首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In forested streams, surrounding riparian forests provide essential supplies of organic matter to aquatic ecosystems. We focused on two pathways of particulate organic matter inputs: direct input from upper riparian forests and indirect lateral input from bank slopes, for which there are limited quantitative data. We investigated the inputs of coarse particulate organic matter (CPOM) and carbon and nitrogen in the CPOM into the uppermost reaches of a headwater stream with steep bank slopes in Hokkaido, Japan. CPOM collected by litter traps was divided into categories (e.g., leaves, twigs) and weighed. Monthly nitrogen and carbon inputs were also estimated. The annual direct input of CPOM (ash-free dry mass) was 472 g m−2, a common value for temperate riparian forests. The annual lateral CPOM input was 353 g m−1 and 941 g m−2 when they were converted to area base. This value surpassed the direct input. Organic matter that we could not separate from inorganic sediments contributed to the total lateral input from the bank slopes (124 g m−1); this organic matter contained relatively high amounts of nitrogen and carbon. At uppermost stream reaches, the bank slope would be a key factor to understanding the carbon and nitrogen pathways from the surrounding terrestrial ecosystem to the aquatic ecosystem.  相似文献   

2.
Abstract Vertical litterfall and lateral litter movement were monitored in the riparian zone of Birthday Creek, a small upland rainforest stream in north Queensland, from June 1987 to May 1990. Total litterfall (mean = 484 g m?2 year-1) was low in comparison with other tropical sites both within Australia and elsewhere. Litterfall was distinctly seasonal, with maxima occurring in the spring (October-November) and minima in winter (June–July). Tropical storms caused short-term increases in litterfall, especially of the small wood fraction. Overall, laterally transported litter contributed 6.8% of the total litter input to the monitored section of the stream. Lateral movement varied according to bank slope and microtopographic features and was not related to wind. Nitrogen and phosphorus concentration of leaves were low (mean N= 1.26%, P = 0.029% by weight). Nitrogen concentration of laterally transported levels overall was about 19% higher than that of leaves falling directly into the stream.  相似文献   

3.
Litterbag experiments were carried out in five forest ecosystems in the Netherlands to study weight loss and nitrogen dynamics during the first two years of decomposition of leaf and needle litter. All forests were characterized by a relatively high atmospheric nitrogen input by throughfall, ranging from 22–55 kg N ha–1 yr–1.Correlation analysis of all seven leaf and needle litters revealed no significant relation between the measured litter quality indices (nitrogen and lignin concentration, lignin-to-nitrogen ratio) and the decomposition rate. A significant linear relation was found between initial lignin-to-nitrogen ratio and critical nitrogen concentration, suggesting an effect of litter quality on nitrogen dynamics.Comparison of the decomposition of oak leaves in a nitrogen-limited and a nitrogen-saturated forest suggested an increased nitrogen availability. The differences in capacities to retain atmospheric nitrogen inputs between these two sites could be explained by differences in net nitrogen immobilization in first year decomposing oak leaves: in the nitrogen-limited oak forest a major part (55%) of the nitrogen input by throughfall was immobilized in the first year oak leaf litter.The three coniferous forests consisted of two monocultures of Douglas fir and a mixed stand of Douglas fir and Scots pine. Despite comparable litter quality in the Douglas fir needles in all sites, completely different nitrogen dynamics were found.  相似文献   

