首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brain operates through the coordinated activation and the dynamic communication of neuronal assemblies. A major open question is how a vast repertoire of dynamical motifs, which underlie most diverse brain functions, can emerge out of a fixed topological and modular organization of brain circuits. Compared to in vivo studies of neuronal circuits which present intrinsic experimental difficulties, in vitro preparations offer a much larger possibility to manipulate and probe the structural, dynamical and chemical properties of experimental neuronal systems. This work describes an in vitro experimental methodology which allows growing of modular networks composed by spatially distinct, functionally interconnected neuronal assemblies. The protocol allows controlling the two-dimensional (2D) architecture of the neuronal network at different levels of topological complexity.A desired network patterning can be achieved both on regular cover slips and substrate embedded micro electrode arrays. Micromachined structures are embossed on a silicon wafer and used to create biocompatible polymeric stencils, which incorporate the negative features of the desired network architecture. The stencils are placed on the culturing substrates during the surface coating procedure with a molecular layer for promoting cellular adhesion. After removal of the stencils, neurons are plated and they spontaneously redirected to the coated areas. By decreasing the inter-compartment distance, it is possible to obtain either isolated or interconnected neuronal circuits. To promote cell survival, cells are co-cultured with a supporting neuronal network which is located at the periphery of the culture dish. Electrophysiological and optical recordings of the activity of modular networks obtained respectively by using substrate embedded micro electrode arrays and calcium imaging are presented. While each module shows spontaneous global synchronizations, the occurrence of inter-module synchronization is regulated by the density of connection among the circuits.  相似文献   

2.
With the growing recognition that rhythmic and oscillatory patterns are widespread in the brain and play important roles in all aspects of the function of our nervous system, there has been a resurgence of interest in neuronal synchronized bursting activity. Here, we were interested in understanding the development of synchronized bursts as information-bearing neuronal activity patterns. For that, we have monitored the morphological organization and spontaneous activity of neuronal networks cultured on multielectrode-arrays during their self-executed evolvement from a mixture of dissociated cells into an active network. Complex collective network electrical activity evolved from sporadic firing patterns of the single neurons. On the system (network) level, the activity was marked by bursting events with interneuronal synchronization and nonarbitrary temporal ordering. We quantified these individual-to-collective activity transitions using newly-developed system level quantitative measures of time series regularity and complexity. We found that individual neuronal activity before synchronization was characterized by high regularity and low complexity. During neuronal wiring, there was a transient period of reorganization marked by low regularity, which then leads to coemergence of elevated regularity and functional (nonstochastic) complexity. We further investigated the morphology-activity interplay by modeling artificial neuronal networks with different topological organizations and connectivity schemes. The simulations support our experimental results by showing increased levels of complexity of neuronal activity patterns when neurons are wired up and organized in clusters (similar to mature real networks), as well as network-level activity regulation once collective activity forms.  相似文献   

3.
Numerous evidence demonstrates that astrocytes, a type of glial cell, are integral functional elements of the synapses, responding to neuronal activity and regulating synaptic transmission and plasticity. Consequently, they are actively involved in the processing, transfer and storage of information by the nervous system, which challenges the accepted paradigm that brain function results exclusively from neuronal network activity, and suggests that nervous system function actually arises from the activity of neuron–glia networks. Most of our knowledge of the properties and physiological consequences of the bidirectional communication between astrocytes and neurons resides at cellular and molecular levels. In contrast, much less is known at higher level of complexity, i.e. networks of cells, and the actual impact of astrocytes in the neuronal network function remains largely unexplored. In the present article, we summarize the current evidence that supports the notion that astrocytes are integral components of nervous system networks and we discuss some functional properties of intercellular signalling in neuron–glia networks.  相似文献   

