首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laminin-5 (previously known as kalinin, epiligrin, and nicein) is an adhesive protein localized to the anchoring filaments within the lamina lucida space of the basement membrane zone lying between the epidermis and dermis of human skin. Anchoring filaments are structures within the lamina lucida and lie immediately beneath the hemidesmosomes of the overlying basal keratinocytes apposed to the basement membrane zone. Human keratinocytes synthesize and deposit laminin-5. Laminin-5 is present at the wound edge during reepithelialization. In this study, we demonstrate that laminin-5, a powerful matrix attachment factor for keratinocytes, inhibits human keratinocyte migration. We found that the inhibitory effect of laminin-5 on keratinocyte motility can be reversed by blocking the α3 integrin receptor. Laminin-5 inhibits keratinocyte motility driven by a collagen matrix in a concentration-dependent fashion. Using antisense oligonucleotides to the α3 chain of laminin-5 and an antibody that inhibits the cell binding function of secreted laminin-5, we demonstrated that the endogenous laminin-5 secreted by the keratinocyte also inhibits the keratinocyte's own migration on matrix. These findings explain the hypermotility that characterizes keratinocytes from patients who have forms of junctional epidermolysis bullosa associated with defects in one of the genes encoding for laminin-5 chains, resulting in low expression and/or functional inadequacy of laminin-5 in these patients. These studies also suggest that during reepithelialization of human skin wounds, the secreted laminin-5 stabilizes the migrating keratinocyte to establish the new basement membrane zone.  相似文献   

2.
Laminin-5 is a major adhesion protein of the skin basement membrane and crucially involved in integrin-mediated cell substrate attachment of keratinocytes, which is important for hemidesmosomal anchorage as well as for keratinocyte migration during epidermal wound healing. To investigate its role in keratinocyte migration, we analyzed laminin-5-deficient cells of patients with a lethal variant of junctional epidermolysis bullosa. Normal migrating keratinocytes adopted monopolar morphology with a distinct front lamella and employed a continuous mode of translocation. In contrast, laminin-5-deficient cells assumed a stretched bipolar shape with two lamella regions and migrated in a discontinuous, saltatory manner characterized by significantly decreased directional persistence and reduced migration velocity. The distinct morphology as well as the migratory phenotype apparently resulted from a defect in the formation of cell substrate adhesions that were completely missing in the cell body and less stable in the lamella regions. Accordingly in normal keratinocytes, a bipolar shape and a saltatory migration mode were inducible by blocking laminin-5-mediated substrate adhesion. Our findings clearly point to an essential role of laminin-5 in forming dynamic cell substrate adhesion during migration of epidermal keratinocytes and provide an explanation for the cellular mechanisms that underlie the lethal form of junctional epidermolysis bullosa.  相似文献   

3.
Laminins are large heterotrimeric basement membrane glycoproteins composed of alpha, beta and gamma chains. The Laminin 5 isoform has an alpha3beta3gamma2 composition and is essential for the adhesion of basal keratinocytes to the underlying epithelial basement membrane where it is mainly located. Mutations in the genes coding for the 3 chains have been associated with a severe skin blistering disease, Herlitz's junctional epidermolysis bullosa (JEB), observed in different species as man, dog, cat and horse. In this study, we report the sequence of the 5.2 kb horse laminin alpha 3 cDNA (LAMA3) as well as the detection of two intronic SNPs. These data will be useful to further identify causal mutations for the disease in this gene.  相似文献   

