首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The regulation of pituitary hormone secretion by TRH and GnRH proceeds through similar mechanisms which employ phosphoinositide hydrolysis to generate intracellular signals. Proximal events involve receptor activation of heterotrimeric (alpha beta gamma) GTP-binding (G) proteins which regulate phospholipase (PLC) activity. Since TRH and GnRH actions are not affected by cholera or pertussis toxin, a novel G protein (Gp) was suggested to mediate receptor regulation. The required Gp protein has not been identified and this was the focus of the present study. Recent molecular cloning and biochemical studies have characterized two novel, pertussis toxin-insensitive alpha-subunit proteins of the Gq subfamily (alpha q and alpha 11) which regulate the activity of the beta 1 isoenzyme of PLC. Gq and G11 represent the best candidates for the PLC-activating G proteins which mediate the actions of TRH and GnRH. To test this directly, an antibody to the common Gq/11 alpha-subunit carboxyterminal sequence was generated and shown to react with unique 42-kilodalton Gq alpha and 43-kilodalton G11 alpha proteins in membranes from TRH-responsive GH3 cells and GnRH-responsive alpha T3-1 pituitary cells. The Gq/11 alpha peptide antibody was shown to immunodeplete the Gp activity of GH3 cell membrane extracts measured by reconstitution of the guanine nucleotide regulation of PLC-beta 1. In addition, the immunoglobulin G fraction of Gq/11 alpha peptide immune serum specifically inhibited TRH- and GnRH-stimulated PLC activity measured in the membranes of GH3 and alpha T3-1 cells, respectively. The results indicate that TRH and GnRH activation of PLC requires receptor coupling to a Gp protein(s) which corresponds to Gq, G11 or both.  相似文献   

2.
The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.  相似文献   

3.
To determine whether the interaction of the TRH receptor with beta-arrestin is necessary for TRH activation of MAPK, cells expressing either intact or truncated, internalization-defective TRH receptors were transfected with a beta-arrestin-green fluorescent protein conjugate. In cells expressing the wild-type pituitary TRH receptor, TRH caused translocation of the beta-arrestin-green fluorescent protein conjugate from the cytosol to the plasma membrane within 30 sec. After 5 min, the beta-arrestin-green fluorescent protein conjugate was visible in vesicles, where it colocalized with rhodamine-labeled TRH. In hypertonic sucrose, the beta-arrestin-green fluorescent protein conjugate translocated to the plasma membrane after TRH addition but did not internalize. In cells expressing the truncated TRH receptor, TRH did not cause translocation of the beta-arrestin-green fluorescent protein conjugate. TRH activated MAPK strongly in cells expressing intact or truncated TRH receptors, indicating that the receptor does not need to bind beta-arrestin or internalize. MAPK activation by TRH, epidermal growth factor, and phorbol ester was strongly inhibited by hypertonic sucrose and concanavalin A, which block movement of proteins into coated pits and coated pit assembly. Hypertonic sucrose did not affect MAPK activation in cells overexpressing MAPK kinase 1. Dominant negative dynamin, which blocks conversion of coated pits to vesicles, also reduced receptor internalization and TRH activation of MAPK. TRH activation of MAPK required PKC but was insensitive to pertussis toxin and did not require ras, epidermal growth factor receptor kinase, or PI3K. These results show that the TRH receptor itself does not need to bind beta-arrestin or undergo sequestration to activate MAPK but that the endocytic pathway must be intact.  相似文献   

4.
Thyrotropin-releasing hormone stimulates the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) in GH3 cell membranes. The stimulation of the phosphoinositide phospholipase C (PI/PLC) activity can be blocked by incubation of GH3 membranes with polyclonal antibodies directed against a peptide derived from the C-terminal region of G alpha q and G alpha 11. Antibodies directed against the C-terminal region of other G alpha-subunits had no detectable effect. The inhibition was specific since addition of the peptide that was used to prepare the antibody completely reversed the inhibition. Further evidence for the coupling of the TRH receptor to G alpha q or G alpha 11 comes from a reconstitution experiment in which human embryonic kidney cells were transiently transfected with cDNAs corresponding to the TRH receptor, G alpha q or G alpha 11. The PIP2 hydrolysis detected with membranes from cells that over-expressed the TRH receptor alone was low, however, co-expression with the G alpha q or G alpha 11 subunits produced a synergistic stimulation of PI-PLC activity. In contrast, co-expression of these alpha-subunits with the M2 muscarinic acetylcholine receptor induced a weak stimulation of PIP2 hydrolysis. The results presented here suggest that the TRH-dependent stimulation of PI-PLC in GH3 cells is mediated through the G-protein alpha-subunits, G alpha q and/or G alpha 11.  相似文献   

