首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antibodies have long been shown to play a critical role in naturally acquired immunity to malaria, but it has been suggested that Plasmodium-specific antibodies in humans may not be long lived. The cellular mechanisms underlying B cell and antibody responses are difficult to study in human infections; therefore, we have investigated the kinetics, duration and characteristics of the Plasmodium-specific memory B cell response in an infection of P. chabaudi in mice. Memory B cells and plasma cells specific for the C-terminal region of Merozoite Surface Protein 1 were detectable for more than eight months following primary infection. Furthermore, a classical memory response comprised predominantly of the T-cell dependent isotypes IgG2c, IgG2b and IgG1 was elicited upon rechallenge with the homologous parasite, confirming the generation of functional memory B cells. Using cyclophosphamide treatment to discriminate between long-lived and short-lived plasma cells, we demonstrated long-lived cells secreting Plasmodium-specific IgG in both bone marrow and in spleens of infected mice. The presence of these long-lived cells was independent of the presence of chronic infection, as removal of parasites with anti-malarial drugs had no impact on their numbers. Thus, in this model of malaria, both functional Plasmodium-specific memory B cells and long-lived plasma cells can be generated, suggesting that defects in generating these cell populations may not be the reason for generating short-lived antibody responses.  相似文献   

2.
Immunity to malaria is widely believed to wane in the absence of reinfection, but direct evidence for the presence or absence of durable immunological memory to malaria is limited. Here, we analysed malaria-specific CD4+ T cell responses of individuals living in an area of low malaria transmission in northern Thailand, who had had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. CD4+ T cell effector memory (CD45RO+) IFN-γ (24 hours ex vivo restimulation) and cultured IL-10 (6 day secretion into culture supernatant) responses to malaria schizont antigens were detected only in malaria-exposed subjects and were more prominent in subjects with long-lived antibodies or memory B cells specific to malaria antigens. The number of IFN-γ-producing effector memory T cells declined significantly over the 12 months of the study, and with time since last documented malaria infection, with an estimated half life of the response of 3.3 (95% CI 1.9-10.3) years. In sharp contrast, IL-10 responses were sustained for many years after last known malaria infection with no significant decline over at least 6 years. The observations have clear implications for understanding the immunoepidemiology of naturally acquired malaria infections and for malaria vaccine development.  相似文献   

3.
Lyme Disease caused by infection with Borrelia burgdorferi is an emerging infectious disease and already by far the most common vector-borne disease in the U.S. Similar to many other infections, infection with B. burgdorferi results in strong antibody response induction, which can be used clinically as a diagnostic measure of prior exposure. However, clinical studies have shown a sometimes-precipitous decline of such antibodies shortly following antibiotic treatment, revealing a potential deficit in the host’s ability to induce and/or maintain long-term protective antibodies. This is further supported by reports of frequent repeat infections with B. burgdorferi in endemic areas. The mechanisms underlying such a lack of long-term humoral immunity, however, remain unknown. We show here that B. burgdorferi infected mice show a similar rapid disappearance of Borrelia-specific antibodies after infection and subsequent antibiotic treatment. This failure was associated with development of only short-lived germinal centers, micro-anatomical locations from which long-lived immunity originates. These showed structural abnormalities and failed to induce memory B cells and long-lived plasma cells for months after the infection, rendering the mice susceptible to reinfection with the same strain of B. burgdorferi. The inability to induce long-lived immune responses was not due to the particular nature of the immunogenic antigens of B. burgdorferi, as antibodies to both T-dependent and T-independent Borrelia antigens lacked longevity and B cell memory induction. Furthermore, influenza immunization administered at the time of Borrelia infection also failed to induce robust antibody responses, dramatically reducing the protective antiviral capacity of the humoral response. Collectively, these studies show that B. burgdorferi-infection results in targeted and temporary immunosuppression of the host and bring new insight into the mechanisms underlying the failure to develop long-term immunity to this emerging disease threat.  相似文献   