4.
1. The quality of allochthonous organic matter influences the transfer of energy and nutrients through recipient food webs. We investigated the effects of variation in the composition of riparian forests (deciduous, mixed, coniferous) on the elemental imbalance between basal resources and consumers in streams, on consumer feeding and on potential feedbacks to riparian systems via emergent aquatic insects. 2. We tested for differences in elemental stoichiometry (carbon/nitrogen/phosphorus; C/N/P) and stable isotopes (?13C and ?15N) between deciduous (red alder, Alnus rubra) and coniferous litter (western hemlock, Tsuga heterophylla) and among abundant stream invertebrates from streams draining different riparian forests (deciduous, mixed, coniferous). We then assessed shredder feeding preferences (of the trichopteran, Lepidostoma unicolor) for litter incubated in streams with these different forest types and quantified differences in emergence of aquatic and semiaquatic insects among streams. 3. Both initial (non‐incubated) and stream‐incubated A. rubra litter had lower C/N and C/P and were more depleted in ?13C and more enriched in ?15N, than T. heterophylla litter. The stoichiometry of invertebrate tissue did not vary significantly among taxa or with riparian forest composition. A predator (the plecopteran Chloroperlidae) and a collector‐gatherer (the ephemeropteran Paraleptophlebia gregalis) from mixed and coniferous forest streams were more enriched in ?13C and ?15N isotopes than those from deciduous streams, suggesting that low availability of palatable, N‐rich A. rubra litter may constrain energy flow and nutrient fluxes up through the food web in systems with little or no A. rubra. 4. Consumption of A. rubra litter by L. unicolor was most rapid when the litter had been incubated in streams draining deciduous forests, whereas consumption of T. heterophylla litter was not influenced by the composition of the riparian forest. 5. Peak insect emergence from coniferous forest streams occurred 1 month earlier and at 2–3× higher density than from mixed and deciduous‐forest streams, but total biomass of emerging insects throughout the study period was not different between forest types. Assemblages of emerging insects were different between deciduous and coniferous forest streams, and taxon richness and diversity were nearly 2× greater from deciduous than from coniferous forest streams. 6. Forest composition influences stream invertebrate feeding and could have reciprocal feedbacks onto riparian systems via altered insect emergence.  相似文献   

5.
Soil respiration (heterotropic and autotropic respiration, Rg) and aboveground litter fall carbon were measured at three forests at different succession (early, middle and advanced) stages in Dinghushan Biosphere Reserve, Southern China. It was found that the soil respiration increases exponentially with soil temperature at 5 cm depth (Ts) according to the relation Rg=a exp(bTs), and the more advanced forest community during succession has a higher value of a because of higher litter carbon input than the forests at early or middle succession stages. It was also found that the monthly soil respiration is linearly correlated with the aboveground litter carbon input of the previous month. Using measurements of aboveground litter and soil respiration, the net primary productions (NPPs) of three forests were estimated using nonlinear inversion. They are 475, 678 and 1148 g C m?2 yr?1 for the Masson pine forest (MPF), coniferous and broad‐leaf mixed forest (MF) and subtropical monsoon evergreen broad‐leaf forest (MEBF), respectively, in year 2003/2004, of which 54%, 37% and 62% are belowground NPP for those three respective forests if no change in live plant biomass is assumed. After taking account of the decrease in live plant biomass, we estimated the NPP of the subtropical MEBF is 970 g C m?2 yr?1 in year 2003/2004. Total amount of carbon allocated below ground for plant roots is 388 g C m?2 yr?1 for the MPF, 504 g C m?2 yr?1 for the coniferous and broad‐leaf MF and 1254 g C m?2 yr?1 for the subtropical MEBF in 2003/2004. Our results support the hypothesis that the amount of carbon allocation belowground increases during forest succession.  相似文献   

6.
Sugi (Cryptomeria japonica D. Don) is one of the most important evergreen coniferous plantation species in Japan. Much of the riparian forest that was originally dominated by deciduous broadleaf trees has been converted into sugi plantations. The present study investigated the seasonality of leaf-litter input and leaf dispersal to streams to assess the effects of converting riparian forest to sugi plantations. The seasonality of leaf-litter input was assessed at three streams in Nagoya University Forest. At one stream dominated by deciduous broadleaf trees, input was limited to autumn. At two streams in a sugi plantation, input was prolonged from autumn to early spring, and was dominated by sugi needles from winter to early spring. These results suggest that sugi plantations alter the seasonality of leaf-litter input from riparian forests and affect stream ecosystems. Leaf dispersal was assessed by considering the relationship between leaf dispersal distance from three forest layers to the stream and leaf-litter input into two streams. The maximum leaf dispersal distance was 26–28 m for deciduous broadleaf trees from mid-October to November and 10–12 m for sugi needles from December to April. Leaf dispersal distance depended on the tree species. Four species of deciduous broadleaf tree showed greater leaf dispersal than that of sugi. The mean weight of individual sugi needles was higher than that of the broadleaf trees’ leaves, and dispersal depended on strong winds in winter and early spring. Although the leaf dispersal distance from the understory was within 2–4 m, it could be a significant source of leaf-litter input to streams.  相似文献   