5.
Slessareva JE  Graber SG 《Biochemistry》2003,42(24):7552-7560
The molecular basis for selectivity of M1 and M2 muscarinic receptor coupling to heterotrimeric G proteins has been studied using receptors expressed in Sf9 cell membranes and reconstituted with purified chimeric G(alpha) subunits containing different regions of Gi1alpha and Gq(alpha). The abilities of G protein heterotrimers containing chimeric alpha subunits to stabilize the high-affinity state of the receptors for agonist and to undergo receptor stimulated guanine nucleotide exchange was compared with G protein heterotrimers containing either native Gi1alpha or Gq(alpha). The data confirm the importance of the proper context of the C-terminus of Galpha by demonstrating that the C-terminus of Gi1alpha, when placed in the context of Gq(alpha), prevents coupling to muscarinic M1 receptors, while the C-terminus of Gq(alpha), when placed in the context of Gi1alpha, prevents coupling to muscarinic M2 receptors. However, C-terminal amino acids of Gq(alpha) placed in the context of Gi1alpha were not sufficient to allow M1 receptor coupling, nor were C-terminal amino acids of Gi1alpha placed in the context of Gq(alpha) sufficient for M2 receptor coupling. The unique six amino acid N-terminal extension of Gq(alpha) when added to the N-terminus of Gi1alpha neither prevented M2 receptor coupling nor permitted M1 receptor coupling. A Gi1alpha-based chimera containing both N- and C-terminal regions of Gq(alpha) gained the ability to productively couple M1 receptors suggesting that the proper context of both N- and C-termini is required for muscarinic receptor coupling.  相似文献   

6.
After activation, agonist-occupied G protein-coupled receptors are phosphorylated by G protein-coupled receptor kinases and bind cytosolic beta-arrestins, which uncouple the receptors from their cognate G proteins. Recent studies on the beta2-adrenergic receptor have demonstrated that beta-arrestin also targets the receptors to clathrin-coated pits for subsequent internalization and activation of mitogen-activated protein kinases. We and others have previously shown that muscarinic acetylcholine receptors (mAChRs) of the m1, m3, and m4 subtype require functional dynamin to sequester into HEK-293 tsA201 cells, whereas m2 mAChRs sequester in a dynamin-independent manner. To investigate the role of beta-arrestin in mAChR sequestration, we determined the effect of overexpressing beta-arrestin-1 and the dominant-negative inhibitor of beta-arrestin-mediated receptor sequestration, beta-arrestin-1 V53D, on mAChR sequestration and function. Sequestration of m1, m3, and m4 mAChRs was suppressed by 60-75% in cells overexpressing beta-arrestin-1 V53D, whereas m2 mAChR sequestration was affected by less than 10%. In addition, overexpression of beta-arrestin-1 V53D as well as dynamin K44A significantly suppressed m1 mAChR-mediated activation of mitogen-activated protein kinases. Finally, we investigated whether mAChRs sequester into clathrin-coated vesicles by overexpressing Hub, a dominant-negative clathrin mutant. Although sequestration of m1, m3, and m4 mAChRs was inhibited by 50-70%, m2 mAChR sequestration was suppressed by less than 10%. We conclude that m1, m3, and m4 mAChRs expressed in HEK-293 tsA201 cells sequester into clathrin-coated vesicles in a beta-arrestin- and dynamin-dependent manner, whereas sequestration of m2 mAChRs in these cells is largely independent of these proteins.  相似文献   