4.
The hypothesis is introduced that miniaturization of neuronal circuits in the central nervous system and the hierarchical organization of the various levels, where information handling can take place, may be the key to understand the enormous capability of the human brain to store engrams as well as its astonishing capacity to reconstruct and organize engrams and thus to perform highly sophisticated integrations. The concept is also proposed that in order to understand the relationship between the structural and functional plasticity of the central nervous system it is necessary to postulate the existence of memory storage at the network level, at the local circuit level, at the synaptic level, at the membrane level, and finally at the moIecular level. Thus, memory organization is similar to the hierarchical organization of the various levels, where information handling takes place in the nervous system. In addition, each higher level plays a role in the reconstruction and organization of the engrams stored at lower levels. Thus, the trace of the functionally stored memory (i.e. its reconstruction and organization at various levels of storage) will depend not only on the chemicophysical changes in the membranes of the local circuits but also on the organization of the local circuits themselves and their associated neuronal networks.Dedicated to Prof. R. Luft for his outstanding achievements in endocrinology and his provocative and inspiring discussions in biology.  相似文献   

5.
Korochkin LI 《Ontogenez》2000,31(2):94-113
This article provides a review of current views about the role of cell genetic machinery in the control of development of neurons of the autonomous nervous system. Some of the genes defining migration and specification of these neurons are described. We give a schematic presentation of the genetically determined organization of the neuronal networks, which are a basis of the intramural nervous machinery and sympathetic ganglia. We describe the distribution of neurons with different transmitter specificity in the cell populations comprising the neuronal networks.  相似文献   

6.
7.
This article provides a review of current views about the role of cell genetic machinery in the control of development of neurons of the autonomous nervous system. Some of the genes defining migration and specification of these neurons are described. We give a schematic presentation of the genetically determined organization of the neuronal networks, which are a basis of the intramural nervous machinery and sympathetic ganglia. We describe the distribution of neurons with different transmitter specificity in the cell populations comprising the neuronal networks. To the memory of my friend Aleksandr Neifakh, an outstanding Russian embryologist  相似文献   

8.
Small-World Networks (SWNs) represent a fundamental model for the comprehension of many complex man-made and biological networks. In the central nervous system, SWN models have been shown to fit well both anatomical and functional maps at the macroscopic level. However, the functional microscopic level, where the nodes of a network are represented by single neurons, is still poorly understood. At this level, although recent evidences suggest that functional connection graphs exhibit small-world organization, it is not known whether and how these maps, potentially distributed in multiple brain regions, change across different conditions, such as spontaneous and stimulus-evoked activities. We addressed these questions by analyzing the data from simultaneous multi-array extracellular recordings in three brain regions of rats, diversely involved in somatosensory information processing: the ventropostero-lateral thalamic nuclei, the primary somatosensory cortex and the centro-median thalamic nuclei. From both spike and Local Field Potential (LFP) recordings, we estimated the functional connection graphs by using the Normalized Compression Similarity for spikes and the Phase Synchrony for LFPs. Then, by using graph-theoretical statistics, we characterized the functional topology both during spontaneous activity and sensory stimulation. Our main results show that: (i) spikes and LFPs show SWN organization during spontaneous activity; (ii) after stimulation onset, while substantial functional graph reconfigurations occur both in spike and LFPs, small-worldness is nonetheless preserved; (iii) the stimulus triggers a significant increase of inter-area LFP connections without modifying the topology of intra-area functional connections. Finally, investigating computationally the functional substrate that supports the observed phenomena, we found that (iv) the fundamental concept of cell assemblies, transient groups of activating neurons, can be described by small-world networks. Our results suggest that activity of neurons from multiple areas of the rat somatosensory system contributes to the integration of local computations arisen in distributed functional cell assemblies according to the principles of SWNs.  相似文献   

9.
It has been suggested that spontaneous synchronous neuronal activity is an essential step in the formation of functional networks in the central nervous system. The key features of this type of activity consist of bursts of action potentials with associated spikes of elevated cytoplasmic calcium. These features are also observed in networks of rat cortical neurons that have been formed in culture. Experimental studies of these cultured networks have led to several hypotheses for the mechanisms underlying the observed synchronized oscillations. In this paper, bursting integrate-and-fire type mathematical models for regular spiking (RS) and intrinsic bursting (IB) neurons are introduced and incorporated through a small-world connection scheme into a two-dimensional excitatory network similar to those in the cultured network. This computer model exhibits spontaneous synchronous activity through mechanisms similar to those hypothesized for the cultured experimental networks. Traces of the membrane potential and cytoplasmic calcium from the model closely match those obtained from experiments. We also consider the impact on network behavior of the IB neurons, the geometry and the small world connection scheme. Action Editor: David Golomb  相似文献   