7.
In forest ecosystems litter is usually assessed in terms of the average amount produced by the canopy. In scattered tree ecosystems this approach is problematic because the canopy is discontinuous and the spatial arrangement of litter highly variable. We addressed this problem by quantifying the spatial variation in litter load and litter composition associated with individual trees in a Eucalyptus melliodora – Eucalyptus blakelyi woodland. Litter was sampled under crowns and in grassland adjacent to 10 E. blakelyi and 10 E. melliodora trees ranging in diameter at breast height (dbh) from 14 to 129 cm. A total of 302 L samples were collected from these trees, at distances ranging from 0 to 42 m from main stem. The sampled litter loads ranged from 0.02 to 109.3 t ha?1 and were significantly higher under tree crowns than in grassland for litter and each component of litter (leaves, bark, fine twigs, coarse twigs). In particular, the mean litter load under tree crowns (12.5 t ha?1) was an order of magnitude higher than the mean litter load in grassland (1.27 t ha?1). There was a significant (P = 0.0103) positive relationship between mean litter load under the tree crown and dbh, indicating larger trees produced more litter per unit area of ground than smaller trees. Generalized Linear Modelling produced highly significant (P < 0.0001) models predicting the spatial variation in litter load and litter composition in terms of distance from main stem and dbh. Our models demonstrate gradients in litter load and composition under tree crowns. These gradients were most pronounced for the large trees in our study. The disproportionate input of litter and variety of litter components associated with large trees in our study supports their keystone role in scattered tree ecosystems and highlights the need to maintain these structures in agricultural landscapes.  相似文献   

8.
1. Terrestrial plant litter entering two forest and two pasture sites on upland streams in south-eastern Australia was measured over a 2-year period using traps suspended above the streams. Laterally transported terrestrial plant litter was also determined in one stream, but found to be only 10% of the total. 2. Litter accession to traps suspended above the stream was significantly lower at both forested sites than was litter fall in the adjacent riparian vegetation. 3. Litter input was high (600–700g DW m?2yr?1) and seasonal, with 30–50% of the annual total entering the stream during December—February (summer). However, seasonality was not as great as that recorded in Northern Hemisphere deciduous forest streams. 4. Leaves comprised the largest litter component, but represented a relatively smaller proportion of the litter than is usually the case in Northern Hemisphere deciduous forest streams; in contrast bark was a relatively large proportion of the litter. 5. At the sites flowing through pasture, litter accession was about two orders of magnitude lower than at the forested sites.  相似文献   

9.
Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m?2 day?1) was 25 % higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon’s H′) was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.  相似文献   