7.
The endocytic pathway of the secretin receptor, a class II GPCR, is unknown. Some class I G protein-coupled receptors (GPCRs), such as the beta(2)-adrenergic receptor (beta(2)-AR), internalize in clathrin-coated vesicles and this process is mediated by G protein-coupled receptor kinases (GRKs), beta-arrestin, and dynamin. However, other class I GPCRs, for example, the angiotensin II type 1A receptor (AT(1A)R), exhibit different internalization properties than the beta(2)-AR. The secretin receptor, a class II GPCR, is a GRK substrate, suggesting that like the beta(2)-AR, it may internalize via a beta-arrestin and dynamin directed process. In this paper we characterize the internalization of a wild-type and carboxyl-terminal (COOH-terminal) truncated secretin receptor using flow cytometry and fluorescence imaging, and compare the properties of secretin receptor internalization to that of the beta(2)-AR. In HEK 293 cells, sequestration of both the wild-type and COOH-terminal truncated secretin receptors was unaffected by GRK phosphorylation, whereas inhibition of cAMP-dependent protein kinase mediated phosphorylation markedly decreased sequestration. Addition of secretin to cells resulted in a rapid translocation of beta-arrestin to plasma membrane localized receptors; however, secretin receptor internalization was not reduced by expression of dominant negative beta-arrestin. Thus, like the AT(1A)R, secretin receptor internalization is not inhibited by reagents that interfere with clathrin-coated vesicle-mediated internalization and in accordance with these results, we show that secretin and AT(1A) receptors colocalize in endocytic vesicles. This study demonstrates that the ability of secretin receptor to undergo GRK phosphorylation and beta-arrestin binding is not sufficient to facilitate or mediate its internalization. These results suggest that other receptors may undergo endocytosis by mechanisms used by the secretin and AT(1A) receptors and that kinases other than GRKs may play a greater role in GPCR endocytosis than previously appreciated.  相似文献   

8.
Signaling and desensitization of G protein-coupled receptor are intimately related, and measuring them separately requires certain parameters that represent desensitization independently of signaling. In this study, we tested whether desensitization requires signaling in three different receptors, beta2-adrenergic receptor (beta2AR) in S49 lymphoma cells, alpha-factor pheromone receptor (Ste2p) in Saccharomyces cerevisiae LM102 cells, and dopamine D3 receptor (D3R) in HEK-293 cells. Agonist-induced beta-arrestin translocation to the plasma membrane or receptor sequestration was measured to estimate homologous desensitization. To separate the signaling and desensitization of beta2AR, which mediates stimulation of adenylyl cyclase, S49 lymphoma cys- cells that lack the alpha subunit of Gs were used. Stimulation of beta2AR in these cells failed to increase intracellular cAMP, but beta-arrestin translocation still occurred, suggesting that feedback from beta2AR signaling is not required for homologous desensitization to occur. Agonist-induced sequestration of the yeast Ste2p-L236R, which showed reduced signaling through G protein, was not different from that of wildtype Ste2p, suggesting that the receptor signaling and sequestration are not directly linked cellular events. Both G protein coupling and D3R signaling, measured as inhibition of cAMP production, were greatly enhanced by co-expression of exogenous alpha subunit of Go (Goalpha) or adenylyl cyclase type 5 (AC5), respectively. However, agonist-induced beta-arrestin translocation, receptor phosphorylation, and sequestration were not affected by co-expression of Galphao and AC5, suggesting that the extent of signaling does not determine desensitization intensity. Taken together, our results consistently suggest that G protein signaling and homologous desensitization are independent cellular processes.  相似文献   

9.
The corticotropin releasing factor (CRF) type 1alpha receptor, a member of the G protein-coupled receptor (GPCR) subfamily B, is involved in the aetiology of anxiety and depressive disorders. In the present study, we examined the internalization and trafficking of the CRF1alpha receptor in both human embryonic kidney (HEK)293 cells and primary cortical neurons. We found that CRF1alpha receptor activation leads to the selective recruitment of beta-arrestin2 in both HEK293 cells and neurons. We observed distinct distribution patterns of CRF1alpha receptor and beta-arrestin2 in HEK293 cells and cortical neurons. In HEK293 cells, beta-arrestin2-green fluorescent protein (GFP) co-localized with CRF1alpha receptor in vesicles at the plasma membrane but was dissociated from the receptor in endosomes. In contrast, in primary cortical neurons, beta-arrestin2 and CRF1alpha receptor were internalized in distinct endocytic vesicles. By bioluminescence resonance energy transfer, we demonstrated that beta-arrestin2 association with CRF1alpha receptor was increased in cells transfected with G protein-coupled receptor kinase (GRK)3 and GRK6 and decreased in cells transfected with GRK2 and GRK5. In both HEK293 cells and cortical neurons, internalized CRF1alpha receptor transited from Rab5-positive early endosomes to Rab4-positive recycling endosomes and was not targeted to lysosomes. However, CRF1alpha receptor resensitization was blocked by the overexpression of wild-type, but not dominant-negative, Rab5 and Rab4 GTPases. Taken together, our results suggest that beta-arrestin trafficking differs between HEK293 cells and neurons, and that CRF1alpha receptor resensitization is regulated in an atypical manner by Rab GTPases.  相似文献   

