首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Assembly of ternary thrombin-heparin-fibrin complexes, formed when fibrin binds to exosite 1 on thrombin and fibrin-bound heparin binds to exosite 2, produces a 58- and 247-fold reduction in the heparin-catalyzed rate of thrombin inhibition by antithrombin and heparin cofactor II, respectively. The greater reduction for heparin cofactor II reflects its requirement for access to exosite 1 during the inhibitory process. Protection from inhibition by antithrombin and heparin cofactor II requires ligation of both exosites 1 and 2 because minimal protection is seen when exosite 1 variants (gamma-thrombin and thrombin Quick 1) or an exosite 2 variant (Arg93 --> Ala, Arg97 --> Ala, and Arg101 --> Ala thrombin) is substituted for thrombin. Likewise, the rate of thrombin inhibition by the heparin-independent inhibitor, alpha1-antitrypsin Met358 --> Arg, is decreased less than 2-fold in the presence of soluble fibrin and heparin. In contrast, thrombin is protected from inhibition by a covalent antithrombin-heparin complex, suggesting that access of heparin to exosite 2 of thrombin is hampered when ternary complex formation occurs. These results reveal the importance of exosites 1 and 2 of thrombin in assembly of the ternary complex and the subsequent protection of thrombin from inhibition by heparin-catalyzed inhibitors.  相似文献   

2.
The conversion of the reactive center bond of the serpin alpha1-proteinase inhibitor (alpha1-PI, also known as alpha1-antitrypsin) from Met-Ser to Arg-Ser decreases the rate at which it inhibits neutrophil elastase and endows it with the ability to inhibit thrombin and activated protein C (APC). Another serpin, heparin cofactor II (HCII), contains a unique N-terminal extension that binds thrombin exosite 1. We fused residues 1-75 of HCII to the N-terminus of alpha1-PI M358R, forming an HCII-alpha1-PI chimera (HAPI M358R). It inhibited alpha-thrombin 21-fold faster than alpha1-PI M358R, with second-order rate constants of 2.3 x 10(8) M(-1) min(-1) versus 1.1 x 10(7) M(-1) min(-1), respectively. When gammaT-thrombin, which lacks an intact exosite 1, was substituted for alpha-thrombin, the kinetic advantage of HAPI M358R over alpha1-PI M358R was reduced to 9-fold, whereas APC and trypsin, proteases lacking exosite 1-like regions, were inhibited only 1.3- and 2-fold more rapidly by HAPI M358R than by alpha1-PI M358R, respectively. Maximal enhancement of alpha1-PI M358R activity required the acidic residues found between HCII residues 55 and 75, because no enhancement was observed either by fusion of residues 1-54 alone or by fusion of a mutated HCII acidic extension in which all Glu and Asp residues between positions 55 and 75 were neutralized by mutation. Fusing residues 55-75 to alpha1-PI M358R yielded a relative rate enhancement of only 6-fold, suggesting a need for the full tail region to achieve maximal enhancement. Our results suggest that transfer of the N-terminal acidic extension of HCII to alpha1-PI M358R enhanced its inhibition of thrombin by conferring the ability to bind exosite 1 on HAPI M358R. This enhancement may aid in efforts to tailor this inhibitor for therapeutic use.  相似文献   

3.
Thrombin is a multifunctional protease that plays a key role in hemostasis, thrombosis, and inflammation. Most thrombin inhibitors currently used as antithrombotic agents target thrombin''s active site and inhibit all of its myriad of activities. Exosites 1 and 2 are distinct regions on the surface of thrombin that provide specificity to its proteolytic activity by mediating binding to substrates, receptors, and cofactors. Exosite 1 mediates binding and cleavage of fibrinogen, proteolytically activated receptors, and some coagulation factors, while exosite 2 mediates binding to heparin and to platelet receptor GPIb-IX-V. The crystal structures of two nucleic acid ligands bound to thrombin have been solved. Previously Padmanabhan and colleagues solved the structure of a DNA aptamer bound to exosite 1 and we reported the structure of an RNA aptamer bound to exosite 2 on thrombin. Based upon these structural studies we speculated that the two aptamers would not compete for binding to thrombin. We observe that simultaneously blocking both exosites with the aptamers leads to synergistic inhibition of thrombin-dependent platelet activation and procoagulant activity. This combination of exosite 1 and exosite 2 inhibitors may provide a particularly effective antithrombotic approach.  相似文献   