4.
Multiple laminin isoforms including laminins 5 (alpha3 beta3 gamma2), 6 (alpha3 beta1 gamma1), 10 (alpha5 beta1 gamma1), and possibly laminins 7 (alpha3 beta2 gamma1) and 11 (alpha5 beta2 gamma1) are present in the epidermal basement membrane. However, only the precise epidermal ultrastructural localization of laminin 5 (alpha3 beta3 gamma2) has been elucidated. We therefore determined the precise expression and ultrastructural localization of the alpha5, beta1, beta2, and gamma1 chains in the epidermis. The expression of laminin chains in skin samples was analyzed from patients with epidermolysis bullosa (EB, n=15) that harbor defects in specific hemidesmosome (HD)-associated components. The expression of the alpha5, beta1, and gamma1 chains (present in laminins 10/11) and beta2 chain (laminins 7/11) was unaffected in all intact (unseparated) skin of EB patients including Herlitz junctional EB with laminin-5 defects (n=6). In the basement membrane of human epidermis, the alpha5, beta1, beta2, and gamma1 chains were expressed but also localized to the dermal vessels. Immunogold electron microscopy of normal human epidermis localized the alpha5, beta1, beta2, and gamma1 chains to the upper lamina densa, with between 84% and 92% of labeling restricted to beneath the HDs, similar to laminin 5 (n> or =200 gold particles per sample, sample number n=4) but distinct from collagen IV labeling (with only 63% labeling beneath HDs, p<0.001). Taken together, the majority of the alpha5beta1/beta2gamma1 laminin chains are located beneath HDs. This suggests that laminin-10-associated chains have specific functions or molecular interactions beneath HDs in the epidermal basement membrane.  相似文献   

5.
The cytoplasmic domain of beta4 integrin contains two pairs of fibronectin-like repeats separated by a connecting segment. The connecting segment harbors a putative tyrosine activation motif in which tyrosines 1422 and 1440 are phosphorylated in response to alpha6beta4 binding to laminin-5. Primary beta4-null keratinocytes, obtained from a newborn suffering from lethal junctional epidermolysis bullosa, were stably transduced with retroviruses carrying a full-length beta4 cDNA or a beta4 cDNA with phenylalanine substitutions at Tyr-1422 and Tyr-1440. Hemidesmosome assembly was evaluated on organotypic skin cultures. beta4-corrected keratinocytes were indistinguishable from normal cells in terms of alpha6beta4 expression, the localization of hemidesmosome components, and hemidesmosome structure and density, suggesting full genetic and functional correction of beta4-null keratinocytes. In cultures generated from beta4(Y1422F/Y1440F) keratinocytes, beta4 mutants as well as alpha6 integrin, HD1/plectin, and BP180 were not concentrated at the dermal-epidermal junction. Furthermore, the number of hemidesmosomes was strikingly reduced as compared with beta4-corrected keratinocytes. The rare hemidesmosomes detected in beta4(Y1422F/Y1440F) cells were devoid of sub-basal dense plates and of inner cytoplasmic plaques with keratin filament insertion. Collectively, our data demonstrate that the beta4 tyrosine activation motif is not required for the localization of alpha6beta4 at the keratinocyte plasma membrane but is essential for optimal assembly of bona fide hemidesmosomes.  相似文献   

6.
Mutation analysis and molecular genetics of epidermolysis bullosa.   总被引:9,自引:0,他引:9  
Cutaneous basement membrane zone (BMZ) consists of a number of attachment structures that are critical for stable association of the epidermis to the underlying dermis. These include hemidesmosomes, anchoring filaments and anchoring fibrils which form an interconnecting network extending from the intracellular milieu of basal keratinocytes across the dermal-epidermal basement membrane to the underlying dermis. Aberrations in this network structure, e.g. due to genetic lesions in the corresponding genes, can result in fragility of the skin at the level of the cutaneous BMZ. The prototype of such diseases is epidermolysis bullosa (EB), a heterogeneous group of genodermatoses characterized by fragility and blistering of the skin, often associated with extracutaneous manifestations, and inherited either in an autosomal dominant or autosomal recessive manner. Based on constellations of the phenotypic manifestations, severity of the disease, and the level of tissue separation within the cutaneous BMZ, EB has been divided into clinically distinct subcategories, including the simplex, hemidesmosomal, junctional and dystrophic variants. Elucidation of BMZ gene/protein systems and development of mutation detection strategies have allowed identification of mutations in 10 different BMZ genes which can explain the clinical heterogeneity of EB. These include mutations in the type VII collagen gene (COL7A1) in the dystrophic (severely scarring) forms of EB; mutations in the laminin 5 genes (LAMA3, LAMB3 and LAMC2) in a lethal (Herlitz) variant of junctional EB; aberrations in the type XVII collagen gene (COL17A1) in non-lethal forms of junctional EB; mutations in the alpha6 and beta4 integrin genes in a distinct hemidesmosomal variant of EB with congenital pyloric atresia; and mutations in the plectin gene (PLEC1) in a form of EB associated with late-onset muscular dystrophy. Identification of mutations in these gene/protein systems attests to their critical importance in the overall stability of the cutaneous BMZ. Furthermore, elucidation of mutations in different variants of EB has direct clinical applications in terms of refined classification, improved genetic counseling, and development of DNA-based prenatal testing in families with EB.  相似文献   

