首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

In Gilles de la Tourette syndrome (GTS) increased activation of the primary motor cortex (M1) before and during movement execution followed by increased inhibition after movement termination was reported. The present study aimed at investigating, whether this activation pattern is due to altered functional interaction between motor cortical areas.

Methodology/Principal Findings

10 GTS-patients and 10 control subjects performed a self-paced finger movement task while neuromagnetic brain activity was recorded using Magnetoencephalography (MEG). Cerebro-cerebral coherence as a measure of functional interaction was calculated. During movement preparation and execution coherence between contralateral M1 and supplementary motor area (SMA) was significantly increased at beta-frequency in GTS-patients. After movement termination no significant differences between groups were evident.

Conclusions/Significance

The present data suggest that increased M1 activation in GTS-patients might be due to increased functional interaction between SMA and M1 most likely reflecting a pathophysiological marker of GTS. The data extend previous findings of motor-cortical alterations in GTS by showing that local activation changes are associated with alterations of functional networks between premotor and primary motor areas. Interestingly enough, alterations were evident during preparation and execution of voluntary movements, which implies a general theme of increased motor-cortical interaction in GTS.  相似文献   

2.

Background

Chronic hemiplegia is a common long-term consequence of stroke, and subsequent motor recovery is often incomplete. Neurophysiological studies have focused on motor execution deficits in relatively high functioning patients. Much less is known about the influence exerted by processes related to motor preparation, particularly in patients with poor motor recovery.

Methodology/Principal Findings

The current study investigates motor preparation using a modified response-priming experiment in a large sample of patients (n = 50) with moderate-to-severe chronic hemiparesis. The behavioural results revealed that hemiparetic patients had an increased response-priming effect compared to controls, but that their response times were markedly slower for both hands. Patients also demonstrated significantly enhanced midline late contingent negative variation (CNV) during paretic hand preparation, despite the absence of overall group differences when compared to controls. Furthermore, increased amplitude of the midline CNV correlated with a greater response-priming effect. We propose that these changes might reflect greater anticipated effort to respond in patients, and consequently that advance cueing of motor responses may be of benefit in these individuals. We further observed significantly reduced CNV amplitudes over the lesioned hemisphere in hemiparetic patients compared to controls during non-paretic hand preparation, preparation of both hands and no hand preparation. Two potential explanations for these CNV reductions are discussed: alterations in anticipatory attention or state changes in motor processing, for example an imbalance in inter-hemispheric inhibition.

Conclusions/Significance

Overall, this study provides evidence that movement preparation could play a crucial role in hemiparetic motor deficits, and that advance motor cueing may be of benefit in future therapeutic interventions. In addition, it demonstrates the importance of monitoring both the non-paretic and paretic hand after stroke and during therapeutic intervention.  相似文献   

3.

Background

The autonomic nervous system (ANS) is activated in parallel with the motor system during cyclical and effortful imagined actions. However, it is not clear whether the ANS is activated during motor imagery of discrete movements and whether this activation is specific to the movement being imagined. Here, we explored these topics by studying the baroreflex control of the cardiovascular system.

Methodology/Principal Findings

Arterial pressure and heart rate were recorded in ten subjects who executed or imagined trunk or leg movements against gravity. Trunk and leg movements result in different physiological reactions (orthostatic hypotension phenomenon) when they are executed. Interestingly, ANS activation significantly, but similarly, increased during imagined trunk and leg movements. Furthermore, we did not observe any physiological modulation during a control mental-arithmetic task or during motor imagery of effortless movements (horizontal wrist displacements).

Conclusions/Significance

We concluded that ANS activation during motor imagery is general and not specific and physiologically prepares the organism for the upcoming effortful action.  相似文献   

4.
Schaefer M  Heinze HJ  Galazky I 《PloS one》2010,5(12):e15010

Background

The alien hand syndrome is a striking phenomenon characterized by purposeful and autonomous movements that are not voluntarily initiated. This study aimed to examine neural correlates of this rare neurological disorder in a patient with corticobasal degeneration and alien hand syndrome of the left hand.

