首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Study of the histology, histochemistry, and fine structure of caudal epidermal regeneration in Sphenodon punctatus through restoration of a scaled form reveals that the processes involved resemble those known in lizards. Following establishment of a wound epithelium (WE), subjacent scale neogenesis involves epidermal downgrowths into the dermis. Although the process is extremely slow, and most new scales do not overlap, their epidermal coverings reestablish epidermal generation (EG) formation. As in lizards, the flat, alpha-keratogenic, WE cells contain lipids as revealed by their affinity for Sudan III. A few mucous cells that store large PAS-positive mucus-like granules also occur in WE. During differentiation of WE cells, among the bundles of 70-nm tonofilaments are many lamellar bodies (LBs) and mucous granules (MGs) that discharge their contents into the cytoplasm and extracellular spaces producing a strongly PAS-positive keratinized tissue. Richness of epidermal lipids coexistent with mucus is a primitive characteristic for amniote vertebrates, probably related to functions as a barrier to cutaneous water loss (CWL). As scale neogenesis begins, beneath the superficial WE appear 3-5 layers of irregularly shaped cells. These contain tonofilament bundles surrounded by small, round keratohyalin-like granules (KHLGs) and a keratinized matrix with beta-keratin packets and a 3-5-nm thick keratin granulation. This mixture of alpha- and beta-keratogenic capacities resembles that seen in the innermost cells of a normal tuatara epidermal generation. As in the latter, but in contrast to both normal and regenerating lizard epidermis, no definable shedding complex with interdigitating clear layer and oberhautchen cells occurs (Alibardi and Maderson, 2003). The tortuous boundaries, and merging beta-keratin packets, identify subjacent keratinizing cells as precursors of the typical stratified, squamous beta-layer seen in long-term regenerated caudal skin wherein the entire vertical sequence of epidermal layers resembles that of normal scales. The sequence of events in caudal epidermal regeneration in S. punctatus resembles that documented for lizards. Observed differences between posttrauma scale neogenesis and scale embryogenesis are responses to functional problems involved in, respectively, restoring, or forming, a barrier to CWL while accommodating rapid somatic growth.  相似文献   

2.
    
Abstract

In this study we investigate the geographic distribution, genetic diversity, and phylogenetic relationships of an endangered tick, Amblyomma sphenodonti (Family Ixodidae). Amblyomma sphenodonti and its host, the tuatara (Sphenodon), are found only on small offshore islands around New Zealand. Our results show that Amblyomma sphenodonti has a more severely restricted geographic distribution than its host, as it was found on only eight of 28 islands (four out of 12 island groups) where tuatara still live. The prevalence of A. sphenodonti is likely to have been affected by low host density and fluctuations in host population size as tuatara populations became isolated on offshore islands. Analysis of A. sphenodonti cytochrome oxidase 1 (CO1) sequences indicated a lack of gene flow between islands, with fixed differences in CO1 sequences between islands, but almost no genetic diversity within island populations. A similar phylogenetic pattern to that observed in tuatara mtDNA was observed, indicating co‐evolution of two species, at least since the Pleistocene. Phylogenetic analysis using 18S rRNA sequences suggest that A. sphenodonti is not closely related to other Amblyomma species, and that a separate genus for this species may be warranted. However, data from other ixodid ticks are required before the distinctiveness of A. sphenodonti can be confirmed and the phylogenetic relationships among ixodid ticks fully understood.  相似文献   

