首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文用正交实验设计法探讨了杂色曲霉(Aspergillus versicolr)在加有两类不同性质营养物的人胃液中产生杂色曲霉素(Sterigmatocystin,简称ST)的条件。发现在26℃斜面静置培养12天后可产生ST。加入半合成物质的最佳配伍是:蔗糖1,000.0mg;蛋白胨50.0mg;KH_2PO_4 7.5mg;MgSO_4·7H_2O_2.5mg;人胃液10.0ml,称之为SPKM人胃液培养基。加入天然物质的最佳配伍是:玉米粉0.5g;豆腐粉0.25g,人胃液10.0ml,称之为CS人胃液培养基。还进一步研究了pH值和培养时间对杂色曲霉产毒菌株在SPKM和CS人胃液培养基中生长及产生ST的影响。根据临床胃酸缺乏程度分级标准,分为pH 1.0,3.0,6.5,8.0四个组。发现在两种人胃液培养基中,无论是杂色曲霉生长,还是产生ST,pH3.0到6.5是发生质变的范围。在两种人胃液培养基pH为6.5时,37℃静置培养8天有痕量ST产生,10天后就明显增加。所以杂色曲霉产生的ST可能是慢性萎缩性胃炎易癌变的原因之一。  相似文献   

2.
Structure-mechanism relationships are key determinants of host defense peptide efficacy. These relationships are influenced by anatomic, physiologic and microbiologic contexts. Structure-mechanism correlates were assessed for the synthetic peptide RP-1, modeled on microbicidal domains of platelet kinocidins. Antimicrobial efficacies and mechanisms of action against susceptible ((S)) or resistant ((R)) Salmonella typhimurium (ST), Staphylococcus aureus (SA), and Candida albicans (CA) strain pairs were studied at pH 7.5 and 5.5. Although RP-1 was active against all study organisms, it exhibited greater efficacy against bacteria at pH 7.5, but greater efficacy against CA at pH 5.5. RP-1 de-energized SA and CA, but caused hyperpolarization of ST in both pH conditions. However, RP-1 permeabilized ST(S) and CA strains at both pH, whereas permeabilization was modest for ST(R) or SA strain at either pH. Biochemical analysis, molecular modeling, and FTIR spectroscopy data revealed that RP-1 has indistinguishable net charge and backbone trajectories at pH 5.5 and 7.5. Yet, concordant with organism-specific efficacy, surface plasmon resonance, and FTIR, molecular dynamics revealed modest helical order increases but greater RP-1 avidity and penetration of bacterial than eukaryotic lipid systems, particularly at pH 7.5. The present findings suggest that pH- and target-cell lipid contexts influence selective antimicrobial efficacy and mechanisms of RP-1 action. These findings offer new insights into selective antimicrobial efficacy and context-specificity of antimicrobial peptides in host defense, and support design strategies for potent anti-infective peptides with minimal concomitant cytotoxicity.  相似文献   

3.
Bacteriocin ST23LD levels of 2930AU/OD were recorded in MRS broth (pH of 6.5) and in the presence of tryptone and yeast extract as sole nitrogen sources. Growth in MRS broth at an initial pH of 6.0 yielded only 1460AU/OD bacteriocin ST23LD. Activities of 5861AU/OD were recorded with maltose (20, 30 and 40 g/l) as sole carbon source and 9036AU/OD with the addition of 2.0-10.0 g/l KH2PO4. Bacteriocin ST341LD levels of 2850 and 2841AU/OD were recorded in MRS broth at an initial pH of 6.0 or 5.5, respectively. Only 709AU/OD was recorded in the same medium with an initial pH of 6.5. Bacteriocin ST341LD production was stimulated by the presence of tryptone. However, glucose at 10 and 40 g/l, or the presence of 5.0 or 10.0 g/l K2HPO4, resulted in a 50% reduction of bacteriocin activity. Glycerol in the growth medium repressed bacteriocin production. No increased bacteriocin production was recorded in medium supplemented with vitamins.  相似文献   