Methodology/Principal Findings

We employed functional magnetic resonance imaging to investigate brain responses associated with unwanted movements in a case study. Results revealed that alien hand movements involved a network of brain activations including the primary motor cortex, premotor cortex, precuneus, and right inferior frontal gyrus. Conscious and voluntary movements of the alien hand elicited a similar network of brain responses but lacked an activation of the inferior frontal gyrus. The results demonstrate that alien and unwanted movements may engage similar brain networks than voluntary movements, but also imply different functional contributions of prefrontal areas. Since the inferior frontal gyrus was uniquely activated during alien movements, the results provide further support for a specific role of this brain region in inhibitory control over involuntary motor responses.

Conclusions/Significance

We discuss the outcome of this study as providing evidence for a distributed neural network associated with unwanted movements in alien hand syndrome, including brain regions known to be related to movement execution and planning as well as areas that have been linked to inhibition control (inferior frontal gyrus) and experience of agency (precuneus).  相似文献   

5.

Objective

Conversion paresis patients and healthy people feigning weakness both exhibit weak voluntary movement without detectable neuropathology. Uniquely, conversion patients lack a sense of conscious awareness of the origin of their impairment. We investigated whether conversion paresis patients show distinct electroencephalographic (EEG) markers associated with their unconscious movement deficits.

Methods

Six unilateral upper limb conversion paresis patients, 12 feigning participants asked to mimic weakness and 12 control participants performed a precued reaction time task, requiring movements of either hand, depending on precue information. Performance measures (force, reaction and movement time), and event-related EEG potentials (ERP) were compared, between groups and across hands or hemisphere, using linear mixed models.

Results

Feigners generated the same inter-hand difference in reaction and movement time as expressed by patients, even though no specific targets were set nor feedback given on these measures. We found novel ERP signatures specific to patients. When the symptomatic hand was precued, the P3 ERP component accompanying the precue was dramatically larger in patients than in feigning participants. Additionally, in patients the earlier N1 ERP component was diminished when the precue signalled either the symptomatic or asymptomatic hand.

Conclusions

These results are consistent with previous suggestions that lack of awareness of the origin of their symptoms in conversion disorder patients may result from suppression of brain activity normally related to self-agency. In patients the diminished N1 to all precues is consistent with a generalised reduction in cognitive processing of movement-related precues. The P3 enhancement in patients is unlikely to simply reflect changes required for generation of impaired movements, because it was not seen in feigners showing the same behavioural deficits. Rather, this P3 enhancement in patients may represent a neural biomarker of unconscious processes, including additional emotional loading, related to active suppression of brain circuits involved in the attribution of self-agency.  相似文献   

6.

Background

Cerebral activation during planning of reaching movements occurs both in the superior parietal lobule (SPL) and premotor cortex (PM), and their activation seems to take place in parallel.

Methodology

The activation of the SPL and PM has been investigated using transcranial magnetic stimulation (TMS) during planning of reaching movements under visual guidance.

Principal Findings

A facilitory effect was found when TMS was delivered on the parietal cortex at about half of the time from sight of the target to hand movement, independently of target location in space. Furthermore, at the same stimulation time, a similar facilitory effect was found in PM, which is probably related to movement preparation.

Conclusions

This data contributes to the understanding of cortical dynamics in the parieto-frontal network, and suggests that it is possible to interfere with the planning of reaching movements at different cortical points within a particular time window. Since similar effects may be produced at similar times on both the SPL and PM, parallel processing of visuomotor information is likely to take place in these regions.  相似文献   

7.