10.
  • 1 The terrestrial-aquatic interface beneath a riparian corridor was investigated as a region of hydrological and biological control of nutrient flux. Subsurface flow paths were defined from the channel toward the riparian zone and also from the riparian zone toward the channel using tracer-injection studies. Solute transport had a rapid channel component (m min?1) and a slow hyporheic flow component (mh?1, m day?1). Subsurface flow beneath the riparian zone approximated a straight path entering at meanders but could also cross beneath the stream, possibly using relic channels.
  • 2 Dissolved oxygen (DO) concentration in the hyporheic zone ranged from <1.0 to 9.5mgl?1 due to permeability variations in bankside sediments. DO concentration was related to the proportion of stream water in the lateral hyporheic zone, indicating that the channel water was the DO source.
  • 3 The magnitude and riming of lateral water exchange was linked to previously published studies of nitrification and denitrificarion. Both nitrification potential and channel exchange decreased with distance from the channel and were absent at sites lacking effective exchange, due to low DO. Field amendment of ammonium to an aerobic flow path indicated nitrification potential under natural hydrological conditions. Denitrification potential was inversely related to channel exchange and was insignificant in channel sediments. Field amendment of acetylene plus nitrate to a flow path with low DO and minimal channel exchange indicated denitrificarion of amended nitrate.
  • 4 Comparison of hydraulic head to distribution of the biologically important solutes DO, ammonium, and nitrate was useful for interpreting previous findings and conceptualizing the riparian zone as a functioning ecotone between terrestrial and aquatic systems.
  相似文献   

11.
1. Eucalyptus globulus, a tree species planted worldwide in many riparian zones, has been reported to affect benthic macroinvertebrates negatively. Although there is no consensus about the effects of Eucalyptus on aquatic macrobenthos, its removal is sometimes proposed as a means of ecological restoration. 2. We combined the sampling of macroinvertebrates with measurement of the colonisation of leaf packs in mesh bags, to examine the effects of riparian Eucalyptus and its litter on benthic macroinvertebrates in three small streams in California, U.S.A. Each stream included one reach bordered by Eucalyptus (E‐site) and a second bordered by native vegetation (N‐site). 3. The macrobenthos was sampled and two sets of litter bags were deployed at each site: one set with Eucalyptus litter (Euc‐bags) and one with mixed native tree litter (Nat‐bags) containing Quercus, Umbellularia, Acer and Alnus. Bags were exposed for 28, 56 and 90 days and this experiment was repeated in the autumn, winter and spring to account for effects of changing stream flow and insect phenology. 4. Litter input (average dry mass: 950 g m?2 year?1 in E‐sites versus 669 g m?2 year?1 in N‐sites) was similar, although in‐stream litter composition differed between E‐ and N‐sites. Litter broke down at similar rates in Euc‐bags and Nat‐bags (0.0193 day?1 versus 0.0134 day?1), perhaps reflecting the refractory nature of some of the leaves of the native trees (Quercus agrifolia). 5. Summary metrics for macroinvertebrates (taxon richness, Shannon diversity, pollution tolerance index) did not differ significantly between the E and N sites, or between Euc‐bags and Nat‐bags. No effect of exposure time or site was detected by ordination of the taxa sampled. However, distinct seasonal ordination clusters were observed in winter, spring and autumn, and one of the three streams formed a separate cluster. 6. The presence of Eucalyptus was less important in explaining the taxonomic composition of the macrobenthos than either ‘season’ or ‘stream’. Similarly, these same two factors (but not litter species) also helped explain the variation in leaf breakdown. We conclude that patches of riparian Eucalyptus and its litter have little effect on stream macrobenthos in this region.  相似文献   