10.
During the computations performed by the nervous system, its ‘wiring diagram’—the map of its neurons and synaptic connections—is dynamically modified and supplemented by multiple actions of neuromodulators that can be so complex that they can be thought of as constituting a biochemical network that combines with the neuronal network to perform the computation. Thus, the neuronal wiring diagram alone is not sufficient to specify, and permit us to understand, the computation that underlies behaviour. Here I review how such modulatory networks operate, the problems that their existence poses for the experimental study and conceptual understanding of the computations performed by the nervous system, and how these problems may perhaps be solved and the computations understood by considering the structural and functional ‘logic’ of the modulatory networks.  相似文献   

11.
The formation of the complex network architecture of neural systems is subject to multiple structural and functional constraints. Two obvious but apparently contradictory constraints are low wiring cost and high processing efficiency, characterized by short overall wiring length and a small average number of processing steps, respectively. Growing evidence shows that neural networks are results from a trade-off between physical cost and functional value of the topology. However, the relationship between these competing constraints and complex topology is not well understood quantitatively. We explored this relationship systematically by reconstructing two known neural networks, Macaque cortical connectivity and C. elegans neuronal connections, from combinatory optimization of wiring cost and processing efficiency constraints, using a control parameter , and comparing the reconstructed networks to the real networks. We found that in both neural systems, the reconstructed networks derived from the two constraints can reveal some important relations between the spatial layout of nodes and the topological connectivity, and match several properties of the real networks. The reconstructed and real networks had a similar modular organization in a broad range of , resulting from spatial clustering of network nodes. Hubs emerged due to the competition of the two constraints, and their positions were close to, and partly coincided, with the real hubs in a range of values. The degree of nodes was correlated with the density of nodes in their spatial neighborhood in both reconstructed and real networks. Generally, the rebuilt network matched a significant portion of real links, especially short-distant ones. These findings provide clear evidence to support the hypothesis of trade-off between multiple constraints on brain networks. The two constraints of wiring cost and processing efficiency, however, cannot explain all salient features in the real networks. The discrepancy suggests that there are further relevant factors that are not yet captured here.  相似文献   

12.
Several efforts are currently underway to decipher the connectome or parts thereof in a variety of organisms. Ascertaining the detailed physiological properties of all the neurons in these connectomes, however, is out of the scope of such projects. It is therefore unclear to what extent knowledge of the connectome alone will advance a mechanistic understanding of computation occurring in these neural circuits, especially when the high-level function of the said circuit is unknown. We consider, here, the question of how the wiring diagram of neurons imposes constraints on what neural circuits can compute, when we cannot assume detailed information on the physiological response properties of the neurons. We call such constraints—that arise by virtue of the connectome—connectomic constraints on computation. For feedforward networks equipped with neurons that obey a deterministic spiking neuron model which satisfies a small number of properties, we ask if just by knowing the architecture of a network, we can rule out computations that it could be doing, no matter what response properties each of its neurons may have. We show results of this form, for certain classes of network architectures. On the other hand, we also prove that with the limited set of properties assumed for our model neurons, there are fundamental limits to the constraints imposed by network structure. Thus, our theory suggests that while connectomic constraints might restrict the computational ability of certain classes of network architectures, we may require more elaborate information on the properties of neurons in the network, before we can discern such results for other classes of networks.  相似文献   