Background

Attention is used to enhance neural processing of selected parts of a visual scene. It increases neural responses to stimuli near target locations and is usually coupled to eye movements. Covert attention shifts, however, decouple the attentional focus from gaze, allowing to direct the attention to a peripheral location without moving the eyes. We tested whether covert attention shifts modulate ongoing neuronal activity in cortical area V6A, an area that provides a bridge between visual signals and arm-motor control.

Methodology/Principal Findings

We performed single cell recordings from 3 Macaca Fascicularis trained to fixate straight-head, while shifting attention outward to a peripheral cue and inward again to the fixation point. We found that neurons in V6A are influenced by spatial attention. The attentional modulation occurs without gaze shifts and cannot be explained by visual stimulations. Visual, motor, and attentional responses can occur in combination in single neurons.

Conclusions/Significance

This modulation in an area primarily involved in visuo-motor transformation for reaching may form a neural basis for coupling attention to the preparation of reaching movements. Our results show that cortical processes of attention are related not only to eye-movements, as many studies have shown, but also to arm movements, a finding that has been suggested by some previous behavioral findings. Therefore, the widely-held view that spatial attention is tightly intertwined with—and perhaps directly derived from—motor preparatory processes should be extended to a broader spectrum of motor processes than just eye movements.  相似文献   

8.

Background

Patients with cervical dystonia (CD) present with an impaired performance of voluntary neck movements, which are usually slow and limited. We hypothesized that such abnormality could involve defective preparation for task execution. Therefore, we examined motor preparation in CD patients using the StartReact method. In this test, a startling auditory stimulus (SAS) is delivered unexpectedly at the time of the imperative signal (IS) in a reaction time task to cause a faster execution of the prepared motor programme. We expected that CD patients would show an abnormal StartReact phenomenon.

Methods

Fifteen CD patients and 15 age matched control subjects (CS) were asked to perform a rotational movement (RM) to either side as quick as possible immediately after IS perception (a low intensity electrical stimulus to the II finger). In randomly interspersed test trials (25%) a 130 dB SAS was delivered simultaneously with the IS. We recorded RMs in the horizontal plane with a high speed video camera (2.38 ms per frame) in synchronization with the IS. The RM kinematic-parameters (latency, velocity, duration and amplitude) were analyzed using video-editing software and screen protractor. Patients were asked to rate the difficulty of their RMs in a numerical rating scale.

Results

In control trials, CD patients executed slower RMs (repeated measures ANOVA, p<0.10−5), and reached a smaller final head position angle relative to the midline (p<0.05), than CS. In test trials, SAS improved all RMs in both groups (p<0.10−14). In addition, patients were more likely to reach beyond their baseline RM than CS (χ2, p<0.001) and rated their performance better than in control trials (t-test, p<0.01).

Conclusion

We found improvement of kinematic parameters and subjective perception of motor performance in CD patients with StartReact testing. Our results suggest that CD patients reach an adequate level of motor preparation before task execution.  相似文献   

9.

Background

The current development of brain-machine interface technology is limited, among other factors, by concerns about the long-term stability of single- and multi-unit neural signals. In addition, the understanding of the relation between potentially more stable neural signals, such as local field potentials, and motor behavior is still in its early stages.

Methodology/Principal Findings

We tested the hypothesis that spatial correlation patterns of neural data can be used to decode movement target direction. In particular, we examined local field potentials (LFP), which are thought to be more stable over time than single unit activity (SUA). Using LFP recordings from chronically implanted electrodes in the dorsal premotor and primary motor cortex of non-human primates trained to make arm movements in different directions, we made the following observations: (i) it is possible to decode movement target direction with high fidelity from the spatial correlation patterns of neural activity in both primary motor (M1) and dorsal premotor cortex (PMd); (ii) the decoding accuracy of LFP was similar to the decoding accuracy obtained with the set of SUA recorded simultaneously; (iii) directional information varied with the LFP frequency sub-band, being greater in low (0.3–4 Hz) and high (48–200 Hz) frequency bands than in intermediate bands; (iv) the amount of directional information was similar in M1 and PMd; (v) reliable decoding was achieved well in advance of movement onset; and (vi) LFP were relatively stable over a period of one week.