4.
The cumulative effect of peptidase and protease activities associated with cells of Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) was evaluated on the milk protein-based antimicrobial peptides casocidin and isracidin. Reaction mixtures of casocidin or isracidin and nonproliferating mid-log cells of these essential yogurt starter cultures were individually incubated for up to 4 h at pH 4.5 and 7.0, and samples removed at various time points were analyzed by reverse phase-high performance liquid chromatography (RP-HPLC) and MALDI-TOF/TOF-MS. Both casocidin and isracidin remained largely unchanged following exposure to cell suspensions of ST or LB strains at pH 4.5. Casocidin was extensively degraded by both ST and LB strains at pH 7.0, whereas isracidin remained largely intact after incubation for 4 h with ST strains but was degraded by exposure to LB strains. The results showed the feasibility of using the bovine casein-based peptides casocidin and isracidin as food grade antimicrobial supplements to impart fermented dairy foods additional protection against bacterial contamination. The structural integrity and efficacy of these biodefensive peptides may be preserved by timing their addition near the end of the fermentation of yogurt-like dairy foods (at or below pH 4.5), when conditions for bacterial proteolytic activity become unfavorable.  相似文献   

5.
Methanococcus thermolithotrophicus ST22 was isolated from produced water of a North Sea oil field, on mineral medium with H(inf2)-CO(inf2) as the sole source of carbon and energy. The isolate grew at 17 to 62(deg)C, with an optimum at 60(deg)C. The pH range was 4.9 to 9.8, with optimal growth at pH 5.1 to 5.9; these characteristics reflected its habitat. Strain ST22 was quickly identified and distinguished from the type strain by immunoblotting.  相似文献   

6.
Salmonella infection of chickens that leads to potential human foodborne salmonellosis continues to be a concern. Changes in the pH of poultry gastrointestinal tract could influence Salmonella growth and virulence response. In the current study, growth responses of a chicken isolate Salmonella enterica serovar Typhimurium (ST) to three incremental pH-shifts (6.17-7.35) in continuous cultures (CC) were evaluated. The expression of rpoS and hilA was determined by real time-polymerase chain reaction (RT-PCR) as well. Increases in pH resulted in higher cell protein concentrations, glucose disappearance, and glucose and ATP yields. Although with some inconsistency between the two trials, the data indicated that the ammonia release into media was favored by low pH. The pH shifts did not significantly affect acetate biosynthesis. No consistent trends of pH influence on propionate and butyrate production could be detected. In all three pH shifts, relative expression of hilA was dominant at 0h which represented CC steady state. In pH shift 7.35-6.86 (Trial 1), the relative expression of rpoS at time 0 and 1h were over five-fold higher than after 3 and 6h of growth. Overall, the results suggest that ST physiology is altered by changes in pH, which could be determinant factors for ST survival in the poultry gastrointestinal ecosystems.  相似文献   

7.
Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.  相似文献   

8.
A. Gerhardt 《Hydrobiologia》1992,239(2):93-100
The acute toxicity of Cd to three stream invertebrates (Baetis rhodani Pict., Leptophlebia marginata (L.) and Pisidium sp.) was tested at pH 5 and 7 simultaneously in static (ST) and flow through (FT) systems. In the static design, the animals were kept individually in small boxes containing aerated stream water. In the flow through system, the three species were kept together in circular aquaria simulating stream ecosystems with patches of gravel and recirculating aerated stream water. The nominal Cd concentrations ranged from 0 to 5 mg 1–1 during an exposure period of 120 h.The graphically obtained LC50 (120 h) values for B. rhodani were: pH 7: 2.3 mg 1–1 (ST), 2.5 mg 1–1 (FT) and pH 5: 3 mg 1–1 (ST), 1 mg 1–1 (FT). For L. marginata the following values were found: pH 7: > 5 mg 1–1 (ST), 4.4 mg 1–1 (FT) and pH 5: > 5 mg 1–1 (ST), 3.6 mg 1–1 (FT). Pisidium sp. showed a 100% survival in all Cd- and pH-treatments. From thee values it can be concluded that L. marginata is more tolerant than B. rhodani and that especially both species tolerated Cd better in the ST system than in the FT system, especially at pH 5.At neutral pH the Cd-concentrations in the animals were higher than at low pH, probably due to surface adsorption of Cd onto the body. B. rhodani tended to molt more at low than at neutral pH.  相似文献   