12.
Accession, decomposition and accumulation of litter were studied in three sub-alpine eucalypt forest communities (dominated by overstoreys of Eucalyptus delegatensis, E. pauciflora or E. dives) located in the Brindabella Range. Australian Capital Territory, at an elevation of 1100–1250 m. The sites had either been protected from fire for more than 20 years or been burnt by low-intensity prescribed fires. After a prescribed burn, the rate of decomposition of abscised leaves was reduced by 22% in E. delegatensis forest and by 34% in E. pauciflora forest, but was little affected in the drier E. dives community. Lowered decomposition was apparently due to greater aridity after fire, a consequence of removal of the shading understorey and reduction in the depth and hence mulching effect of the titter layer. Litter accumulates rapidly after prescribed burning, reaching a mass of 10–12 t ha?1 within 4–5 years in all communities. Such quantities are dangerous from a fire control viewpoint. The quasi steady-state mass of accumulated litter ranges from about 17 t ha?1 in E. dives and E. pauciflora forests to about 25 t ha?1 in old-growth E. delegatensis forests. The rapid re-accumulation of litter after fire is not the result of any significant change in litterfall rate, but is due to a marked reduction in the total amount of litter decomposing—and this reduction is more a consequence of a decrease in the weight of the forest floor than to any fire-induced lowering of the rate of litter decomposition. The rapid build-up of litter is a consequence of the relatively high rates of litterfall (3.4–5.0 t ha?1 year?1) and low rates of litter decomposition (k = 0.19–0.32 year?1) in these forests. In most cases the pattern of litter accumulation was well described by an exponential equation of the form Xt= Xss (1—e-kt), where Xt is the weight (t ha?1) of litter accumulated at time t (year). Xss is the weight of litter accumulated under steady-state conditions, and k is a decomposition rate constant (year?1). Marked temporal variations in annual litterfall and mass of accumulated litter were found at specific forest sites which had been unburnt for more than 4.5 years. Variation from the long-term mean was greater for litterfall (31–37%) than for accumulated litter (14–26%). The maximum error when calculating decomposition rate (k) as the ratio of annual litterfall: accumulated titter, when based on single measurements of these parameters, ranged from 43 to 69% of that based on long-term measurements. Decomposition rates of the entire titter layer, calculated for periods of 22–79 months, and based on measurements of litter input and change in mass of accumulated titter, were positively correlated with the average number of days per month during each period that the litter layer remained moist (>approx. 60% ODW). The implications of these findings for fire management planning in sub-alpine and other eucalypt forests are briefly discussed.  相似文献   

13.
14.
1. The annual input, contribution to the diet of salmonids, and quantitative input of terrestrial invertebrates to four reaches with contrasting forest (n=2) and grassland riparian vegetation (n=2) were compared in a Japanese headwater stream.
2. The annual input of terrestrial invertebrates falling into the forest reaches (mean±1 SE=8.7×103±0.3×103 mg m?2 year?1) was 1.7 times greater than that in the grassland reaches (5.1×103±0.8×103 mg m?2 year?1), with clear seasonality in the daily input of invertebrates in both vegetation types. The daily input, however, differed between the vegetation types only in summer, when it rose to a maximum in both vegetation types.
3. Fish biomass also differed among the seasons in both vegetation types, being less in the grassland reaches. The contribution of terrestrial invertebrates to the salmonid diet in the forest and grassland reaches was 11 and 7% in spring, 68 and 77% in summer, 48 and 33% in autumn, and 1 and 1% in winter, respectively. The prey consumption rate of fish, which was similar between the vegetation types, increased with stream temperature and was highest in summer. Terrestrial invertebrates supported 49% (mean±1 SE=5.3×103±0.4×103 mg m?2 year?1) of the annual, total prey consumption (10.9×103±1.7×103 mg m?2 year?1) by salmonids in the forest and 53% (2.0×103±0.3×103 mg m?2 year?1) (3.8×103±0.6×103 mg m?2 year?1) in the grassland reaches.
4. Salmonids were estimated to consume 51 and 35% of the annual total (falling plus drift) input of terrestrial invertebrates in the forest and grassland reaches, respectively. The input of terrestrial invertebrates by drift, however, was almost equal to the output in both vegetation types, suggesting that the reach‐based, in‐stream retention of terrestrial invertebrates almost balanced these falling in.
5. Difference in the riparian vegetation, which caused spatial heterogeneity in the input of terrestrial invertebrates, could play an important role in determining the local distribution of salmonids.  相似文献   