Conclusions/Significance

The results demonstrate that the spatial correlation patterns of LFP signals can be used to decode movement target direction. This finding suggests that parameters of movement, such as target direction, have a stable spatial distribution within primary motor and dorsal premotor cortex, which may be used for brain-machine interfaces.  相似文献   

10.
Franklin DW  So U  Burdet E  Kawato M 《PloS one》2007,2(12):e1336

Background

When learning to perform a novel sensorimotor task, humans integrate multi-modal sensory feedback such as vision and proprioception in order to make the appropriate adjustments to successfully complete the task. Sensory feedback is used both during movement to control and correct the current movement, and to update the feed-forward motor command for subsequent movements. Previous work has shown that adaptation to stable dynamics is possible without visual feedback. However, it is not clear to what degree visual information during movement contributes to this learning or whether it is essential to the development of an internal model or impedance controller.

Methodology/Principle Findings

We examined the effects of the removal of visual feedback during movement on the learning of both stable and unstable dynamics in comparison with the case when both vision and proprioception are available. Subjects were able to learn to make smooth movements in both types of novel dynamics after learning with or without visual feedback. By examining the endpoint stiffness and force after learning it could be shown that subjects adapted to both types of dynamics in the same way whether they were provided with visual feedback of their trajectory or not. The main effects of visual feedback were to increase the success rate of movements, slightly straighten the path, and significantly reduce variability near the end of the movement.

Conclusions/Significance

These findings suggest that visual feedback of the hand during movement is not necessary for the adaptation to either stable or unstable novel dynamics. Instead vision appears to be used to fine-tune corrections of hand trajectory at the end of reaching movements.  相似文献   

11.

Background

A stimulus approaching the body requires fast processing and appropriate motor reactions. In monkeys, fronto-parietal networks are involved both in integrating multisensory information within a limited space surrounding the body (i.e. peripersonal space, PPS) and in action planning and execution, suggesting an overlap between sensory representations of space and motor representations of action. In the present study we investigate whether these overlapping representations also exist in the human brain.

Methodology/Principal Findings

We recorded from hand muscles motor-evoked potentials (MEPs) induced by single-pulse of transcranial magnetic stimulation (TMS) after presenting an auditory stimulus either near the hand or in far space. MEPs recorded 50 ms after the near-sound onset were enhanced compared to MEPs evoked after far sounds. This near-far modulation faded at longer inter-stimulus intervals, and reversed completely for MEPs recorded 300 ms after the sound onset. At that time point, higher motor excitability was associated with far sounds. Such auditory modulation of hand motor representation was specific to a hand-centred, and not a body-centred reference frame.

Conclusions/Significance

This pattern of corticospinal modulation highlights the relation between space and time in the PPS representation: an early facilitation for near stimuli may reflect immediate motor preparation, whereas, at later time intervals, motor preparation relates to distant stimuli potentially approaching the body.  相似文献   

12.
Yang Q  Kapoula Z 《PloS one》2011,6(5):e20322

Background

The initiation of memory guided saccades is known to be controlled by the frontal eye field (FEF). Recent physiological studies showed the existence of an area close to FEF that controls also vergence initiation and execution. This study is to explore the effect of transcranial magnetic simulation (TMS) over FEF on the control of memory-guided saccade-vergence eye movements.

Methodology/Principal Findings

Subjects had to make an eye movement in dark towards a target flashed 1 sec earlier (memory delay); the location of the target relative to fixation point was such as to require either a vergence along the median plane, or a saccade, or a saccade with vergence; trials were interleaved. Single pulse TMS was applied on the left or right FEF; it was delivered at 100 ms after the end of memory delay, i.e. extinction of fixation LED that was the “go” signal. Twelve healthy subjects participated in the study. TMS of left or right FEF prolonged the latency of all types of eye movements; the increase varied from 21 to 56 ms and was particularly strong for the divergence movements. This indicates that FEF is involved in the initiation of all types of memory guided movement in the 3D space. TMS of the FEF also altered the accuracy but only for leftward saccades combined with either convergence or divergence; intrasaccadic vergence also increased after TMS of the FEF.

