首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RGG domain in hnRNP A2 affects subcellular localization   总被引:4,自引:0,他引:4  
The heterogeneous nuclear ribonucleoproteins (hnRNP) associate with pre-mRNA in the nucleus and play an important role in RNA processing and splice site selection. In addition, hnRNP A proteins function in the export of mRNA to the cytoplasm. Although the hnRNP A proteins are predominantly nuclear, hnRNP A1 shuttles rapidly between the nucleus and the cytoplasm. HnRNP A2, whose cytoplasmic overexpression has been identified as an early biomarker of lung cancer, has been less well studied. Cytosolic hnRNP A2 overexpression has also been noted in brain tumors, in which it has been correlated with translational repression of Glucose Transporter-1 expression. We now examine the role of arginine methylation on the nucleocytoplasmic localization of hnRNP A2 in the HEK-293 and NIH-3T3 mammalian cell lines. Treatment of either cell line with the methyltransferase inhibitor adenosine dialdehyde dramatically shifts hnRNP A2 localization from the nuclear to the cytoplasmic compartment, as shown both by immunoblotting and by immunocytochemistry. In vitro radiolabeling with [(3)H]AdoMet of GST-tagged hnRNP A2 RGG mutants, using recombinant protein arginine methyltransferase (PRMT1), shows (i) that hnRNP A2 is a substrate for PRMT1 and (ii) that methylated residues are found only in the RGG domain. Deletion of the RGG domain (R191-G253) of hnRNP A2 results in a cytoplasmic localization phenotype, detected both by immunoblotting and by immunocytochemistry. These studies indicate that the RGG domain of hnRNP A2 contains sequences critical for cellular localization of the protein. The data suggest that hnRNP A2 may contain a novel nuclear localization sequence, regulated by arginine methylation, that lies in the R191-G253 region and may function independently of the M9 transportin-1-binding region in hnRNP A2.  相似文献   

2.
3.
4.
The mammalian nuclear poly(A)-binding protein, PABPN1, carries 13 asymmetrically dimethylated arginine residues in its C-terminal domain. By fractionation of cell extracts, we found that protein-arginine methyltransferases (PRMTs)-1, -3, and -6 are responsible for the modification of PABPN1. Recombinant PRMT1, -3, and -6 also methylated PABPN1. Our data suggest that these enzymes act on their own, and additional polypeptides are not involved in recognizing PABPN1 as a substrate. PRMT1 is the predominant methyltransferase acting on PABPN1. Nevertheless, PABPN1 was almost fully methylated in a Prmt1(-/-) cell line; thus, PRMT3 and -6 suffice for methylation. In contrast to PABPN1, the heterogeneous nuclear ribonucleoprotein (hnRNP) K is selectively methylated only by PRMT1. Efficient methylation of synthetic peptides derived from PABPN1 or hnRNP K suggested that PRMT1, -3, and -6 recognize their substrates by interacting with local amino acid sequences and not with additional domains of the substrates. However, the use of fusion proteins suggested that the inability of PRMT3 and -6 to modify hnRNP K is because of structural masking of the methyl-accepting amino acid sequences by neighboring domains. Mutations leading to intracellular aggregation of PABPN1 cause the disease oculopharyngeal muscular dystrophy. The C-terminal domain containing the methylated arginine residues is known to promote PAPBN1 self-association, and arginine methylation has been reported to inhibit self-association of an orthologous protein. Thus, arginine methylation might be relevant for oculopharyngeal muscular dystrophy. However, in two different types of assays we have been unable to detect any effect of arginine methylation on the aggregation of bovine PABPN1.  相似文献   

5.
Protein methylation is one of the most important post-translational modifications that contribute to the diversity and complexity of proteome. Here we report the study of in vitro methylation of heterogeneous nuclear ribonucleoprotein K (hnRNP K) with protein arginine methyltransferase 1 (PRMT1), as an enzyme, and S-adenosyl-l-methionine (SAM), as a methyl donor. The mass analysis of tryptic peptides of hnRNP K before and after methylation reveals the addition of four methyl groups in the residues 288–303. Tandem mass-spectrometric analysis of this peptide shows that both Arg296 and Arg299 are dimethylated. In addition, fragmentation analysis of such methylated arginines illustrate that they are both asymmetric dimethylarginines. Since Arg296 and Arg299 are located near the SH3-binding domains of hnRNP K, such methylation has the potential in regulating the interaction of hnRNP K with Src protein family. Our results provide crucial information for further functional study of hnRNP K methylation.  相似文献   

6.
7.
8.
9.
10.
11.
Protein arginine methylation is involved in viral infection and replication through the modulation of diverse cellular processes including RNA metabolism, cytokine signaling, and subcellular localization. It has been suggested previously that the protein arginine methylation of the RGG-box of ICP27 is required for herpes simplex virus type-1 (HSV-1) viral replication and gene expression in vivo. However, a cellular mediator for this process has not yet been identified. In our current study, we show that the protein arginine methyltransferase 1 (PRMT1) is a cellular mediator of the arginine methylation of ICP27 RGG-box. We generated arginine substitution mutants in this domain and examined which arginine residues are required for methylation by PRMT1. R138, R148 and R150 were found to be the major sites of this methylation but additional arginine residues serving as minor methylation sites are still required to sustain the fully methylated form of ICP27 RGG. We also demonstrate that the nuclear foci-like structure formation, SRPK interactions, and RNA-binding activity of ICP27 are modulated by the arginine methylation of the ICP27 RGG-box. Furthermore, HSV-1 replication is inhibited by hypomethylation of this domain resulting from the use of general PRMT inhibitors or arginine mutations. Our data thus suggest that the PRMT1 plays a key role as a cellular regulator of HSV-1 replication through ICP27 RGG-box methylation.  相似文献   