9.
The ST6Gal I is a sialyltransferase that functions in the late Golgi to modify the N-linked oligosaccharides of glycoproteins. The ST6Gal I is expressed as two isoforms with a single amino acid difference in their catalytic domains. The STcys isoform is stably retained in the cell and is predominantly found in the Golgi, whereas the STtyr isoform is only transiently localized in the Golgi and is cleaved and secreted from a post-Golgi compartment. These two ST6Gal I isoforms were used to explore the role of the bilayer thickness mechanism and oligomerization in Golgi localization. Analysis of STcys and STtyr proteins with longer transmembrane regions suggested that the bilayer thickness mechanism is not the predominant mechanism used for ST6Gal I Golgi localization. In contrast, the formation and quantity of Triton X-100-insoluble oligomers was correlated with the stable or transient localization of the ST6Gal I isoforms in the Golgi. Nearly 100% of the STcys and only 13% of the STtyr were found as Triton-insoluble oligomers when Golgi membranes of COS-1 cells expressing these proteins were solubilized at pH 6.3, the pH of the late Golgi. In contrast, both proteins were found in the soluble fraction when these membranes were solubilized at pH 8.0. Analysis of other mutants suggested that a conformational change in the catalytic domain rather than increased disulfide bond-based cross-linking is the basis for the increased ability of STcys protein to form oligomers and the stable localization of STcys protein in the Golgi.  相似文献   

10.
This study was performed to elucidate the relationship between dental caries and the levels of Sr and Ca eluted from enamel, and to examine whether these elements are useful as factors to assess caries risk. The available 103 (Sr) and 108 (Ca) samples were obtained among 111 collected deciduous teeth. The healthy regions of enamel were decalcified in artificial saliva at pH 6.2 and 5.5. The eluted levels of these elements from enamel were determined using atomic absorption spectrophotometry. Sr and Ca levels were not affected by the sex nor tooth type. Sr levels of the caries-experienced tooth (CE) group were 2.6-fold (pH 6.2) and 2.2-fold (pH 5.5) higher than those of the sound tooth (ST) group, respectively. Furthermore, the Sr levels were significantly higher in the teeth with treated than in those with untreated caries. Only at pH 6.2 was a significant difference found in Ca levels between the ST and CE groups. In the ST group, at pH 5.5, both the Sr and Ca levels significantly increased when the children had six or more carious teeth. The Sr and Ca elution levels were significantly inhibited in the teeth receiving fluoride application every 3 or 4 months compared to those that were not. These findings indicate that Sr can be an indicator of the acid resistance of teeth, and a useful factor to assess future caries risk.  相似文献   

11.
Sialyltransferases transfer sialic acid from cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NeuAc) to an acceptor molecule. Trans-sialidases of parasites transfer alpha2,3-linked sialic acid from one molecule to another without the involvement of CMP-NeuAc. Here we report another type of sialylation, termed reverse sialylation, catalyzed by mammalian sialyltransferase ST3Gal-II. This enzyme synthesizes CMP-NeuAc by transferring NeuAc from the NeuAcalpha2,3Galbeta1,3GalNAcalpha unit of O-glycans, 3-sialyl globo unit of glycolipids, and sialylated macromolecules to 5'-CMP. CMP-NeuAc produced in situ is utilized by the same enzyme to sialylate other O-glycans and by other sialyltransferases such as ST6Gal-I and ST6GalNAc-I, forming alpha2,6-sialylated compounds. ST3Gal-II also catalyzed the conversion of 5'-uridine monophosphate (UMP) to UMP-NeuAc, which was found to be an inactive sialyl donor. Reverse sialylation proceeded without the need for free sialic acid, divalent metal ions, or energy. Direct sialylation with CMP-NeuAc as well as the formation of CMP-NeuAc from 5'-CMP had a wide optimum range (pH 5.2-7.2 and 4.8-6.4, respectively), whereas the entire reaction comprising in situ production of CMP-NeuAc and sialylation of acceptor had a sharp optimum at pH 5.6 (activity level 50% at pH 5.2 and 6.8, 25% at pH 4.8 and 7.2). Several properties distinguish forward/conventional versus reverse sialylation: (i) sodium citrate inhibited forward sialylation but not reverse sialylation; (ii) 5'-CDP, a potent forward sialyltransferase inhibitor, did not inhibit the conversion of 5'-CMP to CMP-NeuAc; and (iii) the mucin core 2 compound 3-O-sulfoGalbeta1,4GlcNAcbeta1,6(Galbeta1,3)GalNAcalpha-O-benzyl, an efficient acceptor for ST3Gal-II, inhibited the conversion of 5'-CMP to CMP-NeuAc. A significant level of reverse sialylation activity is noted in human prostate cancer cell lines LNCaP and PC3. Overall, the study demonstrates that the sialyltransferase reaction is readily reversible in the case of ST3Gal-II and can be exploited for the enzymatic synthesis of diverse sialyl products.  相似文献   