4.
HIV infected individuals in malaria endemic areas experience more frequent and severe malaria episodes compared to non HIV infected. This clinical observation has been linked to a deficiency in antibody responses to Plasmodium falciparum antigens; however, prior studies have only focused on the antibody response to <0.5% of P. falciparum proteins. To obtain a broader and less-biased view of the effect of HIV on antibody responses to malaria we compared antibody profiles of HIV positive (HIV+) and negative (HIV-) Rwandan adults with symptomatic malaria using a microarray containing 824 P. falciparum proteins. We also investigated the cellular basis of the antibody response in the two groups by analyzing B and T cell subsets by flow cytometry. Although HIV malaria co-infected individuals generated antibodies to a large number of P. falciparum antigens, including potential vaccine candidates, the breadth and magnitude of their response was reduced compared to HIV- individuals. HIV malaria co-infection was also associated with a higher percentage of atypical memory B cells (MBC) (CD19+CD10-CD21-CD27-) compared to malaria infection alone. Among HIV+ individuals the CD4+ T cell count and HIV viral load only partially explained variability in the breadth of P. falciparum-specific antibody responses. Taken together, these data indicate that HIV malaria co-infection is associated with an expansion of atypical MBCs and a diminished antibody response to a diverse array of P. falciparum antigens, thus offering mechanistic insight into the higher risk of malaria in HIV+ individuals.  相似文献   

5.
Idiotypic determinants of immunoglobulin molecules can evoke both CD4(+) and CD8(+) T responses and exist not only as the integral components of a bona fide antigen binding receptor but also as distinct molecular entities in the processed forms on the cell surface of B lymphocytes. The present work provides experimental evidence for the concept that regulation of memory B cell populations can be achieved through the presentation of idiotypic and anti-idiotypic determinants to helper and cytotoxic cell. The potential of B cells to present antigens to helper and cytotoxic T cells through class II and class I MHC suggests a mechanism by which both B and T cell homeostasis can be maintained. We provide evidence for the generation of idiotype- and antigen-specific Th and Tc cells upon immunization of syngenic mice with antigen or idiotypic antibody (Ab1) or anti-idiotypic antibody (Ab2). The selective activation and proliferation of the antigen-specific Th and Tc cells mediated by idiotypic stimulation observed in these experiments suggests a B-cell-driven mechanism for the maintenance of antigen-specific T cell memory in the absence of antigenic stimulation, under certain conditions.  相似文献   

6.
Polyparasitism is common in the developing world. We have previously demonstrated that schistosomiasis-positive (SP) Malian children have age-dependent protection from malaria compared to matched schistosomiasis-negative (SN) children. Evidence of durable immunologic memory to malaria antigens is conflicting, particularly in young children and the effect of concomitant schistomiasis upon acquisition of memory is unknown. We examined antigen-specific B memory cell (MBC) frequencies (expressed as percentage of total number of IgG-secreting cells) in 84 Malian children aged 4-14 to malaria blood-stage antigens, apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP-1) and to schistosomal antigens, Soluble Worm Antigenic Preparation (SWAP) and Schistosoma Egg Antigen (SEA), at a time point during the malaria transmission season and a follow-up dry season visit. We demonstrate, for the first time, MBC responses to S. haematobium antigens in Malian children with urinary egg excretion and provide evidence of seasonal acquisition of immunologic memory, age-associated differences in MBC acquisition, and correlation with circulating S. haematobium antibody. Moreover, the presence of a parasitic co-infection resulted in older children, aged 9-14 years, with underlying S. haematobium infection having significantly more MBC response to malaria antigens (AMA1 and MSP1) than their age-matched SN counterparts. We conclude that detectable MBC response can be measured against both malaria and schistosomal antigens and that the presence of S. haematobium may be associated with enhanced MBC induction in an age-specific manner.  相似文献   

7.