7.
Molecular complexity of the cutaneous basement membrane zone   总被引:5,自引:0,他引:5  
Ultrastructural examination of the cutaneous basement membrane zone (BMZ) reveals the presence of several attachment structures, which are critical for integrity of the stable association of epidermis and dermis. These include hemidesmosomes which extend from the intracellular compartment of the basal keratinocyte to the underlying basement membrane where they complex with anchoring filaments, thread-like structures traversing the lamina lucida. At the lower portion of dermal-epidermal attachment zone, anchoring fibrils extend from the lamina densa to the papillary dermis, where they associate with basement membrane-like structures, known as anchoring plaques. Molecular cloning of the cutaneous BMZ components has allowed elucidation of the structural features of the proteins which constitute these attachment structures. Specifically, hemidesmosomes have been shown to consist of at least four distinct proteins. The intracellular hemidesmosomal inner plaque is comprised of the 230-kD bullous pemphigoid antigen (BPAG1), and plectin, a high-molecular weight cytomatrix protein, encoded by the corresponding gene, PLEC1. The transmembrane component of the hemidesmosomes consists of the 180-kD bullous pemphigoid antigen (BPAG2), a collagenous protein also known as type XVII collagen (COL17A1), as well as of the basal keratinocyte-specific integrin 64. The anchoring filaments consist predominantly of laminin 5 with three constitutive subunit polypeptides, the 3, 3 and 2 chains, which is associated with laminin 6 with the chain composition 3, 1 and 1. Also associated with anchoring filaments is a novel protein, ladinin, which serves as autoantigen in the linear IgA disease, and the corresponding gene, LAD1, has been mapped to human chromosome 1. Finally, the major, if not the exclusive, component of anchoring fibrils is type VII collagen, encoded by the gene (COL7A1) which consists of 118 distinct exons, the largest number of exons in any gene published thus far. Collectively, the cutaneous basement membrane zone is a complex continuum of macromolecules which form a network providing the stable association of the epidermis to the underlying dermis. Thus, genetic lesions resulting in abnormalities in any part of this network could result in a blistering skin disease, such as epidermolysis bullosa.Abbreviations BMZ basement membrane zone - EB epidermolysis bullosa - JEB junctional EB - GABEB generalized atrophic benign EB - EB-MD epidermolysis bullosa with muscular dystrophy - EB-PA epidermolysis bullosa with pyloric atresia  相似文献   