10.
It was previously shown that hormone receptor coupling to voltage-dependent calcium channels in prolactin and growth hormone-producing GH(3) cells was heavily dependent on the specific heterotrimeric combinations of alpha, beta, and gamma subunits of the guanosine triphosphate (GTP)-binding protein family. Consequently, we assessed whether this was also the case for hormonal modulation of the adenylate cyclase (AC) and phospholipase C (PL-C) effector enzymes in GH(3) cells in culture. By employing polyclonal antibodies directed towards C-terminal decapeptides of various alpha subunits in membrane assays, as well as antisense oligonucleotides towards certain beta- and gamma-subunit genes in whole-cell incubations, it was possible to unravel a tentative profile of heterotrimers preferred by some of the seven-transmembrane-stretch receptors in their modulation of AC and PL-C activities. Vasoactive intestinal peptide (VIP) and thyroliberin (TRH) activate membrane-bound AC through alpha(s)beta(2)gamma(2), while somatostatin (SRIH) and dopamine (DA) inhibited the AC through alpha(i2)beta(1)gamma(3). TRH activated membrane-bound PL-C through alpha(q/11)beta(4)gamma(2), while DA inhibition of the PL-C was accomplished via alpha(o)beta(3)gamma(4). Hence, it seems that not only the specificity of alpha subunits determines the coupling between G protein-associated receptors in GH cells, the receptor binding to G proteins also requires certain combinations of beta and gamma subunits.  相似文献   

11.
We monitored the radioligand-binding characteristics of thyrotropin-releasing hormone (TRH) receptors, functional activity of G(q/11)alpha proteins, and functional status of the whole signaling cascade in HEK293 expressing high levels of TRH receptors and G(11)alpha. Our analyses indicated that disruption of plasma membrane microdomains by cholesterol depletion did not markedly influence the binding parameters of TRH receptors, but it altered efficacy of signal transduction. The functional coupling between TRH receptor and G(q/11)alpha was assessed by agonist-stimulated [(35)S]GTPgammaS binding, and results of these measurements pointed out to significantly lower potency of TRH to mediate G protein activation in the plasma membrane fraction isolated from cholesterol-depleted cells; there was a shift in sensitivity by one order of magnitude to the higher concentrations. A markedly lower sensitivity to stimulation with TRH was also observed in our experiments dealing with determination of hormone-induced Ca(2+) response. These data suggest that the intact structure of plasma membranes is an important optimum signal transduction initiated by TRH receptors and mediated by G(q/11)alpha proteins.  相似文献   

12.
Leukotriene B4 (LTB4) activates the G-protein-coupled receptor leukotriene B4 receptor 1 (BLT1) to mediate a diverse array of cellular responses in leukocytes including chemotaxis, calcium mobilization, degranulation, and gene expression. To determine the role of phosphorylation in BLT1 regulation, we generated mutants of BLT1 in which all of the serine/threonine residues in the C-tail are converted to alanine or to aspartate/glutamate. These mutants expressed in rat basophilic leukemia RBL-2H3 cells bound LTB4 with similar affinity and activated all of the known functional activities of BLT1, albeit at different levels. The conversion of phosphorylation sites to alanine resulted in enhanced G-protein-mediated activities, whereas conversion to aspartate/glutamate resulted in reduced responses and a right shift in dose response, indicating that receptor phosphorylation is a critical regulator of G-protein-mediated pathways. Surprisingly, translocation of beta-arrestin and receptor internalization was completely independent of BLT1 phosphorylation. Real-time analysis of beta-arrestin translocation and receptor internalization using digital fluorescence video microscopy in cells expressing a red fluorescent protein labeled BLT1 and a green fluorescent protein-tagged beta-arrestin confirmed phosphorylation-independent beta-arrestin translocation and internalization of BLT1. In beta-arrestin-deficient mouse embryo fibroblasts, the BLT1 receptors failed to display endosomal localization upon stimulation. In these cells, co-expression of beta-arrestin-green fluorescent protein with BLT1-red fluorescent protein resulted in co-localization of BLT1 and beta-arrestin upon activation. Thus, receptor phosphorylation-dependent mechanisms regulate G-protein-mediated pathways; however, phosphorylation-independent mechanisms regulate beta-arrestin association and internalization of BLT1.  相似文献   