3.
Reduced genetic diversity can result in short-term decreases in fitness and reduced adaptive potential, which may lead to an increased extinction risk. Therefore, maintaining genetic variation is important for the short- and long-term success of reintroduced populations. Here, we evaluate how founder group size and variance in male reproductive success influence the long-term maintenance of genetic diversity after reintroduction. We used microsatellite data to quantify the loss of heterozygosity and allelic diversity in the founder groups from three reintroductions of tuatara ( Sphenodon ), the sole living representatives of the reptilian order Rhynchocephalia. We then estimated the maintenance of genetic diversity over 400 years (∼10 generations) using population viability analyses. Reproduction of tuatara is highly skewed, with as few as 30% of males mating across years. Predicted losses of heterozygosity over 10 generations were low (1–14%), and populations founded with more animals retained a greater proportion of the heterozygosity and allelic diversity of their source populations and founder groups. Greater male reproductive skew led to greater predicted losses of genetic diversity over 10 generations, but only accelerated the loss of genetic diversity at small population size (<250 animals). A reduction in reproductive skew at low density may facilitate the maintenance of genetic diversity in small reintroduced populations. If reproductive skew is high and density-independent, larger founder groups could be released to achieve genetic goals for management.  相似文献   

4.
5.
    
Abstract

High mortality and abnormal growth patterns commonly found in captive juvenile tuatara were hypothesised to be due in part to the effects of long‐term chronic stress of captivity. This study compared plasma concentrations of the reptilian adrenal steroid, corticosterone, in wild juvenile tuatara on Stephens Island, Cook Strait, and in captive juveniles of Stephens Island origin, held in New Zealand institutions, in February and August 1992. Seasonal variation in plasma concentration of corticosterone in wild juveniles in four seasons of the year was also examined. This is the first study of seasonal cycles in plasma corticosterone in a wild juvenile reptile. Plasma corticosterone concentrations were significantly higher in captive juvenile females (4.21 ± 0.27 ng/ml; mean ± SE) compared with wild juvenile females (2.44 ± 0.42 ng/ml) in February (P < 0.05), but not in August, and there was no difference in concentration between captive and wild juvenile males in either month. There was significant seasonal variation in plasma corticosterone in wild juvenile females (P < 0.05). However, there was no seasonal variation observed in wild juvenile males, and the magnitude of the variation in plasma corticosterone was low in both sexes (1.28 ± 0 ng/ml ‐4.65 ±3.41 ng/ml). Although mean plasma corticosterone was higher in captive juvenile females compared with wild juvenile females in February 1992, the value in captive females was within the range of mean plasma corticosterone concentrations observed in the seasonal study, and may be therefore due to asynchronicity of seasonal cycles, rather than stress. Further research is required; however, lack of correlation between plasma corticosterone concentrations and either growth rate or density indicate that captive juvenile tuatara in New Zealand are not suffering from pronounced chronic stress.  相似文献   

6.
  总被引:1,自引:0,他引:1  

The diversity and seasonal abundance of birds at Christchurch Airport, their food and feeding habits, and the phenology of the food resource were studied in 1968–69 as part of an investigation of the bird hazard to aircraft. The birds either fed and roosted on the airport or flew over or close to it. Seasonal trends in the diet of black‐backed gulls (Larus dominicanus), black‐billed gulls (L. bulleri), starlings (Sturnus vulgaris), and magpies (Gymnorhina tibicen hypoleuca) were determined by examining the gizzard contents of birds shot while they were feeding on the airfield. Marked food preferences were noticeably lacking, except that black‐backed gulls fed exclusively on earthworms. Black‐billed gulls, starlings, and magpies took a variety of insects, earthworms, arachnids, and, to a less extent, seeds. Species diversity, seasonal distribution, and abundance of invertebrates and seeds showed that the birds were opportunist feeders on a succession of temporarily abundant food, and their presence on the airfield was determined largely by the availability of invertebrates and seeds.  相似文献   

7.
    
Abstract

Knowledge of the circadian behaviour of young tuatara (Sphenodon spp.) is relatively scarce because tuatara are difficult to observe in the wild. We document diurnal, nocturnal and crepuscular emergence and movements (half‐body movement, walking and running) of three groups of captive juvenile tuatara (2‐ and 3‐year‐old Sphenodon guntheri, and 5‐year‐old S. punctatus). Juvenile tuatara emerge predominantly at night, but move around above ground, mainly during the day and around sunset. Differences in emergence andmove‐ment scores between the three study groups were evident, probably linked with age, species or housing conditions, which were inevitably coupled in our study. We found that 2‐year‐old tuatara in captive conditions emerged less frequently than, but once above ground, moved more than 3‐ and 5‐year‐olds in semi‐captive conditions. Activities in semi‐captive conditions were not correlated with temperature, light or humidity. We conclude that young tuatara may be primarily adapted to nocturnal activity, but thermal restrictions and possible hardwired adaptations to avoid predators and conspecifics may make day‐time movements safer.  相似文献   