4.
Crystal structure of thrombin bound to heparin   总被引:5,自引:0,他引:5  
Thrombin is the final protease in the blood coagulation cascade and serves both pro- and anticoagulant functions through the cleavage of several targets. The ability of thrombin to specifically recognize a wide range of substrates derives from interactions that occur outside of the active site of thrombin. Thrombin possesses two anion binding exosites, which mediate many of its interactions with cofactors and substrates, and although many structures of thrombin have been solved, few such interactions have been described in molecular detail. Glycosaminoglycan binding to exosite II of thrombin plays a major role in switching off the procoagulant functions of thrombin by mediating its irreversible inhibition by circulating serpins and by its binding to the endothelial cell surface receptor thrombomodulin. Here we report the 1.85-A structure of human alpha-thrombin bound to a heparin fragment of eight monosaccharide units in length. The asymmetric unit is composed of two thrombin dimers, each sharing a single heparin octasaccharide chain. The observed interactions are fully consistent with previous mutagenesis studies and illustrate on a molecular level the cofactor interaction that is critical for the restriction of clotting to the site of blood vessel injury.  相似文献   

5.
Thrombin uses three principal sites, the active site, exosite I, and exosite II, for recognition of its many cofactors and substrates. It is synthesized in the zymogen form, prothrombin, and its activation at the end of the blood coagulation cascade results in the formation of the active site and exosite I and the exposure of exosite II. The physiological inhibitors of thrombin are all serpins, whose mechanism involves significant conformational change in both serpin and protease. It has been shown that the formation of the thrombin-serpin final complex disorders the active site and exosite I of thrombin, but exosite II is thought to remain functional. It has also been hypothesized that thrombin contains a receptor-binding site that is exposed upon final complex formation. The position of this cryptic site may depend on the regions of thrombin unfolded by serpin complexation. Here we investigate the conformation of thrombin in its final complex with serpins and find that in addition to exosite I, exosite II is also disordered, as reflected by a loss of affinity for the γ'-peptide of fibrinogen and for heparin and by susceptibility to limited proteolysis. This disordering of exosite II occurs for all tested natural thrombin-inhibiting serpins. Our data suggest a novel framework for understanding serpin function, especially with respect to thrombin inhibition, where serpins functionally "rezymogenize" proteases to ensure complete loss of activity and cofactor binding.  相似文献   

6.
Filion ML  Bhakta V  Nguyen LH  Liaw PS  Sheffield WP 《Biochemistry》2004,43(46):14864-14872
The abundant plasma protein alpha(1)-proteinase inhibitor (alpha(1)-PI) physiologically inhibits neutrophil elastase (NE) and factor XIa and belongs to the serine protease inhibitor (serpin) protein superfamily. Inhibitory serpins possess a surface peptide domain called the reactive center loop (RCL), which contains the P1-P1' scissile peptide bond. Conversion of this bond in alpha(1)-PI from Met-Ser to Arg-Ser in alpha(1)-PI Pittsburgh (M358R) redirects alpha(1)-PI from inhibiting NE to inhibiting thrombin (IIa), activated protein C (APC), and other proteases. In contrast to either the wild-type or M358R alpha(1)-PI, heparin cofactor II (HCII) is a IIa-specific inhibitor with an atypical Leu-Ser reactive center. We examined the effects of replacement of all or part of the RCL of alpha(1)-PI with the corresponding parts of the HCII RCL on the activity and specificity of the resulting chimeric inhibitors. A series of 12 N-terminally His-tagged alpha(1)-PI proteins differing only in their RCL residues were expressed as soluble proteins in Escherichia coli. Substitution of the P16-P3' loop of alpha(1)-PI with that of HCII increased the low intrinsic antithrombin activity of alpha(1)-PI to near that of heparin-free HCII, while analogous substitution of the P2'-P3' dipeptide surpassed this level. However, gel-based complexing and quantitative kinetic assays showed that all mutant proteins inhibited thrombin at less than 2% of the rate of alpha(1)-PI (M358R) unless the P1 residue was also mutated to Arg. An alpha(1)-PI (P16-P3' HCII/M358R) variant was only 3-fold less active than M358R against IIa but 70-fold less active against APC. The reduction in anti-APC activity is desired in an antithrombotic agent, but the improvement in inhibitory profile came at the cost of a 3.5-fold increase in the stoichiometry of inhibition. Our results suggest that, while P1 Arg is essential for maximal antithrombin activity in engineered alpha(1)-PI proteins, substitution of the corresponding HCII residues can enhance thrombin specificity.  相似文献   