Conclusions/Significance

The results suggest anisotropy in the quality of space memory and are discussed in the context of other known perceptual motor anisotropies.  相似文献   

13.

Background

Coactivation of primary motor cortex ipsilateral to a unilateral movement (M1ipsilateral) has been observed, and the magnitude of activation is influenced by the contracting muscles. It has been suggested that the microstructural integrity of the callosal motor fibers (CMFs) connecting M1 regions may reflect the observed response. However, the association between the structural connectivity of CMFs and functional changes in M1ipsilateral remains unclear. The purpose of this study was to investigate the relationship between functional changes within M1ipsilateral during unilateral arm or leg movements and the microstructure of the CMFs connecting both homotopic representations (arm or leg).

Methods

Transcranial magnetic stimulation was used to assess changes in motor evoked potentials (MEP) in an arm muscle during unilateral movements compared to rest in fifteen healthy adults. Functional magnetic resonance imaging was then used to identify regions of M1 associated with either arm or leg movements. Diffusion-weighted imaging data was acquired to generate CMFs for arm and leg areas using the areas of activation from the functional imaging as seed masks. Individual values of regional fractional anisotropy (FA) of arm and leg CMFs was then calculated by examining the overlap between CMFs and a standard atlas of corpus callosum.

Results

The change in the MEP was significantly larger in the arm movement compared to the leg movement. Additionally, regression analysis revealed that FA in the arm CMFs was positively correlated with the change in MEP during arm movement, whereas a negative correlation was observed during the leg movement. However, there was no significant relationship between FA in the leg CMF and the change in MEP during the movements.

Conclusions

These findings suggest that individual differences in interhemispheric structural connectivity may be used to explain a homologous muscle-dominant effect within M1ipsilateral hand representation during unilateral movement with topographical specificity.  相似文献   

14.

Background

In the context of interacting activities requiring close-body contact such as fighting or dancing, the actions of one agent can be used to predict the actions of the second agent [1]. In the present study, we investigated whether interpersonal predictive coding extends to interactive activities – such as communicative interactions - in which no physical contingency is implied between the movements of the interacting individuals.

Methodology/Principal Findings

Participants observed point-light displays of two agents (A and B) performing separate actions. In the communicative condition, the action performed by agent B responded to a communicative gesture performed by agent A. In the individual condition, agent A''s communicative action was substituted with a non-communicative action. Using a simultaneous masking detection task, we demonstrate that observing the communicative gesture performed by agent A enhanced visual discrimination of agent B.

Conclusions/Significance

Our finding complements and extends previous evidence for interpersonal predictive coding, suggesting that the communicative gestures of one agent can serve as a predictor for the expected actions of the respondent, even if no physical contact between agents is implied.  相似文献   

15.

Background

Human movement can be guided automatically (implicit control) or attentively (explicit control). Explicit control may be engaged when learning a new movement, while implicit control enables simultaneous execution of multiple actions. Explicit and implicit control can often be assigned arbitrarily: we can simultaneously drive a car and tune the radio, seamlessly allocating implicit or explicit control to either action. This flexibility suggests that sensorimotor signals, including those that encode spatially overlapping perception and behavior, can be accurately segregated to explicit and implicit control processes.

Methodology/Principal Findings

We tested human subjects'' ability to segregate sensorimotor signals to parallel control processes by requiring dual (explicit and implicit) control of the same reaching movement and testing for interference between these processes. Healthy control subjects were able to engage dual explicit and implicit motor control without degradation of performance compared to explicit or implicit control alone. We then asked whether segregation of explicit and implicit motor control can be selectively disrupted by studying dual-control performance in subjects with no clinically manifest neurologic deficits in the presymptomatic stage of Huntington''s disease (HD). These subjects performed successfully under either explicit or implicit control alone, but were impaired in the dual-control condition.

