assessed in 13 volunteers at baseline and during a series of parasympathetic stimuli: O2 inhalation, stimulation of the carotid sinus baroreceptors by neck suction, slow breathing, and inhalation of methacholine.

Results

Pure cholinergic stimuli, like O2 inhalation and baroreceptors stimulation, caused an increase in Rrs and a reduction in heart rate and blood pressure. Slow breathing led to bradycardia and hypotension, without significant changes in Rrs. However slow breathing was associated with deep inhalations, and Rrs evaluated at the baseline lung volumes was significantly increased, suggesting that the large tidal volumes reversed the airways narrowing effect of parasympathetic activation. Finally inhaled methacholine caused marked airway narrowing, while the cardiovascular variables were unaffected, presumably because of the sympathetic activity triggered in response to hypoxemia.

Conclusions

All parasympathetic stimuli affected bronchial tone and moderately affected also the cardiovascular system. However the response differed depending on the nature of the stimulus. Slow breathing was associated with large tidal volumes that reversed the airways narrowing effect of parasympathetic activation.  相似文献   

11.

Background

Molecular techniques have uncovered vast numbers of organisms in the cystic fibrosis (CF) airways, the clinical significance of which is yet to be determined. The aim of this study was to describe and compare the microbial communities of the lower airway of clinically stable children with CF and children without CF.

Methods

Bronchoalveolar lavage (BAL) fluid and paired oropharyngeal swabs from clinically stable children with CF (n = 13) and BAL from children without CF (n = 9) were collected. DNA was isolated, the 16S rRNA regions amplified, fragmented, biotinylated and hybridised to a 16S rRNA microarray. Patient medical and demographic information was recorded and standard microbiological culture was performed.

Results

A diverse bacterial community was detected in the lower airways of children with CF and children without CF. The airway microbiome of clinically stable children with CF and children without CF were significantly different as measured by Shannon''s Diversity Indices (p = 0.001; t test) and Principle coordinate analysis (p = 0.01; Adonis test). Overall the CF airway microbial community was more variable and had a less even distribution than the microbial community in the airways of children without CF. We highlighted several bacteria of interest, particularly Prevotella veroralis, CW040 and a Corynebacterium, which were of significantly differential abundance between the CF and non-CF lower airways. Both Pseudomonas aeruginosa and Streptococcus pneumoniae culture abundance were found to be associated with CF airway microbial community structure. The CF upper and lower airways were found to have a broadly similar microbial milieu.

Conclusion

The microbial communities in the lower airways of stable children with CF and children without CF show significant differences in overall diversity. These discrepancies indicate a disruption of the airway microflora occurring early in life in children with CF.  相似文献   

12.

Background

We previously identified a MUC5B gene promoter-variant that is a risk allele for sporadic and familial Idiopathic Pulmonary Fibrosis/Usual Interstitial Pneumonia (IPF/UIP). This allele was strongly associated with increased MUC5B gene expression in lung tissue from unaffected subjects. Despite the strong association of this airway epithelial marker with disease, little is known of mucin expressing structures or of airway involvement in IPF/UIP.

Methods

Immunofluorescence was used to subtype mucus cells according to MUC5B and MUC5AC expression and to identify ciliated, basal, and alveolar type II (ATII) cells in tissue sections from control and IPF/UIP subjects. Staining patterns were quantified for distal airways (Control and IPF/UIP) and in honeycomb cysts (HC).

Results

MUC5B-expressing cells (EC) were detected in the majority of control distal airways. MUC5AC-EC were identified in half of these airways and only in airways that contained MUC5B-EC. The frequency of MUC5B+ and MUC5AC+ distal airways was increased in IPF/UIP subjects. MUC5B-EC were the dominant mucus cell type in the HC epithelium. The distal airway epithelium from control and IPF/UIP subjects and HC was populated by basal and ciliated cells. Most honeycombing regions were distinct from ATII hyperplasic regions. ATII cells were undetectable in the overwhelming majority of HC.

