首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Illuminated intact spinach chloroplasts decomposed one moleculeof H218O2 which resulted in the evolution of a half moleculeof 16O2, but little 18O2. The chloroplasts showed the same rateof photoreduction of 18C2 as that of the evolution of 16O2 withoutaccumulation of H218O2. These reactions were suppressed by DCMU,and also by several inhibitors of ascorbate peroxidase and dehydroascorbateand monodehydroascorbate reductases in chloroplasts. These observationsindicate that the hydrogen peroxide produced in chloroplastsis reduced to water by a peroxidase using a photoreductant asthe electron donor. The hydrogen peroxide scavenging systemof chloroplasts was inactivated if hydrogen peroxide was addedin the dark, but not if added during the light. (Received May 4, 1984; Accepted July 10, 1984)  相似文献   

2.
Ascorbate (AsA) peroxidase was found in six species of cyanobacteriaamong ten species tested. Upon the addition of H218O2 to thecells of AsA peroxidase-containing cyanobacteria, 16O2 derivedfrom water and 18O2 derived from H2I8O2 were evolved in thelight. The evolution of 16O2 was inhibited by DCMU and did notoccur in the dark, but I8O2 was evolved even in the dark orin the presence of DCMU. Similar light-dependent evolution of16O2 was observed in the cells of AsA peroxidase-containingEuglena and Chlamydomonas. However, the cells of AsA perox-idase-lackingcyanobacteria evolved only 18O2 in either the light or dark.Furthermore, the quenching of chlorophyll fluorescence inducedby hydrogen peroxide was observed only in the cells of the AsAperoxidase-containing Synechocystis 6803, and not in the cellsof Anacystis nidulans which lacks AsA peroxidase. Thus, cyanobacteriacan be divided into two groups, those that has and those thatlacks AsA peroxidase. The first group scavenges hydrogen peroxidewith the peroxidase using a photoreductant as the electron donor,and the second group only scavenges hydrogen peroxide with catalase. (Received July 23, 1990; Accepted October 18, 1990)  相似文献   

3.
Activities of ascorbate free radical reductase, ascorbate peroxidase,dehydroascorbate reductase, ascorbate oxidase and catalase inthe twigs of poplar, Populus gelrica, were measured throughouta year. Activity levels of the first three enzymes were highduring the wintering period of the life cycle, and the changesin the three enzyme activities occurred simultaneously. In fall,when the growth and enlargement of the tissues began to cease,the activities began to increase. In contrast to the activitiesof the above three enzymes, catalase activity began to increaseas the growth and enlargement proceeded, and the activity droppedby early November. Ascorbate levels in the twigs were measured,and the living bark and the xylem tissue were found to containsimilar levels of ascorbate (8 to 20 µmol and 2 to 14µmol per gram dry weight, respectively). From these results,it was suggested that in the growing period, deleterious H2O2produced in such organelles as the endoplasmic reticulum isdecomposed by catalase, and that in winter, oxidation and reductionreactions of ascorbate function not only to detoxify the peroxideproduced in the tissues, but also serve as a respiratory processto regenerate NADPH in the non-photosynthetic tissues of perennials. 1Contribution No. 2624 from the Institute of Low TemperatureScience, Hokkaido University, Sapporo 060, Japan. (Received January 25, 1984; Accepted June 1, 1984)  相似文献   

4.
One of the characteristic properties of ascorbate peroxidase(APX), which distinguishes it from guaiacol peroxidase, Cytc peroxidase and glutathione peroxidase, is the rapid inactivationof the enzyme under conditions where an electron donor is absent.When thylakoid-bound APX (tAPX) in 100 µM ascorbate wasdiluted 500-fold with an ascorbate-depleted medium, the enzymaticactivity was lost with half time of about 15 s. The inactivationof tAPX was suppressed under anaerobic conditions and also bythe addition of catalase, but it was unaffected by the additionof superoxide dismutase. These observations suggest that hydrogenperoxide at nanomolar levels, produced by autooxidation of ascorbateat lower than micromolar levels, might participate in the inactivationof tAPX. The participation of hydrogen peroxide was confirmedby the inactivation of tAPX upon incubation with hydrogen peroxideunder anaerobic conditions. In the absence of ascorbate, theheme of the two-electron-oxidized intermediate of tAPX (designatedCompound I) is decomposed by hydrogen peroxide. Thus, the instabilityof Compound I to hydrogen peroxide is responsible for the inactivationof APX when ascorbate is not available for Compound I and theenzyme cannot turnover. (Received October 16, 1995; Accepted February 21, 1996)  相似文献   