8.
Anthropogenic habitat fragmentation — ubiquitous in modern ecosystems — has strong impacts on gene flow and genetic population structure. Reptiles may be particularly susceptible to the effects of fragmentation because of their extreme sensitivity to environmental conditions and limited dispersal. We investigate fine-scale spatial genetic structure, individual relatedness, and sex-biased dispersal in a large population of a long-lived reptile (tuatara, Sphenodon punctatus) on a recently fragmented island. We genotyped individuals from remnant forest, regenerating forest, and grassland pasture sites at seven microsatellite loci and found significant genetic structuring (RST = 0.012) across small distances (< 500 m). Isolation by distance was not evident, but rather, genetic distance was weakly correlated with habitat similarity. Only individuals in forest fragments were correctly assignable to their site of origin, and individual pairwise relatedness in one fragment was significantly higher than expected. We did not detect sex-biased dispersal, but natural dispersal patterns may be confounded by fragmentation. Assignment tests showed that reforestation appears to have provided refuges for tuatara from disturbed areas. Our results suggest that fine-scale genetic structuring is driven by recent habitat modification and compounded by the sedentary lifestyle of these long-lived reptiles. Extreme longevity, large population size, simple social structure and random dispersal are not strong enough to counteract the genetic structure caused by a sedentary lifestyle. We suspect that fine-scale spatial genetic structuring could occur in any sedentary species with limited dispersal, making them more susceptible to the effects of fragmentation.  相似文献   

9.
10.
11.
The loss of the lower temporal arcade in diapsid reptiles   总被引:3,自引:0,他引:3  
The fossil record of diapsid reptiles does not provide conclusive evidence that the loss of the lower temporal arcade is correlated with the development of streptostyly. Analysis of the structure of the external jaw adductor in extant lizards results in the formulation of an alternative hypothesis to explain the loss of the lower temporal arcade in lepidosaurs. Extant lizards show the development of a posteroventral portion of the superficialis layer (lb) of the external adductor, which invades the lateral surface of the lower jaw, thus escaping the original confines of the external adductor. The development and expansion of a posteroventral lb muscle would have to be correlated with the loss of at least the posterior portion of the lower temporal arcade. Fossil lepidosaurs such as Clevosaurus, Prolacerta and Macrocnemus show the reduction of the lower temporal arcade from back to front, which is consistent with the hypothesis of the development of a posteroventral lb muscle.  相似文献   

12.
    