Conclusion/Significance

The human nervous system can exert dual control on a single action, and is therefore able to accurately segregate sensorimotor signals to explicit and implicit control. The impairment observed in the presymptomatic stage of HD points to a possible crucial contribution of the striatum to the segregation of sensorimotor signals to multiple control processes.  相似文献   

16.

Background

Catch-up saccades during passive head movements, which compensate for a deficient vestibulo-ocular reflex (VOR), are a well-known phenomenon. These quick eye movements are directed toward the target in the opposite direction of the head movement. Recently, quick eye movements in the direction of the head movement (covert anti-compensatory quick eye movements, CAQEM) were observed in older individuals. Here, we characterize these quick eye movements, their pathophysiology, and clinical relevance during head impulse testing (HIT).

Methods

Video head impulse test data from 266 patients of a tertiary vertigo center were retrospectively analyzed. Forty-three of these patients had been diagnosed with vestibular migraine, and 35 with Menière’s disease.

Results

CAQEM occurred in 38% of the patients. The mean CAQEM occurrence rate (per HIT trial) was 11±10% (mean±SD). Latency was 83±30 ms. CAQEM followed the saccade main sequence characteristics and were compensated by catch-up saccades in the opposite direction. Compensatory saccades did not lead to more false pathological clinical head impulse test assessments (specificity with CAQEM: 87%, and without: 85%). CAQEM on one side were associated with a lower VOR gain on the contralateral side (p<0.004) and helped distinguish Menière’s disease from vestibular migraine (p = 0.01).

Conclusion

CAQEM are a common phenomenon, most likely caused by a saccadic/quick phase mechanism due to gain asymmetries. They could help differentiate two of the most common causes of recurrent vertigo: vestibular migraine and Menière’s disease.  相似文献   

17.

Background

Motor imagery is considered as a promising therapeutic tool for rehabilitation of motor planning problems in patients with cerebral palsy. However motor planning problems may lead to poor motor imagery ability.

Aim

The aim of this functional magnetic resonance imaging study was to examine and compare brain activation following motor imagery tasks in patients with hemiplegic cerebral palsy with left or right early brain lesions. We tested also the influence of the side of imagined hand movement.

Method

Twenty patients with clinical hemiplegic cerebral palsy (sixteen males, mean age 12 years and 10 months, aged 6 years 10 months to 20 years 10 months) participated in this study. Using block design, brain activations following motor imagery of a simple opening-closing hand movement performed by either the paretic or nonparetic hand was examined.

Results

During motor imagery tasks, patients with early right brain damages activated bilateral fronto-parietal network that comprise most of the nodes of the network well described in healthy subjects. Inversely, in patients with left early brain lesion brain activation following motor imagery tasks was reduced, compared to patients with right brain lesions. We found also a weak influence of the side of imagined hand movement.

Conclusion

Decreased activations following motor imagery in patients with right unilateral cerebral palsy highlight the dominance of the left hemisphere during motor imagery tasks. This study gives neuronal substrate to propose motor imagery tasks in unilateral cerebral palsy rehabilitation at least for patients with right brain lesions.  相似文献   

18.

Background

The aim of this longitudinal study was to investigate how the kinematic organization of upper limb movements changes from fetal to post-natal life. By means of off-line kinematical techniques we compared the kinematics of hand-to-mouth and hand-to-eye movements, in the same individuals, during prenatal life and early postnatal life, as well as the kinematics of hand-to-mouth and reaching-toward-object movements in the later age periods.