13.
Holme P  Huss M  Lee SH 《PloS one》2011,6(5):e19759
The metabolism is the motor behind the biological complexity of an organism. One problem of characterizing its large-scale structure is that it is hard to know what to compare it to. All chemical reaction systems are shaped by the same physics that gives molecules their stability and affinity to react. These fundamental factors cannot be captured by standard null-models based on randomization. The unique property of organismal metabolism is that it is controlled, to some extent, by an enzymatic machinery that is subject to evolution. In this paper, we explore the possibility that reaction systems of planetary atmospheres can serve as a null-model against which we can define metabolic structure and trace the influence of evolution. We find that the two types of data can be distinguished by their respective degree distributions. This is especially clear when looking at the degree distribution of the reaction network (of reaction connected to each other if they involve the same molecular species). For the Earth's atmospheric network and the human metabolic network, we look into more detail for an underlying explanation of this deviation. However, we cannot pinpoint a single cause of the difference, rather there are several concurrent factors. By examining quantities relating to the modular-functional organization of the metabolism, we confirm that metabolic networks have a more complex modular organization than the atmospheric networks, but not much more. We interpret the more variegated modular arrangement of metabolism as a trace of evolved functionality. On the other hand, it is quite remarkable how similar the structures of these two types of networks are, which emphasizes that the constraints from the chemical properties of the molecules has a larger influence in shaping the reaction system than does natural selection.  相似文献   

14.
Bieberich E 《Bio Systems》2002,66(3):145-164
The regulation of biological networks relies significantly on convergent feedback signaling loops that render a global output locally accessible. Ideally, the recurrent connectivity within these systems is self-organized by a time-dependent phase-locking mechanism. This study analyzes recurrent fractal neural networks (RFNNs), which utilize a self-similar or fractal branching structure of dendrites and downstream networks for phase-locking of reciprocal feedback loops: output from outer branch nodes of the network tree enters inner branch nodes of the dendritic tree in single neurons. This structural organization enables RFNNs to amplify re-entrant input by over-the-threshold signal summation from feedback loops with equivalent signal traveling times. The columnar organization of pyramidal neurons in the neocortical layers V and III is discussed as the structural substrate for this network architecture. RFNNs self-organize spike trains and render the entire neural network output accessible to the dendritic tree of each neuron within this network. As the result of a contraction mapping operation, the local dendritic input pattern contains a downscaled version of the network output coding structure. RFNNs perform robust, fractal data compression, thus coping with a limited number of feedback loops for signal transport in convergent neural networks. This property is discussed as a significant step toward the solution of a fundamental problem in neuroscience: how is neuronal computation in separate neurons and remote brain areas unified as an instance of experience in consciousness? RFNNs are promising candidates for engaging neural networks into a coherent activity and provide a strategy for the exchange of global and local information processing in the human brain, thereby ensuring the completeness of a transformation from neuronal computation into conscious experience.  相似文献   

15.
Nervous systems extract and process information from the environment to alter animal behavior and physiology. Despite progress in understanding how different stimuli are represented by changes in neuronal activity, less is known about how they affect broader neural network properties. We developed a framework for using graph-theoretic features of neural network activity to predict ecologically relevant stimulus properties, in particular stimulus identity. We used the transparent nematode, Caenorhabditis elegans, with its small nervous system to define neural network features associated with various chemosensory stimuli. We first immobilized animals using a microfluidic device and exposed their noses to chemical stimuli while monitoring changes in neural activity of more than 50 neurons in the head region. We found that graph-theoretic features, which capture patterns of interactions between neurons, are modulated by stimulus identity. Further, we show that a simple machine learning classifier trained using graph-theoretic features alone, or in combination with neural activity features, can accurately predict salt stimulus. Moreover, by focusing on putative causal interactions between neurons, the graph-theoretic features were almost twice as predictive as the neural activity features. These results reveal that stimulus identity modulates the broad, network-level organization of the nervous system, and that graph theory can be used to characterize these changes.  相似文献   

16.
The nervous system develops through a program that produces neurons in excess and then eliminates approximately half during a period of naturally occurring death. Neuronal activity has been shown to promote the survival of neurons during this period by stimulating the production and release of neurotrophins. In the peripheral nervous system (PNS), neurons depends on neurotrophins that activate survival pathways, which explains how the size of target cells influences number of neurons that innervate them (neurotrophin hypothesis). However, in the central nervous system (CNS), the role of neurotrophins has not been clear. Contrary to the neurotrophin hypothesis, a recent study shows that, in neonatal hippocampus, neurotrophins cannot promote survival without spontaneous network activity: Neurotrophins recruit neurons into spontaneously active networks, and this activity determines which neurons survive. By placing neurotrophin upstream of activity in the survival signaling pathway, these new results change our understanding of how neurotrophins promote survival. Spontaneous, synchronized network activity begins to spread through both principle neurons and interneurons in the hippocampus as they enter the death period. At this stage, neurotransmission mediated by γ-aminobutyric acid (GABA) is excitatory and drives the spontaneous activity. An important recent observation is that neurotrophins preferentially recruit GABAergic neurons into spontaneously active networks; thus, neurotrophins select for survival only those neurons joined to active networks with strong GABAergic inputs, which would later become inhibitory. A proper excitatory/inhibitory (E/I) balance is critical for normal adult brain function. This balance may be especially important in the hippocampus where impairments in E/I balance are associated with pathologies including epilepsy. Here, I discuss the molecular mechanisms for survival in neonatal neurons, how these mechanisms change during development, and how they may be linked to degenerative diseases.  相似文献   