The expression of acidic and basic keratins, and of some keratinization marker proteins such as filaggrin, loricrin, involucrin, and trichohyalin, is known for the epidermis of only a few eutherian species. Using light and high-resolution immunocytochemistry, the presence of these proteins has been studied in two monotreme and five marsupial species and compared to that in eutherians. In both monotreme and marsupial epidermis lamellar bodies occur in the upper spinosus and granular layers. Development of the granular layer varies between species and regionally within species. There is great interspecific variation in the size (0.1-3.0 microm) of keratohyalin granules (KHGs) associated with production of orthokeratotic corneous tissues. Those skin regions lacking hairs (platypus web), or showing reduced pelage density (wombat) have, respectively, minute or indiscernible KHGs, associated with patchy, or total, parakeratosis. Ultrastructural analysis shows that monotreme and marsupial KHGs comprise irregular coarse filaments of 25-40 nm that contact keratin filaments. Except for parakeratotic tissues of platypus web, distribution of acidic and basic proteins in monotreme and marsupial epidermis as revealed by anti-keratin antibodies AE1, AE2, and AE3 resembles that of eutherian epidermis. Antibodies against human or rat filaggrins have little or no cross-reactivity with epidermal proteins of other mammals: only sparse areas of wombat and rabbit epidermis show a weak immunofluorescence in transitional cells and in the deepest corneous tissues. Of the available, eutherian-derived antibodies, that against involucrin shows no cross-reactivity with any monotreme and marsupial epidermal tissues and that against trichohyalin cross-reacts only with cells in the inner root sheath and medulla of hairs. These results suggest that if involucrin and trichohyalin are present throughout noneutherian epidermis, they may have species-specific molecular structures. By contrast, eutherian-derived anti-loricrin antibodies show a weak to intense cross-reactivity to KHGs and corneous tissues of both orthokeratotic and parakeratotic epidermis in monotremes and marsupials. High-resolution immunogold analysis of loricrin distribution in immature keratinocytes of platypus parakeratotic web epidermis identifies labeled areas of round or irregular, electron-pale granules within the denser keratohyalin component and keratin network. In the deepest mature tissues, loricrin-like labeling is diffuse throughout the cytoplasm, so that cells lack the preferential distribution of loricrin along the corneous envelope that characterizes mature eutherian keratinocytes. Thus, the irregular distribution of loricrin in platypus parakeratotic tissues more resembles that which has been described for reptilian and avian keratinocytes. These observations on the noneutherian epidermis show that a stratum granulosum is present to different degrees, even discontinuous within one tissue, so that parakeratotic and orthokeratotic areas may alternate: this might imply that parakeratotic monotreme epidermis reflects the primitive pattern of amniote alpha-keratogenesis. Absent from anamniote epidermis and all sauropsid beta-keratogenic tissues, the ubiquitous presence of a loricrin-like protein as a major component of other amniote corneous tissues suggests that this is a primitive feature of amniote alpha-keratogenesis. The apparent lack of specific regionalization of loricin near the plasma membranes of monotreme keratinocytes could be an artifactual result of the immunofluorescence technique employed, or there may be masking of the antigenicity of loricrin-like proteins once they are incorporated into the corneous envelope. Nevertheless, the mechanism of redistribution of such proteins during maturation of monotreme keratinocytes is different from, perhaps more primitive, or less specialized, than that in the epidermis of eutherian mammals.  相似文献   

13.
14.
The type I epidermal keratins K14 and K16 are remarkably similar at the primary sequence level. While a structural function has been clearly defined for K14, we have proposed that a function of K16 may be to play a role in the process of keratinocyte activation that occurs after acute injury to stratified epithelia. To compare directly the functions of the two keratins we have targeted the expression of the human K16 cDNA to the progenitor basal layer of the epidermis of K14 null mice. Mice null for K14 blister extensively and die approximately 2 d after birth (Lloyd, C., Q.C. Yu, J. Cheng, K. Turksen, L. Degenstein, E. Hutton, and E. Fuchs. 1995. J. Cell Biol. 129:1329-1344). The skin of mice expressing K16 in the absence of K14 developed normally without evidence of blistering. However, as the mice aged they featured extensive alopecia, chronic epidermal ulcers in areas of frequent physical contact, and alterations in other stratified epithelia. Mice expressing a control K16-C14 cDNA also rescue the blistering phenotype of the K14 null mice with only a small percentage exhibiting minor alopecia. While K16 is capable of rescuing the blistering, phenotypic complementation in the resulting skin is incomplete due to the multiple age dependent anomalies. Despite their high sequence similarity, K16 and K14 are not functionally equivalent in the epidermis and other stratified epithelia and it is primarily the carboxy-terminal approximately 105 amino acids of K16 that define these differences.  相似文献   

15.
Abstract: Estimates of population size are necessary for effective management of threatened and endangered species, but accurate estimation is often difficult when species are cryptic. We evaluated effectiveness of mark–recapture techniques using the Lincoln–Peterson estimator for predicting true census size of a population of tuatara (Sphenodon punctatus), a burrowing reptile that is a conservation priority in New Zealand. We found that Lincoln–Peterson estimates ( = 85) were accurate for predicting the census size (N = 87) after only a 3-day mark–recapture survey. We recommend this method as a cost-effective way to accurately estimate population size for isolated, inaccessible tuatara populations, because it requires limited personnel, expertise, and time, and has low environmental impact on fragile sites.  相似文献   

16.
17.
    