5.
Ascorbate peroxidase is a hydrogen peroxide-scavenging enzyme that is specific to plants and algae and is indispensable to protect chloroplasts and other cell constituents from damage by hydrogen peroxide and hydroxyl radicals produced from it. In this review, first, the participation of ascorbate peroxidase in the scavenging of hydrogen peroxide in chloroplasts is briefly described. Subsequently, the phylogenic distribution of ascorbate peroxidase in relation to other hydrogen peroxide-scavenging peroxidases using glutathione, NADH and cytochrome c is summarized. Chloroplastic and cytosolic isozymes of ascorbate peroxidase have been found, and show some differences in enzymatic properties. The basic properties of ascorbate peroxidases, however, are very different from those of the guaiacol peroxidases so far isolated from plant tissues. Amino acid sequence and other molecular properties indicate that ascorbate peroxidase resembles cytochrome c peroxidase from fungi rather than guaiacol peroxidase from plants, and it is proposed that the plant and yeast hydrogen peroxide-scavenging peroxidases have the same ancestor.  相似文献   

6.
The hydrogen peroxide that is photoproduced in thylakoids isscavenged by the thylakoid-bound ascorbate peroxidase (tAPX)[Miyake and Asada (1992) Plant Cell Physiol. 33: 541]. tAPXwas purified from spinach thylakoids to homogeneity as judgedby SDS-polyacrylamide gel electrophoresis, and its molecularproperties were studied. Spinach tAPX was a monomer with a molecularweight of 40,000, which is about 10,000 higher than that ofthe stromal ascorbate peroxidase (sAPX) from spinach chloroplasts.tAPX cross-reacted with the antibody raised against sAPX fromtea leaves, as determined by Western blotting, which also providedevidence for the higher molecular weight of tAPX from spinachthylakoids than that of tea sAPX. The amino acid sequence ofthe amino-terminal region of tAPX showed a low degree of homologyto those of cytosolic APXs from spinach, pea and Arabidopsisthaliana, but a high degree of homology to that of stromal APXfrom tea. Thus, the amino-terminal region of tAPX seems notto be a domain required for binding of the enzyme to the thylakoidmembranes. tAPX contained protoheme IX, as identified by itspyridine hemochromogen, and gave a Soret peak at 403 nm and433 nm with an a band at 555 nm in its oxidized and reducedforms, respectively. Resembling sAPX but differing from cytosolicAPX, tAPX showed high specificity for ascorbate as the electrondonor. tAPX was inhibited by cyanide, thiol-modifying reagents,thiols and several suicide inhibitors, such as hydroxyurea andp-aminophenol. 1Present address: Beijing Vegetable Research Centre, PO Box2443, Beijing, China.  相似文献   

7.
Thylakoid-bound and stromal ascorbate peroxidases scavenge thehydrogen peroxide that is photoproduced in PSI of chloroplastthylakoids. The primary oxidation product of ascorbate in thereaction catalyzed by ascorbate peroxidase, the monodehydroascorbate(MDA) radical, is photoreduced by thylakoids [Miyake and Asada(1992) Plant Cell Physiol. 33: 541]. We have now shown thatthe photoreduction of MDA radical in spinach thylakoids is largelydependent on ferredoxin (Fd), as determined by the monitoringthe MDA radical by electron paramagnetic resonance. Further,the reduced Fd generated by NADPH and Fd-NADP reductase couldreduce the MDA radical at a rate of over 106 M–1 s–1,indicating that the photoreduced Fd in PSI directly reducesthe MDA radical to ascorbate. Photoreduction of NADP+ by spinach thylakoids was suppressedby the MDA radical and conversely that of MDA radical was suppressedby NADP+, indicating a competition between the MDA radical andNADP+ for the photoreduced Fd in PSI. The ratio of the rateconstant for the photoreduction of MDA radical to that for thephotoreduction of NADP+ was estimated to be more than 30 to1. Thus, MDA radical is preferentially photoreduced as comparedto NADP+. From these results, we propose that the thylakoid-boundascorbate peroxidase and the Fd-dependent photoreduction ofMDA radical in PSI are the primary system for the scavengingof the hydrogen peroxide that is photoproduced in the thylakoids. (Received December 9, 1993; Accepted February 16, 1994)  相似文献   