Conclusions

The distal airway contains a pseudostratified mucocilary epithelium that is defined by basal epithelial cells and mucus cells that express MUC5B predominantly. These data suggest that the HC is derived from the distal airway.  相似文献   

13.

Background

Sidestream smoke is closely associated with airway inflammation and hyperreactivity. The present study was designed to investigate if the Raf-1 inhibitor GW5074 and the anti-inflammatory drug dexamethasone suppress airway hyperreactivity in a mouse model of sidestream smoke exposure.

Methods

Mice were repeatedly exposed to smoke from four cigarettes each day for four weeks. After the first week of the smoke exposure, the mice received either dexamethasone intraperitoneally every other day or GW5074 intraperitoneally every day for three weeks. The tone of the tracheal ring segments was recorded with a myograph system and concentration-response curves were obtained by cumulative administration of agonists. Histopathology was examined by light microscopy.

Results

Four weeks of exposure to cigarette smoke significantly increased the mouse airway contractile response to carbachol, endothelin-1 and potassium. Intraperitoneal administration of GW5074 or dexamethasone significantly suppressed the enhanced airway contractile responses, while airway epithelium-dependent relaxation was not affected. In addition, the smoke-induced infiltration of inflammatory cells and mucous gland hypertrophy were attenuated by the administration of GW5074 or dexamethasone.

Conclusion

Sidestream smoke induces airway contractile hyperresponsiveness. Inhibition of Raf-1 activity and airway inflammation suppresses smoking-associated airway hyperresponsiveness.  相似文献   

14.
15.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

16.

Background

In patients with bronchial obstruction, pulmonary function tests may not change significantly after intervention. The airflow asynchrony in both lungs due to unilateral bronchial obstruction may be applicable as a physiological indicator. The airflow asynchrony is reflected by the difference in the left and right lung sound development at tidal breathing.

Objectives

To investigate the usefulness of left and right lung asynchrony due to unilateral bronchial obstruction as a physiological indicator for interventional bronchoscopy.

Methods

Fifty cases with central airway obstruction were classified into three groups: tracheal, bronchial and extensive obstruction. The gap index was defined as the absolute value of the average of gaps between the left and right lung sound intensity peaks for a 12-second duration.

Results

Before interventional bronchoscopy, the gap index was significantly higher in the bronchial (p<0.05) and extensive obstruction groups (p<0.05) than in the tracheal group. The gap index in cases with unilateral bronchial obstruction of at least 80% (0.18±0.04 seconds) was significantly higher than in cases with less than 80% obstruction (0.02±0.01 seconds, p<0.05). After intervention for bronchial obstruction, the dyspnea scale (p<0.001) and gap index significantly improved (p<0.05), although no significant improvements were found in spirometric assessments. The responder rates for dyspnea were 79.3% for gap indexes over 0.06 seconds and 55.6% for gap indexes of 0.06 seconds or under.

Conclusions

Assessment of left and right lung asynchrony in central airway obstruction with bronchial involvement may provide useful physiological information for interventional bronchoscopy.  相似文献   

17.

Background

Bronchial hyperreactivity is influenced by properties of the conducting airways and the surrounding pulmonary parenchyma, which is tethered to the conducting airways. Vitamin A deficiency (VAD) is associated with an increase in airway hyperreactivity in rats and a decrease in the volume density of alveoli and alveolar ducts. To better define the effects of VAD on the mechanical properties of the pulmonary parenchyma, we have studied the elastic modulus, elastic fibers and elastin gene-expression in rats with VAD, which were supplemented with retinoic acid (RA) or remained unsupplemented.

Methods

Parenchymal mechanics were assessed before and after the administration of carbamylcholine (CCh) by determining the bulk and shear moduli of lungs that that had been removed from rats which were vitamin A deficient or received a control diet. Elastin mRNA and insoluble elastin were quantified and elastic fibers were enumerated using morphometric methods. Additional morphometric studies were performed to assess airway contraction and alveolar distortion.