Background

Malaria caused by Plasmodium falciparum remains a major cause of death in sub-Saharan Africa. Immunity against symptoms of malaria requires repeated exposure, suggesting either that the parasite is poorly immunogenic or that the development of effective immune responses to malaria may be impaired.

Methods

We carried out two age-stratified cross-sectional surveys of anti-malarial humoral immune responses in a Gambian village where P. falciparum malaria transmission is low and sporadic. Circulating antibodies and memory B cells (MBC) to four malarial antigens were measured using ELISA and cultured B cell ELISpot.

Findings and Conclusions

The proportion of individuals with malaria-specific MBC and antibodies, and the average number of antigens recognised by each individual, increased with age but the magnitude of these responses did not. Malaria-specific antibody levels did not correlate with either the prevalence or median number of MBC, indicating that these two assays are measuring different aspects of the humoral immune response. Among those with immunological evidence of malaria exposure (defined as a positive response to at least one malarial antigen either by ELISA or ELISPOT), the median number of malaria-specific MBC was similar to median numbers of diphtheria-specific MBC, suggesting that the circulating memory cell pool for malaria antigens is of similar size to that for other antigens.  相似文献   

8.
B cell and plasma cell responses take place in lymphoid organs, but because of the inaccessibility of these organs, analyses of human responses are largely performed using peripheral blood mononuclear cells (PBMC). To determine whether PBMC are a useful source of memory B cells and plasma cells in malaria, and whether they reflect Plasmodium-specific B cell responses in spleen or bone marrow, we have investigated these components of the humoral response in PBMC using a model of Plasmodium chabaudi blood-stage infections in C57BL/6 mice. We detected memory B cells, defined as isotype-switched IgD(-) IgM(-) CD19(+) B cells, and low numbers of Plasmodium chabaudi Merozoite Surface Protein-1 (MSP1)-specific memory B cells, in PBMC at all time points sampled for up to 90 days following primary or secondary infection. By contrast, we only detected CD138(+) plasma cells and MSP1-specific antibody-secreting cells within a narrow time frame following primary (days 10 to 25) or secondary (day 10) infection. CD138(+) plasma cells in PBMC at these times expressed CD19, B220 and MHC class II, suggesting that they were not dislodged bone-marrow long-lived plasma cells, but newly differentiated migratory plasmablasts migrating to the bone marrow; thus reflective of an ongoing or developing immune response. Our data indicates that PBMC can be a useful source for malaria-specific memory B cells and plasma cells, but extrapolation of the results to human malaria infections suggests that timing of sampling, particularly for plasma cells, may be critical. Studies should therefore include multiple sampling points, and at times of infection/immunisation when the B-cell phenotypes of interest are likely to be found in peripheral blood.  相似文献   

9.
P. vivax infection during pregnancy has been associated with poor outcomes such as anemia, low birth weight and congenital malaria, thus representing an important global health problem. However, no vaccine is currently available for its prevention. Vir genes were the first putative virulent factors associated with P. vivax infections, yet very few studies have examined their potential role as targets of immunity. We investigated the immunogenic properties of five VIR proteins and two long synthetic peptides containing conserved VIR sequences (PvLP1 and PvLP2) in the context of the PregVax cohort study including women from five malaria endemic countries: Brazil, Colombia, Guatemala, India and Papua New Guinea (PNG) at different timepoints during and after pregnancy. Antibody responses against all antigens were detected in all populations, with PNG women presenting the highest levels overall. P. vivax infection at sample collection time was positively associated with antibody levels against PvLP1 (fold-increase: 1.60 at recruitment -first antenatal visit-) and PvLP2 (fold-increase: 1.63 at delivery), and P. falciparum co-infection was found to increase those responses (for PvLP1 at recruitment, fold-increase: 2.25). Levels of IgG against two VIR proteins at delivery were associated with higher birth weight (27 g increase per duplicating antibody levels, p<0.05). Peripheral blood mononuclear cells from PNG uninfected pregnant women had significantly higher antigen-specific IFN-γ TH1 responses (p=0.006) and secreted less pro-inflammatory cytokines TNF and IL-6 after PvLP2 stimulation than P. vivax-infected women (p<0.05). These data demonstrate that VIR antigens induce the natural acquisition of antibody and T cell memory responses that might be important in immunity to P. vivax during pregnancy in very diverse geographical settings.  相似文献   