13.
The vasoactive intestinal polypeptide type-1 (VPAC(1)) receptor is a class II G protein-coupled receptor, distinct from the adrenergic receptor superfamily. The mechanisms involved in the regulation of the VPAC(1) receptor are largely unknown. We examined agonist-dependent VPAC(1) receptor signaling, phosphorylation, desensitization, and sequestration in human embryonic kidney 293 cells. Agonist stimulation of cells overexpressing this receptor led to a dose-dependent increase in cAMP that peaked within 5-10 min and was completely desensitized after 20 min. Cells cotransfected with the VPAC(1) receptor (VPAC(1)R) and G protein-coupled receptor kinases (GRKs) 2, 3, 5, and 6 exhibited enhanced desensitization that was not evident with GRK 4. Immunoprecipitation of the epitope-tagged VPAC(1) receptor revealed dose-dependent phosphorylation that was increased with cotransfection of any GRK. Agonist-stimulated internalization of the VPAC(1)R peaked in 10 min, and neither overexpressed beta-arrestin nor its dominant-negative mutant altered internalization. However, a dynamin-dominant negative mutant did inhibit VPAC(1) receptor internalization. Interestingly, VPAC(1)R specificity in desensitization was not evident by study of the overexpressed receptor; however, we determined that human embryonic kidney 293 cells express an endogenous VPAC(1)R that did demonstrate dose-dependent GRK specificity. Therefore, VPAC(1) receptor regulation involves agonist-stimulated, GRK-mediated phosphorylation, beta-arrestin translocation, and dynamin-dependent receptor internalization. Moreover, study of endogenously expressed receptors may provide information not evident in overexpressed systems.  相似文献   

14.
A newly identified subclass of the heterotrimeric GTP binding regulatory protein family, Gq, has been found to be expressed in a diverse range of cell types. We investigated the potential role of this protein in growth factor signal transduction pathways and its potential relationship to the function of other G alpha subclasses. Recent biochemical studies have suggested that Gq regulates the beta 1 isozyme of phospholipase C (PLC beta 1), an effector for some growth factors. By microinjection of inhibitory antibodies specific to distinct G alpha subunits into living cells, we have determined that G alpha q transduces bradykinin- and thrombin-stimulated intracellular calcium transients which are likely to be mediated by PLC beta 1. Moreover, we found that G alpha q function is required for the mitogenic action of both of these growth factors. These results indicate that both thrombin and bradykinin utilize Gq to couple to increases in intracellular calcium, and that Gq is a necessary component of the mitogenic action of these factors. While microinjection of antibodies against G alpha i2 did not abolish calcium transients stimulated by either of these factors, such microinjection prevented DNA synthesis in response to thrombin but not to bradykinin. These data suggest that thrombin- induced mitogenesis requires both Gq and Gi2, whereas bradykinin needs only the former. Thus, different growth factors operating upon the same cell type use overlapping yet distinct sets of G alpha subtypes in mitogenic signal transduction pathways. The direct identification of the coupling of both a pertussis toxin sensitive and insensitive G protein subtype in the mitogenic pathways utilized by thrombin offers an in vivo biochemical clarification of previous results obtained by pharmacologic studies.  相似文献   

15.
The functional role of neutrophils during acute inflammatory responses is regulated by two high affinity interleukin-8 receptors (CXCR1 and CXCR2) that are rapidly desensitized and internalized upon binding their cognate chemokine ligands. The efficient re-expression of CXCR1 on the surface of neutrophils following agonist-induced internalization suggests that CXCR1 surface receptor turnover may involve regulatory pathways and intracellular factors similar to those regulating beta2-adrenergic receptor internalization and re-expression. To examine the internalization pathway utilized by ligand-activated CXCR1, a CXCR1-GFP construct was transiently expressed in two different cell lines, HEK 293 and RBL-2H3 cells. While interleukin-8 stimulation promoted CXCR1 sequestration in RBL-2H3 cells, receptor internalization in HEK 293 cells required co-expression of G protein-coupled receptor kinase 2 and beta-arrestin proteins. The importance of beta-arrestins in CXCR1 internalization was confirmed by the ability of a dominant negative beta-arrestin 1-V53D mutant to block internalization of CXCR1 in RBL-2H3 cells. A role for dynamin was also demonstrated by the lack of CXCR1 internalization in dynamin I-K44A dominant negative mutant-transfected RBL-2H3 cells. Agonist-promoted co-localization of transferrin and CXCR1-GFP in endosomes of RBL-2H3 cells confirmed that receptor internalization occurs via clathrin-coated vesicles. Our data provides a direct link between agonist-induced internalization of CXCR1 and a requirement for G protein-coupled receptor kinase 2, beta-arrestins, and dynamin during this process.  相似文献   