8.
Herlitz junctional epidermolysis bullosa (H-JEB) is characterized by hampered expression of the adhesion ligand laminin-5. Thus far, analysis of the processes underlying the epithelial–mesenchymal dysadhesion marking this disease has been limited by the reduced growth and adhesive capabilities of the epithelial cells derived from H-JEB patients. To overcome these difficulties, we used SV40 virus to immortalize H-JEB keratinocytes with a homozygous nonsense mutation in the gene that encodes the γ2 chain of laminin-5. Cell lines (LSV) derived from infected keratinocytes maintain a stable karyotype, grow independent of 3T3 feeder layers and are not tumorigenic. Further analysis of clone LSV5 showed an increased secretion of laminin-6 and fibronectin compared to normal keratinocytes. Similar to parental H-JEB keratinocytes, these cells regenerate stratified epidermisin vitroand, inin vivomodels, they synthesize a basement membrane lacking laminin-5. LSV cells show hypermotility and reduced adhesive properties resulting from an incomplete association with the underlying culture substrate. These results demonstrate that LSV5 cells retain the pathologic phenotype of H-JEB keratinocytes and can serve as a model system to study the adhesion processes mediated by laminin-5.  相似文献   

9.
Laminin-332 is a heterotrimeric basement membrane component comprised of the α3, ß3, and γ2 laminin chains. Laminin-332 modulates epithelial cell processes, such as adhesion, migration, and differentiation and is prominent in many embryonic and adult tissues. In skin, laminin-332 is secreted by keratinocytes and is a key component of hemidesmosomes connecting the keratinocytes to the underlying dermis. In mice, lack of expression of any of the three Laminin-332 chains result in impaired anchorage and detachment of the epidermis, similar to that seen in human junctional epidermolysis bullosa, and death occurs within a few days after birth. To bypass the early lethality of laminin-332 deficiency caused by the knockout of the mouse laminin γ2 chain, we expressed a dox-controllable human laminin γ2 transgene under a keratinocyte-specific promoter on the laminin γ2 (Lamc2) knockout background. These mice appear similar to their wild-type littermates, do not develop skin blisters, are fertile, and survive >1.5 years. Immunofluorescence analyses of the skin showed that human laminin γ2 colocalized with mouse laminin α3 and ß3 in the basement membrane zone underlying the epidermis. Furthermore, the presence of “humanized” laminin-332 in the epidermal basement membrane zone rescued the alterations in the deposition of hemidesmosomal components, such as plectin, collagen type XVII/BP180, and integrin α6 and ß4 chains, seen in conventional Lamc2 knockout mice, leading to restored formation of hemidesmosomes. These mice will be a valuable tool for studies of organs deficient in laminin-332 and the role of laminin-332 in skin, including wound healing.  相似文献   

10.
Laminin 5, the major keratinocyte adhesion ligand, is found in the lamina lucida subregion of the epidermal basement membrane of the skin, where it colocalizes with the anchoring filaments. Mutations in the genes encoding laminin 5 cause junctional epidermolysis bullosa, an inherited skin blistering disease characterized by abnormal hemidesmosomes and cleavage of the lamina lucida leading to epidermal detachment. In this work we describe the genetic basis of a new subtype of lethal inherited epidermolysis bullosa associated with reduced skin reactivity to laminin 5, presence of mature hemidesmosomes, and intradermal cleavage of the skin. The epidermolysis bullosa patients were heterozygous for a nonsense mutation (Q896X) and a splice site mutation (764-10T-->G) in the gene (LAMC2) for the gamma2 chain of laminin 5. The nonsense mutation causes accelerated decay of the corresponding mRNA, while the splice site mutation results in maturation of a cryptic wild-type gamma2 mRNA leading to reduced expression of wild-type laminin 5. In vitro studies using the probands' keratinocytes showed that secretion of reduced amounts of functional laminin 5 in the patient, although permitting formation of hemidesmosomes, fail to restore efficient cell adhesion. Our results provide the first evidence that laminin 5 contributes to the firm adhesion of the epithelial basement membrane to the underlying stroma. They also show that a low expression level of laminin 5 induces assembly of mature hemidesmosomes in vivo but fails to assure a stable cohesion of the dermal-epidermal junction.  相似文献   