17.
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model''s primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.  相似文献   

18.
The study of correlations in neural circuits of different size, from the small size of cortical microcolumns to the large-scale organization of distributed networks studied with functional imaging, is a topic of central importance to systems neuroscience. However, a theory that explains how the parameters of mesoscopic networks composed of a few tens of neurons affect the underlying correlation structure is still missing. Here we consider a theory that can be applied to networks of arbitrary size with multiple populations of homogeneous fully-connected neurons, and we focus its analysis to a case of two populations of small size. We combine the analysis of local bifurcations of the dynamics of these networks with the analytical calculation of their cross-correlations. We study the correlation structure in different regimes, showing that a variation of the external stimuli causes the network to switch from asynchronous states, characterized by weak correlation and low variability, to synchronous states characterized by strong correlations and wide temporal fluctuations. We show that asynchronous states are generated by strong stimuli, while synchronous states occur through critical slowing down when the stimulus moves the network close to a local bifurcation. In particular, strongly positive correlations occur at the saddle-node and Andronov-Hopf bifurcations of the network, while strongly negative correlations occur when the network undergoes a spontaneous symmetry-breaking at the branching-point bifurcations. These results show how the correlation structure of firing-rate network models is strongly modulated by the external stimuli, even keeping the anatomical connections fixed. These results also suggest an effective mechanism through which biological networks may dynamically modulate the encoding and integration of sensory information.  相似文献   

19.
It has been generally assumed for a long time that learning is accomplished in the central nervous system (CNS) by modifying strengths of ties between neurons. Various mechanisms may contribute to this process, but it is not known which are the specific mechanisms, and what are the rules by which they operate. Theoretical models, which are based on that general assumption are introduced. The purpose of the models is to suggest plausible ways by which learned information may be stored in the neural network, and be retrieved when it is needed. The networks in the models consist of four basic subunits, in accordance with identified units in the CNS: sensing, response, feeling, and control, plus association areas. The suggested operation rules are based on established operation rules of individual neurons, and assumed rules when neurons in groups are considered. Computer simulations are done, to check the consistency of the models, and to illustrate how they work. They simulate how an hypothetical kitten learns part of its environment, and show how relevant information may be stored and retrieved in its neuronal network. The suggested mechanisms could be examined in experiments, albeit not easy ones to conduct.  相似文献   

20.
Neurons extracted from specific areas of the Central Nervous System (CNS), such as the hippocampus, the cortex and the spinal cord, can be cultured in vitro and coupled with a micro-electrode array (MEA) for months. After a few days, neurons connect each other with functionally active synapses, forming a random network and displaying spontaneous electrophysiological activity. In spite of their simplified level of organization, they represent an useful framework to study general information processing properties and specific basic learning mechanisms in the nervous system. These experimental preparations show patterns of collective rhythmic activity characterized by burst and spike firing. The patterns of electrophysiological activity may change as a consequence of external stimulation (i.e., chemical and/or electrical inputs) and by partly modifying the "randomness" of the network architecture (i.e., confining neuronal sub-populations in clusters with micro-machined barriers). In particular we investigated how the spontaneous rhythmic and synchronous activity can be modulated or drastically changed by focal electrical stimulation, pharmacological manipulation and network segregation. Our results show that burst firing and global synchronization can be enhanced or reduced; and that the degree of synchronous activity in the network can be characterized by simple parameters such as cross-correlation on burst events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号