15.
Lalji Singh 《Plant Ecology》1992,98(2):129-140
The present paper elucidates the pattern of leaf and non-leaf fall and quantifies of the total annual input of litter in a dry tropical forest of India. In addition, concentration of selected nutrients in various litter species and their annual return to the forest floor are examined. Total annual input of litter measured in litter traps ranged between 488.0–671.0 g m-2 of which 65–72% was leaf litter fall and 28–35% wood litter fall. 73–81% leaves fall during the winter season. Herbaceous litter fall ranged between 80.0–110.0 g m-2 yr-1. The annual nutrient return through litter fall amounted (kg ha-1): 51.6–69.6 N, 3.1–4.3 P, 31.0–40.0 Ca, 14.0–19.0 K and 3.7–5.0 Na, of which 71–77% and 23–29% were contributed by leaf and wood litter fall, respectively for different nutrients. Input of nutrients through herbaceous litter was: 13.0–16.6 for N, 1.0–1.4 for P, 4.0–5.0 for Ca, 7.9–10.5 for K and 0.8–1.0 kg ha-1 yr-1 for Na.  相似文献   

16.
Nitrogen Translocation to Fresh Litter in Northern Hardwood Forest   总被引:1,自引:0,他引:1  
Nitrogen immobilization in fresh litter represents a significant N flux in forest ecosystems, and changes in this process resulting from atmospheric N deposition could have important implications for ecosystem responses. We conducted two leaf decay experiments, using 15N-labeled sugar maple leaf litter, to quantify N transport from old litter and soil to fresh litter during early stages of decomposition, and we examined the influence of litter N concentration and soil N availability on upward N transfer in a northern hardwood forest. After one year of decay, the average N transfer from soil to fresh litter (2.63 mg N g?1 litter) was much higher than the N transfer from older litter (1- to 2-years-old) to fresh litter (0.37 mg N g?1 litter). We calculated the ratio of annual N transfer per unit of excess 15N pool for these two N sources. The ratio was not significantly different between old litter and soil, suggesting that fungi utilize N in the old litter and mineral soil pools for transport to decaying fresh litter with similar efficiency. Initial litter N concentration had a significant effect on upward N flux into decaying leaf litter, whereas no effect of soil N fertilization was observed. Reduction in the flux from soil to fresh litter owing to anthropogenic N inputs probably contributes significantly to changing soil N dynamics. Future work is needed on fungal N acquisition and transport as well as the fungal taxa involved in this process and their responses to changing environments.  相似文献   

17.
Leonardi  S.  Rapp  M.  Denes  A. 《Plant Ecology》1992,99(1):219-224
Located at 1100 m above sea level, on the western site of the Etna volcano, the ecophysiology of the Mount Minardo holm oak coppice has been investigated for more then twenty years. In this stand, now 31 years old, the above ground biomass amounts to 15000 g m-2 of organic material, including leaves and perennial woody material. During these 31 years, the mean annual production has been around 775 g m-2. The yearly mean litterfall amounts to 310 g m-2, including 200 g m-2 of leaves, mostly two years old. The soil surface is covered by a litter layer amounting to 3150 g m-2. Each year, following Jenny's decomposition rate and field measurements, 290 g m-2 of the litter turns into CO2, or becomes incorporated in the soil organic matter.  相似文献   

18.
Energy crops are currently promoted as potential sources of alternative energy that can help mitigate the climate change caused by greenhouse gases (GHGs). The perennial crop Miscanthus × giganteus is considered promising due to its high potential for biomass production under conditions of low input. However, to assess its potential for GHG mitigation, a better quantification of the crop's contribution to soil organic matter recycling under various management systems is needed. The aim of this work was to study the effect of abscised leaves on carbon (C) and nitrogen (N) recycling in a Miscanthus plantation. The dynamics of senescent leaf fall, the rate of leaf decomposition (using a litter bag approach) and the leaf accumulation at the soil surface were tracked over two 1‐year periods under field conditions in Northern France. The fallen leaves represented an average yearly input of 1.40 Mg C ha?1 and 16 kg N ha?1. The abscised leaves lost approximately 54% of their initial mass in 1 year due to decomposition; the remaining mass, accumulated as a mulch layer at the soil surface, was equivalent to 7 Mg dry matter (DM) ha?1 5 years after planting. Based on the estimated annual leaf‐C recycling rate and a stabilization rate of 35% of the added C, the annual contribution of the senescent leaves to the soil C was estimated to be approximately 0.50 Mg C ha?1yr?1 or 10 Mg C ha?1 total over the 20‐year lifespan of a Miscanthus crop. This finding suggested that for Miscanthus, the abscised leaves contribute more to the soil C accumulation than do the rhizomes or roots. In contrast, the recycling of the leaf N to the soil was less than for the other N fluxes, particularly for those involving the transfer of N from the tops of the plant to the rhizome.  相似文献   