8.
Dark-adapted intact spinach chloroplasts exhibited two peaks,P and M1, at the early phase of fluorescence induction and atransient reduction of cytochrome f shortly after its initialphotooxidation and in parallel to the appearance of P. Analysisof the peak P and the transient reduction of cytochrome f indicatedthat electron transport in intact spinach chloroplasts was regulatedby light: electron transport was inactivated at the reducingside of photosystem I in the dark-adapted chloroplasts but rapidlyreactivated by illumination. The fluorescence peak M1 was correlatedto the proton gradient formed across the thylakoid membrane. Effects on P and transient reduction of cytochromef of NO2,3-phosphoglycerate (PGA) and oxalacetate (OAA), which can penetrateinto intact chloroplasts and accept electrons at different sitesafter photosystem I, were studied to determine the site of thelight regulation. NC2, which receives electrons fromreduced ferredoxin, markedly diminished both P and the transientreduction of cytochrome.f, whereas PGA and OAA, the reductionsof which are NADP-dependent, failed to affect the two transients.The ineffectiveness of PGA and OAA could not be attributed tothe dark inactivation of glyceraldehyde-3-phosphate and malicdehydrogenases, because dark-adapted chloroplasts still retainedsufficiently high levels of the enzyme activities. The resultsindicate that electron transport in intact spinach chloroplastsis regulated by light after ferredoxin but before NADP, i.e.,at the reducing terminal of the electron transport chain. (Received May 29, 1980; )  相似文献   

9.
Ascorbate peroxidase, a key enzyme for the scavenging of hydrogenperoxide in chloroplasts, was found in a thylakoid-bound formin spinach chloroplasts at comparable activity to that in thestroma. The activity of peroxidase was detectable in the thylakoidsonly when prepared by an ascorbate-containing medium, and enrichedin the stroma thylakoids. The thylakoid enzyme was not releasedfrom the membranes by either 2 mM EDTA, 1 M KCl, 2 M NaBr or2 M NaSCN, but was solubilized by detergents. Enzymatic propertiesof the thylakoid-bound ascorbate peroxidase were very similarto those of the stromal ascorbate peroxidase. Thylakoid-bound ascorbate peroxidase could scavenge the hydrogenperoxide either added or photoproduced by the thylakoids. Nophotoreduction of hydrogen peroxide was observed, however, inthe thylakoids whose ascorbate peroxidase was inhibited by KCNand thiol reagents or inactivated by the treatment with ascorbate-depletion.The primary oxidation product of ascorbate in a reaction ofascorbate peroxidase, monodehydroascorbate (MDA) radical, wasphotoreduced in the thylakoids, as detected by the quenchingof chlorophyll fluorescence, disappearance of EPR signals ofthe MDA radicals and the MDA radical-induced oxygen evolution.Thus, ascorbate is photoregenerated in the thylakoids from theMDA radicals produced in a reaction of ascorbate peroxidasefor the scavenging of hydrogen peroxide. (Received March 26, 1992; Accepted April 22, 1992)  相似文献   

10.
Ascorbate peroxidase,a haem protein (EC 1.11.1.11),efficiently scavenges hydrogen peroxide (H2O2) in cytosol and chloroplasts of plants.In this study,a fulllength coding sequence of thylakoid-bound ascorbate peroxidase cDNA (TatAPX) was cloned from a drought tolerant wheat cultivar C306.Homology modeling of the TatAPX protein was performed by using the template crystal structure of chloroplastic ascorbate peroxidase from tobacco plant (PDB: 1IYN).The model structure was further refined by molecular mechanic...  相似文献   

11.
Ascorbate biosynthesis and function in photoprotection   总被引:23,自引:0,他引:23  
Ascorbate (vitamin C) can reach very high concentrations in chloroplasts (20-300 mM). The pool size in leaves and chloroplasts increases during acclimation to high light intensity and the highest concentrations recorded are in high alpine plants. Multiple functions for ascorbate in photosynthesis have been proposed, including scavenging of active oxygen species generated by oxygen photoreduction and photorespiration, regeneration of alpha-tocopherol from alpha-tocopheryl radicals, cofactor for violaxanthin de-epoxidase and donation of electrons to photosystem II. Hydrogen peroxide scavenging is catalysed by ascorbate peroxidase (Mehler peroxidase reaction) and the subsequent regeneration of ascorbate by reductant derived from photosystem I allows electron flow in addition to that used for CO2 assimilation. Ascorbate is synthesized from guanosine diphosphate-mannose via L-galactose and L-galactono-1,4-lactone. The last step, catalysed by L-galactono-1,4-lactone dehydrogenase, is located on the inner mitochondrial membrane and uses cytochrome c as electron acceptor. L-galactono-1,4-lactone oxidation to ascorbate by intact leaves is faster in high-light acclimated leaves and is also enhanced by high light, suggesting that this step contributes to the control of pool size by light. Ascorbate-deficient Arabidopsis thaliana vtc mutants are hypersensitive to a number of oxidative stresses including ozone and ultraviolet B radiation. Further investigation of these mutants shows that they have reduced zeaxanthin-dependent non-photochemical quenching, confirming that ascorbate is the cofactor for violaxanthin de-epoxidase and that availability of thylakoid lumen ascorbate could limit this reaction. The vtc mutants are also more sensitive to photo-oxidation imposed by combined high light and salt treatments.  相似文献   