10.
Vaccine-induced immunity depends on long-lived plasma cells (LLPCs) that maintain antibody levels. A recent mouse study showed that Plasmodium chaubaudi infection reduced pre-existing influenza-specific antibodies—raising concerns that malaria may compromise pre-existing vaccine responses. We extended these findings to P. yoelii infection, observing decreases in antibodies to model antigens in inbred mice and to influenza in outbred mice, associated with LLPC depletion and increased susceptibility to influenza rechallenge. We investigated the implications of these findings in Malian children by measuring vaccine-specific IgG (tetanus, measles, hepatitis B) before and after the malaria-free 6-month dry season, 10 days after the first malaria episode of the malaria season, and after the subsequent dry season. On average, vaccine-specific IgG did not decrease following acute malaria. However, in some children malaria was associated with an accelerated decline in vaccine-specific IgG, underscoring the need to further investigate the impact of malaria on pre-existing vaccine-specific antibodies.  相似文献   

11.

Background

Malaria immunity is commonly believed to wane in the absence of Plasmodium falciparum exposure, based on limited epidemiological data and short-lived antibody responses in some longitudinal studies in endemic areas.

Methods

A cross-sectional study was conducted among sub-Saharan African adults residing in Spain for 1 up to 38 years (immigrants) with clinical malaria (n=55) or without malaria (n=37), naïve adults (travelers) with a first clinical malaria episode (n=20) and life-long malaria exposed adults from Mozambique (semi-immune adults) without malaria (n=27) or with clinical malaria (n=50). Blood samples were collected and IgG levels against the erythrocytic antigens AMA-1 and MSP-142 (3D7 and FVO strains), EBA-175 and DBL-α were determined by Luminex. IgG levels against antigens on the surface of infected erythrocytes (IEs) were measured by flow cytometry.

Results

Immigrants without malaria had lower IgG levels than healthy semi-immune adults regardless of the antigen tested (P≤0.026), but no correlation was found between IgG levels and time since migration. Upon reinfection, immigrants with malaria had higher levels of IgG against all antigens than immigrants without malaria. However, the magnitude of the response compared to semi-immune adults with malaria depended on the antigen tested. Thus, immigrants had higher IgG levels against AMA-1 and MSP-142 (P≤0.015), similar levels against EBA-175 and DBL-α, and lower levels against IEs (P≤0.016). Immigrants had higher IgG levels against all antigens tested compared to travelers (P≤0.001), both with malaria.

Conclusions

Upon cessation of malaria exposure, IgG responses to malaria-specific antigens were maintained to a large extent, although the conservation and the magnitude of the recall response depended on the nature of the antigen. Studies on immigrant populations can shed light on the factors that determine the duration of malaria specific antibody responses and its effect on protection, with important implications for future vaccine design and public health control measures.  相似文献   

12.
CBA/N mice carry an X-linked, recessive gene, which results in the absence of a B cell subset, and is expressed primarily as an inability to respond to a certain class of thymus-independent antigens. We have examined the responses of these mice to the malaria parasite Plasmodium yoelii and found that primary infections induced by this parasite are more severe and last longer in mice with X-linked defect than in normal controls. The decreased resistance of the defective mice is associated with a striking deficiency in their IgM antibody response. After recovery from a primary infection, defective mice resist reinfection with the homologous parasite as well as normal mice. Although as resistant as normal controls, B cells from defective mice transfer considerably less immunity to naive recipients than B cells from normal animals. Hence, two modes of thymus-dependent protective immunity may contribute to the host response to P. yoelii. Control of an acute primary infection appears to involve a thymus-dependent antibody response that CBA/N mice are deficient in. Resistance to reinfection may be mediated primarily by a different mechanism.  相似文献   

13.