Results

VAD produced an approximately 2-fold augmentation in the CCh-mediated increase of the bulk modulus and a significant dampening of the increase in shear modulus after CCh, compared to vitamin A sufficient (VAS) rats. RA-supplementation for up to 21 days did not reverse the effects of VAD on the elastic modulus. VAD was also associated with a decrease in the concentration of parenchymal elastic fibers, which was restored and was accompanied by an increase in tropoelastin mRNA after 12 days of RA-treatment. Lung elastin, which was resistant to 0.1 N NaOH at 98°, decreased in VAD and was not restored after 21 days of RA-treatment.

Conclusion

Alterations in parenchymal mechanics and structure contribute to bronchial hyperreactivity in VAD but they are not reversed by RA-treatment, in contrast to the VAD-related alterations in the airways.  相似文献   

18.

Background

Pentraxin 3 (PTX3) is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma.

Objectives and Methods

We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC). In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using 3H-thymidine incorporation, cell count and Boyden chamber assays.

Results

PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13), Th1 (IFN-γ), or Th-17 (IL-17) cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC). Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2)-driven HASMC chemotactic activity.

Conclusions

Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.  相似文献   

19.

Background

The relationship between airway structural changes (remodeling) and airways hyperresponsiveness (AHR) is unclear. Asthma guidelines suggest treating persistent asthma with inhaled corticosteroids and long acting β-agonists (LABA). We examined the link between physiological function and structural changes following treatment fluticasone and salmeterol separately or in combination in a mouse model of allergic asthma.

Methods

BALB/c mice were sensitized to intraperitoneal ovalbumin (OVA) followed by six daily inhalation exposures. Treatments included 9 daily nebulized administrations of fluticasone alone (6 mg/ml), salmeterol (3 mg/ml), or the combination fluticasone and salmeterol. Lung impedance was measured following methacholine inhalation challenge. Airway inflammation, epithelial injury, mucus containing cells, and collagen content were assessed 48 hours after OVA challenge. Lungs were imaged using micro-CT.

Results and Discussion

Treatment of allergic airways disease with fluticasone alone or in combination with salmeterol reduced AHR to approximately naüve levels while salmeterol alone increased elastance by 39% compared to control. Fluticasone alone and fluticasone in combination with salmeterol both reduced inflammation to near naive levels. Mucin containing cells were also reduced with fluticasone and fluticasone in combination with salmeterol.

Conclusions

Fluticasone alone and in combination with salmeterol reduces airway inflammation and remodeling, but salmeterol alone worsens AHR: and these functional changes are consistent with the concomitant changes in mucus metaplasia.  相似文献   

20.

Objective

The study was performed to compare the 3D pharyngeal airway dimensions in adult skeletal Class II patients with different vertical growth patterns (low, normal, and high angle) and to investigate whether the upper airway dimensions of untreated skeletal Class II adults were affected by vertical skeletal variables.

Methods

Cone-beam computed tomography (CBCT) records of 64 untreated adult skeletal Class II patients (34 male and 30 female) were collected to evaluate the pharyngeal airway dimensions. Subjects were divided into three subgroups according to the GoGn-SN angle (low angle, normal angle or high angle). All subgroups were matched for sex. ANOVA and SNK - q tests were used to identify differences within and among groups (p<0.05). Coefficient of product-moment correlation (Pearson correlation coefficient) was used to analyze the association between pharyngeal airway dimensions and vertical growth patterns.

Results

The results showed that pharyngeal airway measurements were statistically significantly less (p<0.05) in high angle group as compared to normal angle or low angle group.

Conclusions

Adult skeletal Class II subjects with vertical growth patterns have significantly narrower pharyngeal airways than those with normal or horizontal growth patterns, confirming an association between pharyngeal airway measurements and a vertical skeletal pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号