12.
Protein arginine methylation plays a critical role in differential gene expression through modulating protein-protein and protein-DNA/RNA interactions. Although numerous proteins undergo arginine methylation, only limited information is available on how protein arginine methyltransferases (PRMTs) identify their substrates. The human PRMT5 complex consists of PRMT5, WD45/MEP50 (WD repeat domain 45/methylosome protein 50), and pICln and catalyzes the symmetrical arginine dimethylation of its substrate proteins. pICln recruits the spliceosomal Sm proteins to the PRMT5 complex for methylation, which allows their subsequent loading onto snRNA to form small nuclear ribonucleoproteins. To understand how the PRMT5 complex is regulated, we investigated its biochemical composition and identified RioK1 as a novel, stoichiometric component of the PRMT5 complex. We show that RioK1 and pICln bind to PRMT5 in a mutually exclusive fashion. This results in a PRMT5-WD45/MEP50 core structure that either associates with pICln or RioK1 in distinct complexes. Furthermore, we show that RioK1 functions in analogy to pICln as an adapter protein by recruiting the RNA-binding protein nucleolin to the PRMT5 complex for its symmetrical methylation. The exclusive interaction of PRMT5 with either pICln or RioK1 thus provides the first mechanistic insight into how a methyltransferase can distinguish between its substrate proteins.  相似文献   

13.
The tumor suppressor p16INK4A (p16) blocks the cell cycle progression by inhibiting phosphorylation of the retinoblastoma protein. We describe here a novel aspect of the posttranslational control that has an important functional consequence on p16 protein. We first discovered that the p16 protein was methylated in various cell lineages. We then determined that the arginine 22, 131 and 138 of p16 were the main methylation sites. Western blotting and TUNEL analyses revealed that the p16 protein bearing these point mutations induced a higher apoptosis ratio than wild-type p16 in A549 cells. Furthermore, co-immunoprecipitation assays suggested that decrease of p16 arginine methylation level promoted the association of p16 with CDK4. Additionally, we determined that the protein arginine methyltransferase 6 (PRMT6) was responsible for the p16 arginine methylation. Results from flow cytometric analysis demonstrated that PRMT6 overexpression counteracted the cell cycle arrest at G1 phase induced by wild-type p16 in A549 cells. We also provided evidence that PRMT6 was able to interact with p16, and that the intensity of p16-CDK4 association was reduced upon PRMT6 overexpression. Together, data presented in this report establish that methylation at specific arginine residues of p16 protein by PRMT6 may be critical for the activity of p16.  相似文献   

14.
Engagement of membrane Ig (mIg) on WEHI-231 murine B lymphoma cells, a cell line model representative of primary immature B cells, results in growth arrest and subsequent apoptosis. Of the several dozen genes upregulated greater than two-fold by anti-IgM treatment through DNA microarray analysis, we focused on B cell translocation gene 1 (Btg1) and Btg2, member of Btg/Tob family of proteins. WEHI-231 cells were infected with the Btg1/EGFP or Btg2/EGFP retroviral vectors, and those expressing either Btg1 or Btg2 accumulated in G1 phase at significantly higher proportions than that seen for cells expressing control vector. Btg1 or Btg2 bound to protein arginine methyltransferase (PRMT) 1 via the box C region, an interaction required for anti-IgM-induced growth inhibition. The arginine methyltransferase inhibitor AdOx partially abrogated growth inhibition induced by Btg1, Btg2, or anti-IgM. The Btg1- or Btg2-induced growth inhibition was also abrogated in PRMT1-deficient cells via introduction of small interference RNA. In addition, we observed anti-IgM-induced arginine methylation of two proteins, a 28-kDa and a 36-kDa protein. Methylation, detected by a monoclonal antibody specific for asymmetric, but not symmetric methyl residues, was observed as early as 1 h-2 h after stimulation and was sustained for up to 24 h. The anti-IgM-induced p36 arginine methylation was abrogated in the PRMT1-deficient cells, suggesting that PRMT1 induces p36 methylation. Together, these results suggest that anti-IgM-induced growth inhibition is mediated via upregulation of Btg1 and Btg2, resulting in the activation of arginine methyltransferase activity and culminating in growth inhibition of WEHI-231 cells.  相似文献   

15.
Fused in sarcoma/translocated in liposarcoma (FUS/TLS) is one of causative genes for familial amyotrophic lateral sclerosis (ALS). In order to identify binding partners for FUS/TLS, we performed a yeast two-hybrid screening and found that protein arginine methyltransferase 1 (PRMT1) is one of binding partners primarily in the nucleus. In vitro and in vivo methylation assays showed that FUS/TLS could be methylated by PRMT1. The modulation of arginine methylation levels by a general methyltransferase inhibitor or conditional over-expression of PRMT1 altered slightly the nucleus-cytoplasmic ratio of FUS/TLS in cell fractionation assays. Although co-localized primarily in the nucleus in normal condition, FUS/TLS and PRMT1 were partially recruited to the cytoplasmic granules under oxidative stress, which were merged with stress granules (SGs) markers in SH-SY5Y cell. C-terminal truncated form of FUS/TLS (FUS-dC), which lacks C-terminal nuclear localization signal (NLS), formed cytoplasmic inclusions like ALS-linked FUS mutants and was partially co-localized with PRMT1. Furthermore, conditional over-expression of PRMT1 reduced the FUS-dC-mediated SGs formation and the detergent-insoluble aggregates in HEK293 cells. These findings indicate that PRMT1-mediated arginine methylation could be implicated in the nucleus-cytoplasmic shuttling of FUS/TLS and in the SGs formation and the detergent-insoluble inclusions of ALS-linked FUS/TLS mutants.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号