Background

Multiple infections with diverse enterotoxigenic E. coli (ETEC) strains lead to broad spectrum protection against ETEC diarrhea. However, the precise mechanism of protection against ETEC infection is still unknown. Therefore, memory B cell responses and affinity maturation of antibodies to the specific ETEC antigens might be important to understand the mechanism of protection.

Methodology

In this study, we investigated the heat labile toxin B subunit (LTB) and colonization factor antigens (CFA/I and CS6) specific IgA and IgG memory B cell responses in Bangladeshi adults (n = 52) who were infected with ETEC. We also investigated the avidity of IgA and IgG antibodies that developed after infection to these antigens.

Principal Findings

Patients infected with ETEC expressing LT or LT+heat stable toxin (ST) and CFA/I group or CS6 colonization factors developed LTB, CFA/I or CS6 specific memory B cell responses at day 30 after infection. Similarly, these patients developed high avidity IgA and IgG antibodies to LTB, CFA/I or CS6 at day 7 that remained significantly elevated at day 30 when compared to the avidity of these specific antibodies at the acute stage of infection (day 2). The memory B cell responses, antibody avidity and other immune responses to CFA/I not only developed in patients infected with ETEC expressing CFA/I but also in those infected with ETEC expressing CFA/I cross-reacting epitopes. We also detected a significant positive correlation of LTB, CFA/I and CS6 specific memory B cell responses with the corresponding increase in antibody avidity.

Conclusion

This study demonstrates that natural infection with ETEC induces memory B cells and high avidity antibodies to LTB and colonization factor CFA/I and CS6 antigens that could mediate anamnestic responses on re-exposure to ETEC and may help in understanding the requirements to design an effective vaccination strategies.  相似文献   

14.
Clinical immunity to malaria declines in the absence of repeated parasite exposure. However, little is known about how B cell populations and antigen-specific memory B cells change in the absence of P. falciparum infection. A successful indoor residual insecticide spraying campaign in a highland area of western Kenya, led to an absence of blood-stage P. falciparum infection between March 2007 and April 2008. We assessed memory B cell responses in 45 adults at the beginning (April 2008) and end (April 2009) of a subsequent 12-month period during which none of the adults had evidence of asymptomatic parasitemia or clinical disease. Antibodies and memory B cells to the 42-kDa portion of the merozoite surface protein-1 (MSP-142) were measured using ELISA and ELISPOT assays, respectively. B cell populations were characterized by flow cytometry. From 2008 to 2009, the prevalence of MSP-142-specific memory B cells (45% vs. 55%, respectively, P = 0.32) or antibodies (91% vs. 82%, respectively, P = 0.32) did not differ significantly, although specific individuals did change from positive to negative and vice versa, particularly for memory B cells, suggesting possible low-level undetected parasitemia may have occurred in some individuals. The magnitude of MSP-142-specific memory B cells and levels of antibodies to MSP-142 also did not differ from 2008 to 2009 (P>0.10 for both). However, from 2008 to 2009 the proportions of both class-switched atypical (CD19+IgD-CD27-CD21-IgM-) and class-switched activated (CD19+IgD-CD27+CD21-IgM-) memory B cells decreased (both P<0.001). In contrast, class-switched resting classical memory B cells (CD19+IgD-CD27+CD21+IgM-) increased (P<0.001). In this area of seasonal malaria transmission, a one- year absence of detectable P. falciparum infection was not associated with changes in the prevalence or level of MSP-142 specific memory B cells, but was associated with major changes in overall memory B cell subsets.  相似文献   