11.
12.
Recent BP230-knockout experiments with subsequent blistering and recently identified plectin/HD1 mutations in epidermolysis bullosa simplex patients suggest that defective expression of BP230 and plectin/HD1 may predispose to blister formation in human skin. We have studied the expression of the epithelial adhesion complex as well as the basement membrane and anchoring fibril antigens in uninvolved dermatitis herpetiformis skin to find out if alterations can be detected in these structures predisposing to the blister formation typical of the disease. Ten uninvolved dermatitis herpetiformis skin specimens, which all showed clear granular deposits of IgA under the basement membrane in direct immunofluorescence and five normal skin specimens, were studied by indirect immunofluorescence technique. Six uninvolved dermatitis herpetiformis skin specimens showed distinctly decreased immunoreaction for BP230 and four uninvolved dermatitis herpetiformis skin specimens showed distinctly decreased immunoreaction for plectin/HD1. All five skin controls showed strong immunoreactions for BP230 and plectin/HD1. Other hemidesmosomal proteins including BP180 and integrin 64, as well as basement membrane proteins laminin-5, laminin-1, nidogen and type IV collagen, and the anchoring fibril protein type VII collagen showed a normal strong expression. Our results suggest that alterations in BP230 and plectin/HD1 may contribute or predispose to blister formation in dermatitis herpetiformis skin.  相似文献   

13.
Further biochemical investigations on the hemidesmosome-associated epidermal basement membrane component recognized by the monoclonal antibody GB3 are presented in this study. We previously found that the expression of this constituent is impaired in a severe genodermatosis termed lethal junctional epidermolysis bullosa. We demonstrate now that this factor is a very large glycoprotein (apparent molecular weight, 600 kDa) made up of polypeptides in the range of 93.5 to 150 kDa, and containing N-linked oligosaccharide chains. Both endo-beta-N-acetylglucosaminidases and neuraminidase hydrolysis, as well as concanavalin A binding experiments were performed on the GB3 radioimmunoprecipitated polypeptides from cultured human keratinocytes. They showed that the antigen subunits probably bear both 'high-mannose' and 'complex' type glycosidic chains. The chronic exposure of cultured human keratinocytes to retinoic acid (10(-8) to 10(-6) M) resulted in no apparent changes in the overall bulk of these glycosidic chains, but a dose-dependent increase of synthesis and secretion of the antigen was observed. A relative induction factor of 4 was obtained in cultures treated with 10(-6) M retinoic acid. This induction was also observed morphologically by indirect immunofluorescence at the basement membrane zone from cultured human keratinocytes grown on dead de-epidermized dermis. These results further emphasize the influence of glycoproteins in cell-cell and cell-substratum attachment. Furthermore, the ability to modulate this antigen may be relevant for the understanding of the molecular defect involved in lethal junctional epidermolysis bullosa.  相似文献   

14.
Integrins α3β1 and α6β4 are abundant receptors on keratinocytes for laminin-5, a major component of the basement membrane between the epidermis and the dermis in skin. These integrins are recruited to distinct adhesion structures within keratinocytes; α6β4 is present in hemidesmosomes, while α3β1 is recruited into focal contacts in cultured cells. To determine whether differences in localization reflect distinct functions of these integrins in the epidermis, we studied skin development in α3β1-deficient mice. Examination of extracellular matrix by immunofluorescence microscopy and electron microscopy revealed regions of disorganized basement membrane in α3β1-deficient skin. Disorganized matrix was first detected by day 15.5 of embryonic development and became progressively more extensive as development proceeded. In neonatal skin, matrix disorganization was frequently accompanied by blistering at the dermal-epidermal junction. Laminin-5 and other matrix proteins remained associated with both the dermal and epidermal sides of blisters, suggesting rupture of the basement membrane itself, rather than detachment of the epidermis from the basement membrane as occurs in some blistering disorders such as epidermolysis bullosa. Consistent with this notion, primary keratinocytes from α3β1-deficient skin adhered to laminin-5 through α6 integrins. However, α3β1-deficient keratinocytes spread poorly compared with wild-type cells on laminin-5, demonstrating a postattachment requirement for α3β1 and indicating distinct roles for α3β1 and α6β4. Our findings support a novel role for α3β1 in establishment and/or maintenance of basement membrane integrity, while α6β4 is required for stable adhesion of the epidermis to the basement membrane through hemidesmosomes.  相似文献   