16.
Arrestin is one of the key proteins for the termination of G protein signaling. Activated G protein-coupled receptors (GPCRs) are specifically phosphorylated by G protein-coupled receptor kinases (GRKs) and then bind to arrestins to preclude the receptor/G protein interaction, resulting in quenching of the following signal transduction. Vertebrates possess two types of arrestin; visual arrestin expressed exclusively in photoreceptor cells in retinae and pineal organs, and beta-arrestin, which is expressed ubiquitously. Unlike visual arrestin, beta-arrestin contains the clathrin-binding domain at the C-terminus, responsible for the agonist-induced internalization of GPCRs. Here, we isolated a novel arrestin gene (Ci-arr) from the primitive chordate, the ascidian Ciona intestinalis larvae. The deduced amino acid sequence suggests that Ci-Arr be closely related to vertebrate arrestins. Interestingly, this arrestin has the feature of both visual and beta-arrestin. Whereas the expression of Ci-arr was restricted to the photoreceptors in the larvae similarly to visual arrestin, the gene product, containing the clathrin-binding domain, promoted the GPCR internalization in HEK293tsA201 cells similarly to beta-arrestin. The phylogenetic tree shows that Ci-Arr is branched from a common root of visual and beta-arrestins. Southern analysis suggests that the Ciona genome contains only one gene for the arrestin family. These results suggest that the visual and beta-arrestin genes were generated by the duplication of the prototypical arrestin gene like Ci-arr in the early evolution of vertebrates.  相似文献   

17.
Classically, the FSH receptor (FSH-R) mediates its effects through coupling to guanine nucleotide-binding protein alpha S subunit (Galpha(s)) and activation of the cAMP/protein kinase A (PKA) signaling pathway. beta-Arrestins are rapidly recruited to the FSH-activated receptor and play key roles in its desensitization and internalization. Here, we show that the FSH-R expressed in HEK 293 cells activated ERK by two temporally distinct pathways dependent, respectively, on Galpha(s)/PKA and beta-arrestins. Galpha(s)/PKA-dependent ERK activation was rapid, transient, and blocked by H89 (a PKA inhibitor), but it was insensitive to small interfering RNA-mediated depletion of beta-arrestins. beta-Arrestin-dependent ERK activation was slower but more sustained and was insensitive to H89. We identified five Ser/Thr residues in the C terminus of the receptor (638-644) as a major phosphorylation site. Mutation of these residues into Ala (5A FSH-R) significantly reduced the stability of FSH-induced beta-arrestin 1 and 2 interaction when compared with the wild-type receptor. As expected, the 5A FSH-R-mediated cAMP accumulation was enhanced, and its internalization was reduced. In striking contrast, the ability of the 5A FSH-R to activate ERK via the beta-arrestin-dependent pathway was increased. G protein-coupled receptor kinase 5 (GRK5) and GRK6 were required for beta-arrestin-dependent ERK activation by both the wild-type and 5A FSH-R. By contrast, GRK2 depletion enhanced ERK activation by the wild-type FSH-R but not by the 5A FSH-R. In conclusion, we demonstrate the existence of a beta-arrestin-dependent, GRK-regulated mechanism for ERK activation by the FSH-R. A phosphorylation cluster in the C terminus of the FSH-R, identified as a site of beta-arrestin recruitment, positively regulated both desensitization and internalization but negatively regulated beta-arrestin-dependent ERK activation.  相似文献   