12.
Aims: To analyse the effect of cell‐associated peptidases in yogurt starter culture strains Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST) on milk‐protein‐based antimicrobial and hypotensive peptides in order to determine their survival in yogurt‐type dairy foods. Methods and Results: The 11mer antimicrobial and 12mer hypotensive milk‐protein‐derived peptides were incubated with mid‐log cells of LB and ST, which are required for yogurt production. Incubations were performed at pH 4·5 and 7·0, and samples removed at various time points were analysed by reversed‐phase high‐performance liquid chromatography (RP‐HPLC). The peptides remained mostly intact at pH 4·5 in the presence of ST strains and moderately digested by exposure to LB cells. Peptide loss occurred more rapidly and was more extensive after incubation at pH 7·0. Conclusions: The 11mer and 12mer bioactive peptides may be added at the end of the yogurt‐making process when the pH level has dropped to 4·5, limiting the overall extent of proteolysis. Significance and Impact of the Study: The results show the feasibility of using milk‐protein‐based antimicrobial and hypotensive peptides as food supplements to improve the health‐promoting qualities of liquid and semi‐solid dairy foods prepared by the yogurt fermentation process.  相似文献   

13.
Acidic pH of the Golgi lumen is known to be crucial for correct glycosylation, transport and sorting of proteins and lipids during their transit through the organelle. To better understand why Golgi acidity is important for these processes, we have examined here the most pH sensitive events in N‐glycosylation by sequentially raising Golgi luminal pH with chloroquine (CQ), a weak base. We show that only a 0.2 pH unit increase (20 µM CQ) is sufficient to markedly impair terminal α(2,3)‐sialylation of an N‐glycosylated reporter protein (CEA), and to induce selective mislocalization of the corresponding α(2,3)‐sialyltransferase (ST3) into the endosomal compartments. Much higher pH increase was required to impair α(2,6)‐sialylation, or the proximal glycosylation steps such as β(1,4)‐galactosylation or acquisition of Endo H resistance, and the steady‐state localization of the key enzymes responsible for these modifications (ST6, GalT I, MANII). The overall Golgi morphology also remained unaltered, except when Golgi pH was raised close to neutral. By using transmembrane domain chimeras between the ST6 and ST3, we also show that the luminal domain of the ST6 is mainly responsible for its less pH sensitive localization in the Golgi. Collectively, these results emphasize that moderate Golgi pH alterations such as those detected in cancer cells can impair N‐glycosylation by inducing selective mislocalization of only certain Golgi glycosyltransferases. J. Cell. Physiol. 220: 144–154, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Bacteriocins ST414BZ and ST664BZ, produced by Lactobacillus plantarum, inhibited the growth of a number of lactic acid bacteria, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Enterobacter cloacae. Optimal production of bacteriocin ST664BZ (12 800 AU/mL) was recorded in MRS broth with an initial pH of 6.0 and 6.5. Bacteriocin ST414BZ was produced in MRS broth at lower pH values, ranging from 6.5 to 5.0. Low levels of bacteriocin activity were produced in BHI, M17, 10% (w/v) soy flour and 10% (w/v) molasses, suggesting that specific nutrients are required for optimal production. Bacteriocin ST414BZ production doubled (from 12 800 to 25 600 AU/mL) in MRS broth with tryptone as sole nitrogen source, or when glucose was replaced with maltose. Bacteriocin ST664BZ production, on the other hand, was less influenced by changes in nitrogen content, but increased two-fold (to 25 600 AU/mL) when glucose was replaced with sucrose, maltose or mannose, or when MRS broth was supplemented with 2.0 g/L KH2 PO4. Enrichment of MRS broth with vitamins B12, B1 or C did not stimulate production of the two bacteriocins. Growth in the presence of DL-6,8-thioctic acid increased bacteriocin ST664BZ production to 25 600 AU/mL. Concluded from these results, optimal levels of bacteriocins ST414BZ and ST664BZ will be produced in boza enriched with tryptone and maltose.  相似文献   