7.
Activation of platelets by the serine protease thrombin is a critical event in haemostasis. This process involves the binding of thrombin to glycoprotein Ibα (GpIbα) and cleavage of protease-activated receptors (PARs). The N-terminal extracellular domain of GpIbα contains an acidic peptide stretch that has been identified as the main thrombin binding site, and both anion binding exosites of thrombin have been implicated in GpIbα binding, but it remains unclear how they are involved. This issue is of critical importance for the mechanism of platelet activation by thrombin. If both exosites bind to GpIbα, thrombin could potentially act as a platelet adhesion molecule or receptor dimerisation trigger. Alternatively, if only a single site is involved, GpIbα may serve as a cofactor for PAR-1 activation by thrombin. To determine the involvement of thrombin's two exosites in GpIbα binding, we employed the complementary methods of mutational analysis, binding studies, X-ray crystallography and NMR spectroscopy. Our results indicate that the peptide corresponding to the C-terminal portion of GpIbα and the entire extracellular domain bind exclusively to thrombin's exosite II. The interaction of thrombin with GpIbα thus serves to recruit thrombin activity to the platelet surface while leaving exosite I free for PAR-1 recognition.  相似文献   

8.
Heparin cofactor II (Mr = 65,600) was purified 1800-fold from human plasma to further characterize the structural and functional properties of the protein as they compare to antithrombin III (Mr = 56,600). Heparin cofactor II and antithrombin III are functionally similar in that both proteins have been shown to inhibit thrombin at accelerated rates in the presence of heparin. There was little evidence for structural homology between heparin cofactor II and antithrombin III when high performance liquid chromatography-tryptic peptide maps and NH2-terminal sequences were compared. A partially degraded form of heparin cofactor II was also obtained in which a significant portion (Mr = 8,000) of the NH2 terminus was missing. The rates of thrombin inhibition (+/- heparin) by native and partially degraded-heparin cofactor II were not significantly different, suggesting that the NH2-terminal region of the protein is not essential either for heparin binding or for thrombin inhibition. A significant degree of similarity was found in the COOH-terminal regions of the proteins when the primary structures of the reactive site peptides, i.e. the peptides which are COOH-terminal to the reactive site peptide bonds cleaved by thrombin, were compared. Of the 36 residues identified, 19 residues in the reactive site peptide sequence of heparin cofactor II could be aligned with residues in the reactive site peptide from antithrombin III. While the similarities in primary structure suggest that heparin cofactor II may be an additional member of the superfamily of proteins consisting of antithrombin III, alpha 1-antitrypsin, alpha 1-antichymotrypsin and ovalbumin, the differences in structure could account for differences in protease specificity and reactivity toward thrombin. In particular, a disulfide bond which links the COOH-terminal (reactive site) region of antithrombin III to the remainder of the molecule and is important for the heparin-induced conformational change in the protein and high affinity binding of heparin does not appear to exist in heparin cofactor II. This observation provides an initial indication that while the reported kinetic mechanisms of action of heparin in accelerating the heparin cofactor II/thrombin and antithrombin III/thrombin reactions are similar, the mechanisms and effects of heparin binding to the two inhibitors may be different.  相似文献   

9.
'Thrombin aptamers' are based on the 15-nucleotide consensus sequence of d(GGTTGGTGTGGTTGG) that binds specifically to thrombin's anion-binding exosite-I. The effect of aptamer-thrombin interactions during inhibition by the serine protease inhibitor (serpin) heparin cofactor II (HCII) and antithrombin (AT) has not been described. Thrombin inhibition by HCII without glycosaminoglycan was decreased approximately two-fold by the aptamer. In contrast, the aptamer dramatically reduced thrombin inhibition by >200-fold and 30-fold for HCII-heparin and HCII-dermatan sulfate, respectively. The aptamer had essentially no effect on thrombin inhibition by AT with or without heparin. These results add to our understanding of thrombin aptamer activity for potential clinical application, and they further demonstrate the importance of thrombin exosite-I during inhibition by HCII-glycosaminoglycans.  相似文献   