18.
To facilitate structure-function relationship studies of the V2 vasopressin receptor, a prototypical G(s)-coupled receptor, we generated V2 receptor-expressing yeast strains (Saccharomyces cerevisiae) that required arginine vasopressin-dependent receptor/G protein coupling for cell growth. V2 receptors heterologously expressed in yeast were unable to productively interact with the endogenous yeast G protein alpha subunit, Gpa1p, or a mutant Gpa1p subunit containing the C-terminal G alpha(q) sequence (Gq5). In contrast, the V2 receptor efficiently coupled to a Gpa1p/G alpha(s) hybrid subunit containing the C-terminal G alpha(s) sequence (Gs5), indicating that the V2 receptor retained proper G protein coupling selectivity in yeast. To gain insight into the molecular basis underlying the selectivity of V2 receptor/G protein interactions, we used receptor saturation random mutagenesis to generate a yeast library expressing mutant V2 receptors containing mutations within the second intracellular loop. A subsequent yeast genetic screen of about 30,000 mutant receptors yielded four mutant receptors that, in contrast to the wild-type receptor, showed substantial coupling to Gq5. Functional analysis of these mutant receptors, followed by more detailed site-directed mutagenesis studies, indicated that single amino acid substitutions at position Met(145) in the central portion of the second intracellular loop of the V2 receptor had pronounced effects on receptor/G protein coupling selectivity. We also observed that deletion of single amino acids N-terminal of Met(145) led to misfolded receptor proteins, whereas single amino acid deletions C-terminal of Met(145) had no effect on V2 receptor function. These findings highlight the usefulness of combining receptor random mutagenesis and yeast expression technology to study mechanisms governing receptor/G protein coupling selectivity and receptor folding.  相似文献   

19.
Once internalized, some G protein-coupled receptors (GPCRs) can recycle back to the cell surface, while some of them are delivered to lysosomes for degradation. Because recycling and degradation represent two opposing receptor fates, understanding the mechanisms that determine post-endocytic fate of GPCRs is of great importance. Our recent work has verified that agonist-induced internalization of delta-opioid receptor (DOR) employs both phosphorylation-dependent and -independent mechanisms in HEK293 cells. To investigate whether these two internalization mechanisms work differently in receptor regulation, we monitored receptor post-endocytic fates using flow cytometry, surface receptor biotinylation and radioligand binding assays. Results showed that the internalized wild type DOR could either recycle to the cell surface or be degraded. Mutant DOR M4/5/6, which lacks all three G protein-coupled receptor kinase 2 (GRK2) phosphorylation sites, could also internalize upon agonist challenge although in a reduced level as compared with the wild type counterpart. However, the internalized mutant DOR could not recycle back to the cell surface and all mutant DOR was degraded after internalization. Inhibition of GRK2 expression by GRK2 RNAi also strongly attenuated recycling of DOR. Furthermore, overexpression of GRK2, which significantly increased receptor phosphorylation and internalization, also targeted more internalized receptors to the recycling pathway. These data suggest that GRK2-catalyzed receptor phosphorylation is critically involved in DOR internalization and recycling, and the phosphorylation-independent internalization leads to receptor degradation. Data obtained from beta-arrestin1 and beta-arrestin2 RNAi experiments indicated that both beta-arrestin1 and beta-arrestin2 participate in phosphorylation-dependent internalization and the subsequent recycling of DOR. However, phosphorylation-independent internalization and degradation of DOR were strongly blocked by beta-arrestin2 RNAi, but not beta-arrestin1 RNAi. Taken together, these data demonstrate for the first time that GRK2 phosphorylation-dependent internalization mediated by both beta-arrestin1 and beta-arrestin2 leads DOR to recycle, whereas GRK2-independent internalization mediated by beta-arrestin2 alone leads to receptor degradation. Thus, the post-endocytic fate of internalized DOR can be regulated by GRK2-catalyzed receptor phosphorylation as well as distinct beta-arrestin isoforms.  相似文献   

20.
beta-Arrestins were initially shown, in conjunction with G protein-coupled receptor kinases, to be involved in the desensitization and internalization of activated seven-transmembrane receptors. Recently, beta-arrestin 2 has been shown to act as a signal mediator in mitogen-activated protein kinase cascades and to play a positive regulatory role in chemotaxis. We now show that beta-arrestin 1 is required to activate the small GTPase RhoA leading to the re-organization of stress fibers following the activation of the angiotensin II type 1A receptor. This angiotensin II type 1A receptor-directed RhoA activation and stress fiber formation also require the activation of the heterotrimeric G protein G(alphaq/11). Whereas neither beta-arrestin 1 nor G(alphaq/11) activation alone is sufficient to robustly activate RhoA, the concurrent recruitment of beta-arrestin 1 and activation of G(alphaq/11) leads to full activation of RhoA and to the subsequent formation of stress fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号