15.
By searching the expressed sequence tag database, two zebrafish cDNAs encoding putative cytosolic sulfotransferases (SULTs) were identified. Sequence analysis indicated that these two zebrafish SULTs belong to the cytosolic SULT2 gene family. The recombinant form of these two novel zebrafish SULTs, designated SULT2 ST2 and SULT2 ST3, were expressed using the pGEX-2TK glutathione S-transferase (GST) gene fusion system and purified from transformed BL21 (DE3) Escherichia coli cells. Purified GST-fusion protein form of SULT2 ST2 and SULT2 ST3 exhibited strong sulfating activities toward dehydroepiandrosterone (DHEA) and corticosterone, respectively, among various endogenous compounds tested as substrates. Both enzymes displayed pH optima at approximately 6.5. Kinetic constants of the two enzymes, as well as the GST-fusion protein form of the previously identified SULT2 ST1, with DHEA and corticosterone as substrates were determined. Developmental stage-dependent expression experiments revealed distinct patterns of expression of SULT2 ST2 and SULT2 ST3, as well as the previously identified SULT2 ST1, during embryonic development and throughout the larval stage onto maturity.  相似文献   

16.
Individual reaction requirements were determined for each of two enzyme activities present in Aspergillus parasiticus mycelia which together catalyze conversion of sterigmatocystin (ST) to aflatoxin B1 (AFB1). A postmicrosomal activity (PMA) catalyzed conversion of ST to O-methylsterigmatocystin (OMST) and a microsomal activity (MA) catalyzed conversion of OMST to AFB1. PMA was stimulated two- to three-fold in the presence of S-adenosylmethionine. Addition of NADPH promoted the maximum MA; this activity was not detected when FAD, FMN, NAD, or NADH were utilized individually as cofactors in reaction mixtures. A substantial amount (62%) of MA was lost during isolation of the microsomal fraction, but the activity was completely restored by reconstitution with a heat-treated (100 degrees C) postmicrosomal fraction. The reaction catalyzed by MA was optimum at pH 7.0 and at 17-23 degrees C, whereas the PMA reaction was optimum at pH 8.0-8.5 and at 35-40 degrees C. Apparent Km values of approximately 2.6 X 10(-6) M (for ST) and 6.6 X 10(-7) M (for OMST) were determined for PMA and MA, respectively.  相似文献   

17.
Two bacteriocins, ST28MS and ST26MS, produced by Lactobacillus plantarum isolated from molasses, inhibited the growth of Lactobacillus casei, Lactobacillus sakei, Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Escherichia coli and Acinetobacter baumanii. The mode of activity of the bacteriocins is bacteriostatic, as observed against L. casei and P. aeruginosa. Reduction in antimicrobial activity was recorded after treatment with Proteinase K, papain, trypsin, chymotrypsin, pronase, pepsin and protease. Both peptides remained active after 20 min at 121 °C. Bacteriocin ST28MS was produced at much higher levels (12,800 AU/mL) compared to bacteriocin ST26MS (6400 AU/mL) with glucose as carbon source. The activity of bacteriocin ST28MS decreased by 50% at pH below 4.0. Bacteriocin ST26MS, on the other hand, is more stable at this pH. Production of both bacteriocins is stimulated by tryptone. Potassium (KH2PO4 and K2HPO4) at 5 and 10 g/L stimulated the production of bacteriocin ST28MS, but not bacteriocin ST26MS. MRS supplemented with glycerol (1–5 g/L) did not result in any changes in the activity levels of the two bacteriocins. Ascorbic acid and Vitamins B1 and B12 are required for bacteriocin ST28MS production, but only Vitamin B12 for bacteriocin ST26MS production. No plasmids were recorded for strains ST28MS and ST26MS, suggesting that the genes encoding production of the two bacteriocins are located on the genomes.  相似文献   

18.
Bone marrow-derived mast cells (BMMCs) contain chondroitin sulfate (CS)-E comprised of GlcA-GalNAc(4SO4) units and GlcA-GalNAc(4,6-SO4) units. GalNAc 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate to position 6 of GalNAc(4SO4) residues of CS. On the basis of the specificity of GalNAc4S-6ST, it is thought that CS-E is synthesized in BMMC through the sequential sulfation by chondroitin 4-sulfotransferase (C4ST)-1 and GalNAc4S-6ST. In this paper, we investigated whether GalNAc4S-6ST and C4ST-1 are actually expressed in BMMCs in which CS-E is actively synthesized. As the bone marrow cells differentiate to BMMCs, level of C4ST-1 and GalNAc4S-6ST messages increased, whereas chondroitin 6-sulfotransferase (C6ST)-1 message decreased. In the extract of BMMCs, activity of GalNAc4S-6ST and C4ST but not C6ST were detected. The recombinant mouse GalNAc4S-6ST transferred sulfate to both nonreducing terminal and internal GalNAc(4SO4) residues; the activity toward nonreducing terminal GalNAc(4SO4) was increased with increasing pH. When CS-E synthesized by BMMCs was metabolically labeled with 35SO4 in the presence of bafilomycin A, chloroquine or NH4Cl, the proportion of the nonreducing terminal GalNAc(4,6-SO4) was increased compared with the control, suggesting that GalNAc4S-6ST in BMMC may elaborate CS-E in the intracellular compartment with relatively low pH where sulfation of the internal GalNAc(4SO4) by GalNAc4S-6ST preferentially occurs.  相似文献   