10.
Thrombin is an allosteric protease controlled through exosites flanking the catalytic groove. Binding of a peptide derived from hirudin (Hir(52-65)) and/or of heparin to these opposing exosites alters catalysis. We have investigated the contribution of subsites S(2)' and S(3)' to this allosteric transition by comparing the hydrolysis of two sets of fluorescence-quenched substrates having all natural amino acids at positions P(2)' and P(3)'. Regardless of the amino acids, Hir(52-65) decreased, and heparin increased the k(cat)/K(m) value of hydrolysis by thrombin. Several lines of evidence have suggested that Glu(192) participates in this modulation. We have examined the role of Glu(192) by comparing the catalytic activity of thrombin and its E192Q mutant. Mutation substantially diminishes the selectivity of thrombin. The substrate with the "best" P(2)' residue was cleaved with a k(cat)/K(m) value only 49 times higher than the one having the "least favorable" P(2)' residue (versus 636-fold with thrombin). Mutant E192Q also lost the strong preference of thrombin for positively charged P(3)' residues and its strong aversion for negatively charged P(3)' residues. Furthermore, both Hir(52-65) and heparin increased the k(cat)/K(m) value of substrate hydrolysis. We conclude that Glu(192) is critical for the P(2)' and P(3)' specificities of thrombin and for the allostery mediated through exosite 1.  相似文献   

11.
Thrombin cleaves fibrinopeptides A and B from fibrinogen leading to the formation of a fibrin network that is later covalently crosslinked by Factor XIII (FXIII). Thrombin helps activate FXIII by catalyzing hydrolysis of the FXIII activation peptides (AP). In the current work, the role of exosites in the ternary thrombin-FXIII-fibrin(ogen) complex was further explored. Hydrolysis studies indicate that thrombin predominantly utilizes its active site region to bind extended Factor XIII AP (FXIII AP 33-64 and 28-56) leaving the anion-binding exosites for fibrin(ogen) binding. The presence of fibrin-I leads to improvements in the K(m) for hydrolysis of FXIII AP (28-41), whereas peptides based on the cardioprotective FXIII V34L sequence exhibit less reliance on this cofactor. Surface plasmon resonance measurements reveal that d-Phe-Pro-Arg-chloromethylketone-thrombin binds to fibrinogen faster than to FXIII a(2) and dissociates from fibrinogen more slowly than from FXIII a(2). This system of thrombin exosite interactions with differing affinities promotes efficient clot formation.  相似文献   

12.
The cytokine osteopontin (OPN) can be hydrolyzed by thrombin exposing a cryptic alpha(4)beta(1)/alpha(9)beta(1) integrin-binding motif (SVVYGLR), thereby acting as a potent cytokine for cells bearing these activated integrins. We show that purified milk OPN is a substrate for thrombin with a k(cat)/K(m) value of 1.14 x 10(5) m(-1) s(-1). Thrombin cleavage of OPN was inhibited by unsulfated hirugen (IC(50) = 1.2 +/- 0.2 microm), unfractionated heparin (IC(50) = 56.6 +/- 8.4 microg/ml) and low molecular weight (5 kDa) heparin (IC(50) = 31.0 +/- 7.9 microg/ml), indicating the involvement of both anion-binding exosite I (ABE-I) and anion-binding exosite II (ABE-II). Using a thrombin mutant library, we mapped residues important for recognition and cleavage of OPN within ABE-I and ABE-II. A peptide (OPN-(162-197)) was designed spanning the OPN thrombin cleavage site and a hirudin-like C-terminal tail domain. Thrombin cleaved OPN-(162-197) with a specificity constant of k(cat)/K(m) = 1.64 x 10(4) m(-1) s(-1). Representative ABE-I mutants (K65A, H66A, R68A, Y71A, and R73A) showed greatly impaired cleavage, whereas the ABE-II mutants were unaffected, suggesting that ABE-I interacts principally with the hirudin-like OPN domain C-terminal and contiguous to the thrombin cleavage site. Debye-Hückel slopes for milk OPN (-4.1 +/- 1.0) and OPN-(162-197) (-2.4 +/- 0.2) suggest that electrostatic interactions play an important role in thrombin recognition and cleavage of OPN. Thus, OPN is a bona fide substrate for thrombin, and generation of thrombin-cleaved OPN with enhanced pro-inflammatory properties provides another molecular link between coagulation and inflammation.  相似文献   