Abstract

Because funds for possum control are always insufficient to carry out control in all the areas that may require it, it is important that the funds available are allocated to those areas that most deserve it. This can be achieved only by implementing a process that first identifies the resource types likely to be degraded by possums, and secondly ranks areas for control within each resource type. If necessary, high priority areas between resource types can also be ranked. A method for undertaking such a process is described.  相似文献   

18.
We recently showed that inter-keratin disulfide bonding plays an important role in the assembly, organization, and dynamics of keratin intermediate filaments in skin keratinocytes. In particular, cysteine 367 located in the central α-helical rod domain of keratin 14 is necessary for the formation of a stable perinuclear network of keratin filaments (with type II partner keratin 5) in skin keratinocytes analyzed by static and live cell imaging. Here, we show that two additional cysteine residues located in the non-helical head domain of K14, Cys-4 and Cys-40, also participate in inter-keratin disulfide bonding and tandemly play a key role complementary to that of Cys-367 in the assembly, organization, and dynamics of keratin filaments in skin keratinocytes in primary culture. Analysis of K14 variants with single or multiple substitutions of cysteine residues points to a spatial and temporal hierarchy in how Cys-4/Cys-40 and Cys-367 regulate keratin assembly in vitro and filament dynamics in live keratinocytes in culture. Our findings substantiate the importance and complexity of a novel determinant, namely inter-keratin disulfide bonding, for the regulation of several aspects of keratin filaments in surface epithelia.  相似文献   

19.
    
Snakes are renowned for their ability to subdue and swallow large, often dangerous prey animals. Numerous adaptations, including constriction, venom, and a strike-and-release feeding strategy, help them avoid injury during predatory encounters. Burton's legless lizard ( Lialis burtonis Gray, Pygopodidae) has converged strongly on snakes. It is functionally limbless and feeds at infrequent intervals on relatively large prey items (other lizards) capable of inflicting a damaging bite. However, L. burtonis possesses neither venom glands, nor the ability to constrict prey. We investigated how L. burtonis subdues its prey without suffering serious retaliatory bites. Experiments showed that lizards modified their strike precision according to prey size; very large prey were always struck on the head or neck, preventing them from biting. In addition, L. burtonis delayed swallowing large lizards until they were incapacitated, whereas smaller prey were usually swallowed while still struggling. Lialis burtonis also displays morphological adaptations protecting it from prey retaliation. Its long snout prevents prey from biting, and it can retract its lidless eyes out of harm's way while holding onto a food item. The present study further clarifies the remarkable convergence between snakes and L. burtonis , and highlights the importance of prey retaliatory potential in predator evolution.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 91 , 719–727.  相似文献   

20.
We show—in contrast to the traditional textbook contention—that the first amniote lungs were complex, multichambered organs and that the single-chambered lungs of lizards and snakes represent a secondarily simplified rather than the plesiomorphic condition. We combine comparative anatomical and embryological data and show that shared structural principles of multichamberedness are recognizable in amniotes including all lepidosaurian taxa. Sequential intrapulmonary branching observed during early organogenesis becomes obscured during subsequent growth, resulting in a secondarily simplified, functionally single-chambered lung in lepidosaurian adults. Simplification of pulmonary structure maximized the size of the smallest air spaces and eliminated biophysically compelling surface tension problems that were associated with miniaturization evident among stem lepidosaurmorphs. The remaining amniotes, however, retained the multichambered lungs, which allowed both large surface area and high pulmonary compliance, thus initially providing a strong selective advantage for efficient respiration in terrestrial environments. Branched, multichambered lungs instead of simple, sac-like organs were part and parcel of the respiratory apparatus of the first amniotes and pivotal for their success on dry land, with the sky literally as the limit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号