19.
We have previously found that the purified chondroitin 6-sulfotransferase(C6ST), which transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate(PAPS) to position 6 of N-acetylgalactosamine in chondroitin,catalyzed the sulfation of keratan sulfate, and that both theC6ST activity and the keratan sulfate sulfotransferase (KSST)activity were expressed in COS-7 cells when C6ST cDNA was transfected.In this report we describe some properties of the KSST activitycontained in the purified C6ST, and characterize the sulfatedproducts formed from keratan sulfate and partially desulfatedkeratan sulfate. Optimal pH, requirement for cationic activators,and Km value for PAPS of the KSST activity were very similarto those of the C6ST activity. 35S-Labeled glycosaminoglycansformed from keratan sulfate and partially desulfated keratansulfate were N-deacetylated by treatment with hydrazine/hydrazinesulfate and then cleaved with HNO2 at pH 4, and the resultingproducts were reduced with NaB3H4. Analysis of the degradationproducts with paper chromatography and high performance liquidchromatography provided evidence that C6ST transferred sulfateto position 6 of galactose residue which was glycosidicallylinked to N-acetylglucosamine 6-sulfate residue or to N-acetylglucosamineresidue. Northern blot analysis using poly (A)+ RNA from 12-d-oldchick embryos indicated that the message of C6ST was expressednot only in the cartilage but also in the cornea in which keratansulfate is actively synthesized. chondroitin sulfate keratan sulfate glycosaminoglycan sulfotransferase hydrazinolysis deaminative cleavage  相似文献   

20.
Streptococcus lactis was grown with Aspergillus parasiticus in modified APT broth. Three inoculation procedures were used: (a) S. lactis was grown 3 days, then conidia of A. parasiticus were added (SLAP), (b) both organisms were added simultaneously (ST) and (c) A. parasiticus was grown 3 days, then S. lactis was added (APSL). At 3, 6 and 10 days of incubation, contents of flasks were analyzed for growth of each organism, pH of broth and aflatoxin content. S. lactis did not survive past 3 days when grown alone. In ST cultures, S. lactis grew to the same extent as in the control at 3 days; it remained viable at a low level through 10 days. In APSL cultures, S. lactis growth was inhibited at 3 days but the bacterium survived through 7 days (10 days of mold growth) at reduced numbers. At 3 days there were no appreciable differences in growth of A. parasiticus. At 6 days, in ST and SLAP cultures, growth of the mold was inhibited, while in the APSL culture growth increased over that in the control. At 10 days, growth of mold was somewhat increased over the control in all test conditions. The pH of broth in the A. parasiticus control and APSL culture was 6 at 3 days, dropped to 4.5–4.6 at 6 days and rose to 7 by 10 days. In ST and SLAP cultures, the pH was at 4.1 at 3 days and rose to pH 7 by 10 days. Aflatoxin (B1 plus G1) content was lowest at 3 days and increased at 6 days. Between 6 and 10 days two patterns were observed. In APSL and SLAP cultures, aflatoxin content decreased, while it increased in the ST culture. These patterns occurred when aflatoxin content was expressed on a total or per gram of dried mycelium basis. At 3 days the amounts of aflatoxin B1 and G1 were approximately equal. Between 3–6 days the amount of G1 increased more rapidly than that of B1. Between 6 and 10 days in the ST culture, the amount of G1 increased at a slower rate than that of B1 while in SLAP and APSL cultures, the amount of G1 decreased more rapidly than that of B1. When a different lot of the same medium was used, aflatoxin production was greatly reduced. The pH of broth at all test conditions rose through the incubation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号