12.
Activities of Hydrogen Peroxide-Scavenging Enzymes in Germinating Wheat Seeds   总被引:39,自引:4,他引:35  
During imbibition and germination of wheat (Triticum aestivum)in the dark over 72 h, activities of the enzymes of the ascorbate(AsA)-dependent H2O2-scavenging pathway, AsA peroxidase, monodehydroascorbate(MDAsA) reductase, dehydroascorbate (DHAsA) reductase and glutathione(GSSG) reductase as well as superoxide dismutase (SOD), catalaseand guaiacol peroxidase were determined both in whole grainsand in isolated embryos and endosperm. With the exception of DHAsA reductase, activities of the otherenzymes assayed increased in germinating seeds, especially duringradicle emergence (between 24–48 h of imbibition). Theseincreases, particularly for AsA peroxidase, were much higherin the embryo than in the endosperm. Within 72 h of imbibition,activities per seed increased 116-fold for AsA peroxidase, 19-foldfor guaiacol peroxidase, 5-fold for catalase and only 1·4-foldfor SOD. In contrast to the decreases in DHAsA reductase, theother AsA recycling enzyme, MDAsA reductase, increased 5-foldwithin 72 h. The results indicate that, in wheat seeds, imbibition and germinationis associated with enhanced cellular capacity to detoxify H2O2.For this detoxification the operation of AsA peroxidase togetherwith the AsA-regenerating enzymes appears to be of particularimportance. Key words: Ascorbate peroxidase, germination, hydrogen peroxide detoxification, inhibition, wheat  相似文献   

13.
The ascorbate system, one of the major antioxidant systems, has been studied in two bryophytes; a moss, Brachythecium velutinum (Hedw.) B., S. & G., and a liverwort, Marchantia polymorpha L. The moss and liverwort gametophytes contain ascorbate both in the reduced and oxidized form; utilize ascorbate in removing hydrogen peroxide by means of ascorbate peroxidase and reconvert to ascorbate its oxidation products by means of dehydroascorbate reductase and monodehydroascorbate reductase. Ascorbate oxidase activity was measured in the cytosolic fraction suggesting a localization of the enzyme different from more evolved organisms. The ascorbate content was maintained in the moss after drought stress while it declines in the liverwort, which seems more sensitive to water stress. Since ascorbate recycling is more efficient in the moss than in the liverwort, this seems to suggest a correlation between efficiency of ascorbate recycling and water stress tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Ascorbate content and the activities of ascorbate free-radicalreductase (AFR-R) and ascorbate peroxidase (APX) were investigatedin order to determine whether they are affected under Fe deficiency.Plasma membrane vesicles, cell wall and cytosolic fractionswere isolated from the roots of cucumber (Cucumis sativus L.)plants grown in the absence or in the presence of Fe. Plasmamembrane vesicles showed NADH-dependent reducing activitieswith Fe3+-citrate, ferricyanide and AFR as electron acceptors.Only AFR-R activity was stimulated ca. 3-fold in Fe deficientplasma membranes. No significant change in cytosolic AFR-R activitywas induced by Fe depletion, while the activity of cytosolicAPX was more than twice that of the non-deficient control. Furthermore,the content of ascorbate (AA) was enhanced ca. 1.7-fold in Fedeficient roots. These results indicate that metabolic changesresulting in enhanced AA levels and activities of AFR-R andAPX in the roots could be related to plant responses to Fe deficiencystress. (Received November 5, 1998; Accepted December 12, 1998)  相似文献   

15.
The primary reaction product of chloroplast ascorbate peroxidaseactivity was shown to be monodehydroascorbate radical (MDA).MDA reductase (EC 1.6.5.4 [EC] ) was localized in spinach chloroplaststroma. The MDA reductase activity of spinach chloroplasts,using NAD(P)H as electron donor, could account for the regenerationof ascorbate from MDA produced by ascorbate peroxidase activity.In the absence of MDA reductase, MDA disproportionated to ascorbate(AsA) and dehydroascorbate (DHA). The DHA was reduced to AsAby DHA reductase (EC 1.8.5.1 [EC] ) in chloroplasts. Both NADH andNADPH served as the electron donor of partially purified MDAreductase from spinach leaves. (Received September 24, 1983; Accepted January 23, 1984)  相似文献   