Methodology/Principal Findings

Movements recorded at the 14th, 18th and 22nd week of gestation were compared with similar movements recorded in an ecological context at 1, 2, 3, 4, 8, and 12 months after birth. The results indicate a similar kinematic organization depending on movement type (i.e., eye, mouth) for the infants at one month and for the fetuses at 22 weeks of gestation. At two and three months such differential motor planning depending on target is lost and no statistical differences emerge. Hand to eye movements were no longer observed after the fourth month of life, therefore we compared kinematics for hand to mouth with hand to object movements. Results of these analyses revealed differences in the performance of hand to mouth and reaching to object movements in the length of the deceleration phase of the movement, depending on target.

Conclusion/Significance

Data are discussed in terms of how the passage from intrauterine to extra-uterine environments modifies motor planning. These results provide novel evidence of how different types of upper extremity movements, those directed towards one’s own face and those directed to external objects, develop.  相似文献   

19.
Proactive and reactive inhibition are generally intended as mechanisms allowing the withholding or suppression of overt movements. Nonetheless, inhibition could also play a pivotal role during covert actions (i.e., potential motor acts not overtly performed, despite the activation of the motor system), such as Motor Imagery (MI). In a previous EEG study, we analyzed cerebral activities reactively triggered during two cued Go/NoGo tasks, requiring execution or withholding of overt or covert imagined actions, respectively. This study revealed activation of pre-supplementary motor area (pre-SMA) and right inferior frontal gyrus (rIFG), key nodes of the network underpinning reactive inhibition of overt responses in NoGo trials, also during MI enactment, enabling the covert nature of the imagined motor response. Taking into account possible proactive engagement of inhibitory mechanisms by cue signals, for an exhaustive interpretation of these previous findings in the present study we analyzed EEG activities elicited during the preparatory phase of our cued overt and covert Go/NoGo tasks. Our results demonstrate a substantial overlap of cerebral areas activated during proactive recruitment and subsequent reactive implementation of motor inhibition in both overt and covert actions; also, different involvement of pre-SMA and rIFG emerged, in accord with the intended type (covert or overt) of incoming motor responses. During preparation of the overt Go/NoGo task, the cue is encoded in a pragmatic mode, as it primes the possible overt motor response programs in motor and premotor cortex and, through preactivation of a pre-SMA-related decisional mechanism, it triggers a parallel preparation for successful response selection and/or inhibition during the response phase. Conversely, the preparatory strategy for the covert Go/NoGo task is centered on priming of an inhibitory mechanism in rIFG, tuned to the instructed covert modality of motor performance and instantiated during subsequent MI, which allows the imagined response to remain a potential motor act.  相似文献   

20.

Objective

Brain-computer interfaces (BCIs) provide a non-muscular communication channel for patients with late-stage motoneuron disease (e.g., amyotrophic lateral sclerosis (ALS)) or otherwise motor impaired people and are also used for motor rehabilitation in chronic stroke. Differences in the ability to use a BCI vary from person to person and from session to session. A reliable predictor of aptitude would allow for the selection of suitable BCI paradigms. For this reason, we investigated whether P300 BCI aptitude could be predicted from a short experiment with a standard auditory oddball.

Methods

Forty healthy participants performed an electroencephalography (EEG) based visual and auditory P300-BCI spelling task in a single session. In addition, prior to each session an auditory oddball was presented. Features extracted from the auditory oddball were analyzed with respect to predictive power for BCI aptitude.

Results

Correlation between auditory oddball response and P300 BCI accuracy revealed a strong relationship between accuracy and N2 amplitude and the amplitude of a late ERP component between 400 and 600 ms. Interestingly, the P3 amplitude of the auditory oddball response was not correlated with accuracy.

Conclusions

Event-related potentials recorded during a standard auditory oddball session moderately predict aptitude in an audiory and highly in a visual P300 BCI. The predictor will allow for faster paradigm selection.

Significance

Our method will reduce strain on patients because unsuccessful training may be avoided, provided the results can be generalized to the patient population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号