15.
In mammalian epidermis, alpha6beta4 integrin is expressed exclusively on the basal layer localized to the hemidesmosomes, where it interacts extracellularly with the laminin-5 ligand. During differentiation, loss of alpha6beta4 is associated with keratinocyte detachment from the basement membrane and upward migration. The protein kinase C (PKC) family of isoforms participates in regulation of integrin function and is linked to skin differentiation. Exposure of primary murine keratinocytes to PKC activators specifically downregulates alpha6beta4 expression. Utilizing recombinant adenoviruses, we selectively overexpressed skin PKC isoforms in primary keratinocytes. PKCdelta and PKCzeta induced downregulation of alpha6beta4 protein expression, leading to reduced keratinocyte attachment to laminin-5 and enhanced gradual detachment from the underlying matrix. In contrast, PKCalpha upregulated alpha6beta4 protein expression, leading to increased keratinocyte attachment to laminin-5 and to the underlying matrix. Altogether, these results suggest distinct roles for specific PKC isoforms in alpha6beta4 functional regulation during the early stages of skin differentiation.  相似文献   

16.
The dermis and the epidermis of normal human skin are functionally separated by a basement membrane but, together, form a stable structural continuum. Anchoring fibrils reinforce this connection by insertion into the basement membrane and by intercalation with banded collagen fibrils of the papillary dermis. Structural abnormalities in collagen VII, the major molecular constituent of anchoring fibrils, lead to a congenital skin fragility condition, dystrophic epidermolysis bullosa, associated with skin blistering. Here, we characterized the molecular basis of the interactions between anchoring fibrils and banded collagen fibrils. Suprastructural fragments of the dermo-epidermal junction zone were generated by mechanical disruption and by separation with magnetic Immunobeads. Anchoring fibrils were tightly attached to banded collagen fibrils. In vitro binding studies demonstrated that a von Willebrand factor A-like motif in collagen VII was essential for binding of anchoring fibrils to reconstituted collagen I fibrils. Since collagen I and VII molecules reportedly undergo only weak interactions, the attachment of anchoring fibrils to collagen fibrils depends on supramolecular organization of their constituents. This complex is stabilized in situ and resists dissociation by strong denaturants.  相似文献   

17.
Analyses of mice with targeted deletions in the genes for alpha3 and beta1 integrin suggest that the alpha3beta1 integrin heterodimer likely determines the organization of the extracellular matrix within the basement membrane of skin. Here we tested this hypothesis using keratinocytes derived from alpha3 integrin-null mice. We have compared the organizational state of laminin-5, a ligand of alpha3beta1 integrin, in the matrix of wild-type keratinocytes with that of laminin-5 in the matrix of alpha3 integrin-null cells. Laminin-5 distributes diffusely in arc structures in the matrix of wild-type mouse keratinocytes, whereas laminin-5 is organized into linear, spike-like arrays by the alpha3 integrin-null cells. The fact that alpha3 integrin-null cells are deficient in their ability to assemble a proper laminin-5 matrix is also shown by their failure to remodel laminin-5 when plated onto surfaces coated with purified laminin-5 protein. In sharp contrast, wild-type keratinocytes organize exogenously added laminin-5 into discrete ring-like organizations. These findings led us next to assess whether differences in laminin-5 organization in the matrix of the wild-type and alpha3 integrin-null cells impact cell behavior. Our results indicate that alpha3 integrin-null cells are more motile than their wild-type counterparts and leave extensive trails of laminin-5 over the surface on which they move. Moreover, HEK 293 cells migrate significantly more on the laminin-5-rich matrix derived from the alpha3 integrin-null cells than on the wild-type keratinocyte laminin-5 matrix. In addition, alpha3 integrin-null cells show low strength of adhesion to surfaces coated with purified laminin-5 compared to wild-type cells although both the wild type and the alpha3 integrin-null keratinocytes adhere equally strongly to laminin-5 that has been organized into arrays by other epithelial cells. These data suggest: (1) that alpha3beta1 integrin plays an important role in determining the incorporation of laminin-5 into its proper higher-order structure within the extracellular matrix of keratinocytes and (2) that the organizational state of laminin-5 has an influence on laminin-5 matrix function.  相似文献   