16.
Ascorbate peroxidase isoforms localized in the stroma and thylakoid of higher plant chloroplasts are rapidly inactivated by hydrogen peroxide if the second substrate, ascorbate, is depleted. However, cytosolic and microbody-localized isoforms from higher plants as well as ascorbate peroxidase B, an ascorbate peroxidase of a red alga Galdieria partita, are relatively tolerant. We constructed various chimeric ascorbate peroxidases in which regions of ascorbate peroxidase B, from sites internal to the C-terminal end, were exchanged with corresponding regions of the stromal ascorbate peroxidase of spinach. Analysis of these showed that a region between residues 245 and 287 was involved in the inactivation by hydrogen peroxide. A 16-residue amino acid sequence (249-264) found in this region of the stromal ascorbate peroxidase was not found in other ascorbate peroxidase isoforms. A chimeric ascorbate peroxidase B with this sequence inserted was inactivated by hydrogen peroxide within a few minutes. The sequence forms a loop that binds noncovalently to heme in cytosolic ascorbate peroxidase of pea but does not bind to it in stromal ascorbate peroxidase of tobacco, and binds to cations in both ascorbate peroxidases. The higher susceptibility of the stromal ascorbate peroxidase may be due to a distorted interaction of the loop with the cation and/or the heme.  相似文献   

17.
Ascorbate specific peroxidase in chloroplasts was purified fromspinach leaves. Spinach chloroplast peroxidase was a monomerwith a molecular weight of about 30,000 and showed an absorptionspectrum similar to a hemoprotein. The enzyme lost its activitywithin a minute in the absence of ascorbate under aerobic conditions.In addition to ascorbate, 20% sorbitol was necessary to stabilizethe enzyme. The inactivation of the enzyme in the ascorbate-depletedmedium was protected by other electron donors, pyrogallol, guaiacoland pyrocatechol, whose oxidation rates were very low comparedwith that of ascorbate. The inactivated enzyme recovered itsactivity with monodehydroascorbate radicals generated by theascorbate-ascorbate oxidase system. A mechanism of inactivationand reactivation of ascorbate peroxidase is proposed. (Received August 28, 1986; Accepted November 13, 1986)  相似文献   

18.
Inactivation of Ascorbate Peroxidase by Thiols Requires Hydrogen Peroxide   总被引:2,自引:0,他引:2  
The hydrogen peroxide-dependent oxidation of ascorbate by ascorbateperoxidase from tea leaves was inhibited by thiols, such asdithiothreitol, glutathione, mercaptoethanol and cysteine. Thesethiols themselves did not inactivate the enzyme. However, theyinactivated the enzyme when hydrogen peroxide was produced bythe metal-catalyzed oxidation of thiols or when exogenous hydrogenperoxide was added. Thiols were oxidized by ascorbate peroxidaseand hydrogen peroxide to thiyl radicals, as detected by theESR spectra of the thiyl radical-5,5'-dimethyll- pyrroline-N-oxidieadducts. Inactivation of ascorbate peroxidase by thiols andhydrogen peroxide is caused by the interaction of the enzymewith the thiyl radicals produced at its reaction center. (Received September 10, 1991; Accepted December 9, 1991)  相似文献   

19.
Intact chloroplasts isolated from sulphur dioxide fumigatedHardwickia binata leaves showed inhibition of PS II electron transport activity without any significant effect on photosystem I. Sulphur dioxide exposed leaves accumulated more hydrogen peroxide than those from non-fumigated plants and this was caused by increase in superoxide radical production. Hydrogen peroxide formation was inhibited by addition of cytochrome C and superoxide disrnutase. In sulphur dioxide fumigated leaves, increase in superoxide dismutase activity showed resistance to sulphite toxicity. The localization of ascorbate peroxidase, glutathione reductase and dehydroascorbate reductase activities in chloroplasts provide evidence for the photogeneration of ascorbate. The scavenging of hydrogen peroxide in chloroplast due to ascorbate regenerated from DHA by the system: PS I → Fd → NADP → glutathione. The system can be considered as a means for preliminary detoxification of sulphur dioxide by chloroplasts  相似文献   

20.
Ascorbate metabolism in harvested broccoli   总被引:2,自引:0,他引:2  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号