15.
Blocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. However, the lack of well-defined features within vaccine-elicited antibody responses that correlate with protection represents a major roadblock to improving on current generation vaccines. We vaccinated mice (BALB/cJ and C57BL/6J) with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated vaccine-elicited humoral immunity and identified immunological factors associated with protection after mosquito bite challenge. Vaccination achieved 60% sterile protection and otherwise delayed blood stage patency in BALB/cJ mice. In contrast, all C57BL/6J mice were infected similar to controls. Protection was mediated by antibodies and could be passively transferred from immunized BALB/cJ mice into naïve C57BL/6J. Dissection of the underlying immunological features of protection revealed early deficits in antibody titers and polyclonal avidity in C57BL/6J mice. Additionally, PyCSP-vaccination in BALB/cJ induced a significantly higher proportion of antigen-specific B-cells and class-switched memory B-cell (MBCs) populations than in C57BL/6J mice. Strikingly, C57BL/6J mice also had markedly fewer CSP-specific germinal center experienced B cells and class-switched MBCs compared to BALB/cJ mice. Analysis of the IgG γ chain repertoires by next generation sequencing in PyCSP-specific memory B-cell repertoires also revealed higher somatic hypermutation rates in BALB/cJ mice than in C57BL/6J mice. These findings indicate that the development of protective antibody responses in BALB/cJ mice in response to vaccination with PyCSP was associated with increased germinal center activity and somatic mutation compared to C57BL/6J mice, highlighting the key role B cell maturation may have in the development of vaccine-elicited protective antibodies against CSP.  相似文献   

16.
No vaccine has yet proven effective against the blood-stages of Plasmodium falciparum, which cause the symptoms and severe manifestations of malaria. We recently found that PfRH5, a P. falciparum-specific protein expressed in merozoites, is efficiently targeted by broadly-neutralizing, vaccine-induced antibodies. Here we show that antibodies against PfRH5 efficiently inhibit the in vitro growth of short-term-adapted parasite isolates from Cambodia, and that the EC50 values of antigen-specific antibodies against PfRH5 are lower than those against PfAMA1. Since antibody responses elicited by multiple antigens are speculated to improve the efficacy of blood-stage vaccines, we conducted detailed assessments of parasite growth inhibition by antibodies against PfRH5 in combination with antibodies against seven other merozoite antigens. We found that antibodies against PfRH5 act synergistically with antibodies against certain other merozoite antigens, most notably with antibodies against other erythrocyte-binding antigens such as PfRH4, to inhibit the growth of a homologous P. falciparum clone. A combination of antibodies against PfRH4 and basigin, the erythrocyte receptor for PfRH5, also potently inhibited parasite growth. This methodology provides the first quantitative evidence that polyclonal vaccine-induced antibodies can act synergistically against P. falciparum antigens and should help to guide the rational development of future multi-antigen vaccines.  相似文献   

17.
Protective immunity against T cell independent (TI) antigens such as Streptococcus pneumoniae is characterized by antibody production of B cells induced by the combined activation of T cell independent type 1 and type 2 antigens in the absence of direct T cell help. In mice, the main players in TI immune responses have been well defined as marginal zone (MZ) B cells and B-1 cells. However, the existence of human equivalents to these B cell subsets and the nature of the human B cell compartment involved in the immune reaction remain elusive. We therefore analyzed the effect of a TI antigen on the B cell compartment through immunization of healthy individuals with the pneumococcal polysaccharide (PnPS)-based vaccine Pneumovax®23, and subsequent characterization of B cell subpopulations. Our data demonstrates a transient decrease of transitional and naïve B cells, with a concomitant increase of IgA+ but not IgM+ or IgG+ memory B cells and a predominant generation of PnPS-specific IgA+ producing plasma cells. No alterations could be detected in T cells, or proposed human B-1 and MZ B cell equivalents. Consistent with the idea of a TI immune response, antigen-specific memory responses could not be observed. Finally, BAFF, which is supposed to drive class switching to IgA, was unexpectedly found to be decreased in serum in response to Pneumovax®23. Our results demonstrate that a characteristic TI response induced by Pneumovax®23 is associated with distinct phenotypical and functional changes within the B cell compartment. Those modulations occur in the absence of any modulations of T cells and without the development of a specific memory response.  相似文献   