18.
beta 1 integrins are ubiquitously expressed receptors that mediate cell-cell and cell-extracellular matrix interactions. To analyze the function of beta1 integrin in skin we generated mice with a keratinocyte-restricted deletion of the beta 1 integrin gene using the cre-loxP system. Mutant mice developed severe hair loss due to a reduced proliferation of hair matrix cells and severe hair follicle abnormalities. Eventually, the malformed hair follicles were removed by infiltrating macrophages. The epidermis of the back skin became hyperthickened, the basal keratinocytes showed reduced expression of alpha 6 beta 4 integrin, and the number of hemidesmosomes decreased. Basement membrane components were atypically deposited and, at least in the case of laminin-5, improperly processed, leading to disruption of the basement membrane and blister formation at the dermal-epidermal junction. In contrast, the integrity of the basement membrane surrounding the beta 1-deficient hair follicle was not affected. Finally, the dermis became fibrotic. These results demonstrate an important role of beta 1 integrins in hair follicle morphogenesis, in the processing of basement membrane components, in the maintenance of some, but not all basement membranes, in keratinocyte differentiation and proliferation, and in the formation and/or maintenance of hemidesmosomes.  相似文献   

19.
Gene transfer represents the unique therapeutic issue for a number of inherited skin disorders including junctional epidermolysis bullosa (JEB), an untreatable genodermatose caused by mutations in the adhesion ligand laminin 5 (alpha3beta3gamma2) that is secreted in the extracellular matrix by the epidermal basal keratinocytes. Because gene therapy protocols require validation in animal models, we have phenotypically reverted by oncoretroviral transfer of the curative gene the keratinocytes isolated from dogs with a spontaneous form of JEB associated with a genetic mutation in the alpha3 chain of laminin 5. We show that the transduced dog JEB keratinocytes: (1) display a sustained secretion of laminin 5 in the extracellular matrix; (2) recover the adhesion, proliferation, and clonogenic capacity of wild-type keratinocytes; (3) generate fully differentiated stratified epithelia that after grafting on immunocompromised mice produce phenotypically normal skin and sustain permanent expression of the transgene. We validate an animal model that appears particularly suitable to demonstrate feasibility, efficacy, and safety of genetic therapeutic strategies for cutaneous disorders before undertaking human clinical trials.  相似文献   

20.
The cytoplasmic domain of the integrin beta4 subunit mediates both association with the hemidesmosomal cytoskeleton and recruitment of the signaling adaptor protein Shc. To examine the significance of these interactions during development, we have generated mice carrying a targeted deletion of the beta4 cytoplasmic domain. Analysis of homozygous mutant mice indicates that the tail-less alpha6beta4 binds efficiently to laminin 5, but is unable to integrate with the cytoskeleton. Accordingly, these mice display extensive epidermal detachment at birth and die immmediately thereafter from a syndrome resembling the human disease junctional epidermolysis bullosa with pyloric atresia (PA-JEB). In addition, we find a significant proliferative defect. Specifically, the number of precursor cells in the intestinal epithelium, which remains adherent to the basement membrane, and in intact areas of the skin is reduced, and post-mitotic enterocytes display increased levels of the cyclin-dependent kinase inhibitor p27(Kip). These findings indicate that the interactions mediated by the beta4 tail are crucial for stable adhesion of stratified epithelia to the basement membrane and for proper cell-cycle control in the proliferative compartments of both stratified and simple epithelia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号