19.
Energy flux to a large, deep, salt lake from phytoplankton, periphyton and macrophyte primary production as well as fluvial transport and wind-transported terrestrial vegetation and dust were quantified. Average areal phytoplankton net photosynthesis was 511 mg C m−2 d−1. Highest rates were during water-blooms of the bluegreen alga, Nodularia spumigena. Although areal daily net photosynthesis by periphyton in Pyramid Lake was comparable to other salt lakes, annual carbon influx by periphyton was small due to the lake's graben morphology and moderate euphotic depth (mean, 11.9 m). Macrophytes were uncommon and, therefore a minor source of energy. Truckee River is the only major fluvial discharge to Pyramid Lake and dissolved organic carbon was the principal organic carbon fraction in river water. Large upstream water diversions coupled with several drought years resulted in an average fluvial organic carbon load of only 7.3 g Cm−2y−1 or 4% of median phytoplankton net photosynthesis. Tumbleweeds were the most common terrestrial plant material observed in Pyramid Lake comprising a maximum projected importance of 6% of total annual carbon input. Windborne dust represented < .1% of annual carbon input. Phytoplankton primary production is the predominant energy source to Pyramid Lake, accounting for over 80% of annual carbon influx. The relative magnitude of autochthonous and allochthonous vectors to the annual carbon budget of this desert salt lake are comparable to those of the few other large lakes for which detailed energy input budgets have been calculated.  相似文献   

20.
Nitrogen uptake and turnover in riparian woody vegetation   总被引:1,自引:0,他引:1  
Chambers C  Marshall JD  Danehy RJ 《Oecologia》2004,140(1):125-134
The nutrient balance of streams and adjacent riparian ecosystems may be modified by the elimination of anadromous fish runs and perhaps by forest fertilization. To better understand nitrogen (N) dynamics within stream and riparian ecosystems we fertilized two streams and their adjacent riparian corridors in central Idaho. On each stream two nitrogen doses were applied to a swathe approximately 35 m wide centered on the stream. The fertilizer N was enriched in 15N to 18. This enrichment is light relative to many previous labeling studies, yet sufficient to yield a traceable signal in riparian and stream biota. This paper reports pre-treatment differences in 15N and the first-year N response to fertilizer within the riparian woody plant community. Future papers will describe the transfer of allochthonous litter N to the stream and its subsequent processing by stream biota. Pre-treatment 15N differed between the two creeks (P=0.0002), possibly due to residual salmon nitrogen in one of the creeks. Pre-treatment 15N of current-year needles was enriched compared to leaf litter, which was in turn enriched compared to needles aged 4 years and older. We conclude that fractionation due to retranslocation occurs in at least two phases. The first phase, which optimizes allocation of N in younger needle age classes, is distinctly different from the second, which conserves N prior to abscission. The 15N difference between creeks was eliminated by the fertilization (P=0.42). In the two dominant conifer species, Abies lasiocarpa and Picea engelmannii, most fertilizer N was found in the current-year foliage; little was found in older needles and none was detected in litter (P=0.53). The only N-fixing shrub species, Alnus incana, took up only a small amount of fertilizer N [mean percent N derived from fertilizer (%Ndff) 5.0±1.6% (SE)]. Far more fertilizer N was taken up by other deciduous shrubs (mean %Ndff=33.9±4.5%). Fertilizer N made up 25% (±4.2%) of the N in deciduous shrub litter. These results demonstrate the feasibility of light labeling with 15N and the potential influence of riparian plant species composition on stream nutrient dynamics via allochthonous leaf litter inputs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号