18.
Rhoptry-associated membrane antigen (RAMA) is an abundant glycophosphatidylinositol (GPI)-anchored protein that is embedded within the lipid bilayer and is implicated in parasite invasion. Antibody responses against rhoptry proteins are produced by individuals living in a malaria-endemic area, suggesting the immunogenicity of Plasmodium vivax RAMA (PvRAMA) for induction of immune responses during P. vivax infection. To determine whether PvRAMA contributes to the acquisition of immunity to malaria and could be a rational candidate for a vaccine, the presence of memory T cells and the stability of the antibody response against PvRAMA were evaluated in P. vivax-exposed individuals. The immunogenicity of PvRAMA for the induction of T cell responses was evaluated by in vitro stimulation of peripheral blood mononuclear cells (PBMCs). High levels of interferon (IFN)-γ and interleukin (IL)-10 cytokines were detected in the culture supernatant of PBMCs, and the CD4+ T cells predominantly produced IL-10 cytokine. The levels of total anti-PvRAMA immunoglobulin G (IgG) antibody were significantly elevated, and these antibodies persisted over the 12 months of the study. Interestingly, IgG1, IgG2 and IgG3 were the major antibody subtypes in the response to PvRAMA. The frequency of IgG3 in specific to PvRAMA antigen maintained over 12 months. These data could explain the immunogenicity of PvRAMA antigen in induction of both cell-mediated and antibody-mediated immunity in natural P. vivax infection, in which IFN-γ helps antibody class switching toward the IgG1, IgG2 and IgG3 isotypes and IL-10 supports PvRAMA-specific antibody production.  相似文献   

19.
Polymorphism in the beta-globin gene (hemoglobin S) has been associated with protection against severe forms of malaria. In a cross-sectional study, 180 young Gabonese children with and without sickle cell trait and harboring asymptomatic Plasmodium falciparum infections, were assessed for the responses to recombinant protein containing the conserved region of glutamate-rich protein (GLURP). We reported increased age-dependence of antibody prevalence and levels of total IgG (p<0.0001), IgG1 (p=0.009), and IgG3 (p<0.03) antibodies to GLURP with a cut-off at 5 years of age. Whatever the hemoglobin type, cytophilic antibodies (IgG1 and IgG3) were prevalent, but GLURP-specific IgG4 antibodies were detected at significantly (p<0.05) lower levels in HbAS children. We showed that the distribution of non-cytophilic IgG antibodies differs according to the hemoglobin type and to the malaria antigens tested. This may have possible implication for the clearance of malaria parasites and for protection against severe malaria.  相似文献   

20.
Selection of B cells subjected to hypermutation in germinal centres (GC) during T cell-dependent (TD) antibody responses yields memory cells and long-lived plasma cells that produce high affinity antibodies biased to foreign antigens rather than self-antigens. GC also form in T-independent (TI) responses to polysaccharide antigens but failed selection results in GC involution and memory cells are not generated. To date there are no markers that allow phenotypic distinction of T-dependent and TI germinal centre B cells. We compared the global gene expression of GC B cells purified from mice immunized with either TD or TI antigens and identified eighty genes that are differentially expressed in TD GC. Significantly, the largest cluster comprises genes involved in growth and guidance of neuron axons such as Plexin B2, Basp1, Nelf, Shh, Sc4mol and Sult4alpha. This is consistent with formation of long neurite (axon and dendrite)-like structures by mouse and human GC B cells, which may facilitate T:B cell interactions within GC, affinity maturation and B cell memory formation. Expression of BASP1 and PLEXIN B2 protein is very low or undetectable in resting and TI GC B cells, but markedly upregulated in GC B cells induced in the presence of T cell help. Finally we show some of the axon growth genes upregulated in TD-GC B cells including Basp1, Shh, Sult4alpha, Sc4mol are also preferentially expressed in post-GC B cell neoplasms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号