13.
Although exosites 1 and 2 regulate thrombin activity by binding substrates and cofactors and by allosterically modulating the active site, it is unclear whether there is direct allosteric linkage between the two exosites. To begin to address this, we first titrated a thrombin variant fluorescently labeled at exosite 1 with exosite 2 ligands, HD22 (a DNA aptamer), γ′-peptide (an analog of the COOH terminus of the γ′-chain of fibrinogen) or heparin. Concentration-dependent and saturable changes in fluorescence were elicited, supporting inter-exosite linkage. To explore the functional consequences of this phenomenon, we evaluated the capacity of exosite 2 ligands to inhibit thrombin binding to γAA-fibrin, an interaction mediated solely by exosite 1. When γAA-fibrinogen was clotted with thrombin in the presence of HD22, γ′-peptide, or prothrombin fragment 2 there was a dose-dependent and saturable decrease in thrombin binding to the resultant fibrin clots. Furthermore, HD22 reduced the affinity of thrombin for γAA-fibrin 6-fold and accelerated the dissociation of thrombin from preformed γAA-fibrin clots. Similar responses were obtained when surface plasmon resonance was used to monitor the interaction of thrombin with γAA-fibrinogen or fibrin. There is bidirectional communication between the exosites, because exosite 1 ligands, HD1 (a DNA aptamer) or hirudin-(54–65) (an analog of the COOH terminus of hirudin), inhibited the exosite 2-mediated interaction of thrombin with immobilized γ′-peptide. These findings provide evidence for long range allosteric linkage between exosites 1 and 2 on thrombin, revealing further complexity to the mechanisms of thrombin regulation.As the central effector of hemostasis, thrombin is engaged in procoagulant, anticoagulant, and fibrinolytic processes. These seemingly contrasting roles are regulated, at least in part, by thrombin''s interactions with other factors in the blood and vasculature. The binding of ligands to thrombin is promoted by exosites 1 and 2, which are positively charged domains that flank the active site. These exosites facilitate the binding of substrates or cofactors and align them for optimal interaction with the active site (1).Exosite 1 is predominantly used to gain access to the active site by substrates such as fibrinogen (2), factors V (3) and VIII (4), and the protease-activated receptors (PARs)2 on platelets (5). Effectors that modulate thrombin activity, including thrombomodulin (6), hirudin (7), and heparin cofactor II (8), also utilize exosite 1. Thrombomodulin alters the specificity of thrombin by hindering access of other substrates to exosite 1 (9) and by providing new binding sites for protein C and thrombin-activable fibrinolysis inhibitor, thereby promoting anticoagulant and antifibrinolytic pathways, respectively (10, 11). Fewer processes are mediated by exosite 2, which serves largely as a tether that anchors thrombin for participation in other reactions. Thus, heparin binds exosite 2 (12) and catalyzes thrombin inhibition by antithrombin and heparin cofactor II (13, 14). Exosite 2 also is used by glycoprotein 1bα on platelets to localize thrombin for activation of PARs (1517).Although the prevailing role of the exosites is to bring substrates and cofactors into proximity with thrombin, there is evidence that the exosites also serve as allosteric regulators of thrombin activity. Crystallographic studies reveal that, when peptides derived from PAR1 or PAR3 are bound to exosite 1 on thrombin, an obstructing surface loop moves out of the active site pocket, thereby providing access to substrates (18). The binding of a thrombomodulin fragment to exosite 1 was shown to alter the environment of an active site fluorescent probe (19), which accelerates the rate of protein C and thrombin-activable fibrinolysis inhibitor activation in an allosteric fashion. In contrast, exosite 1-binding peptides from heparin cofactor II or fibrinogen decrease the rate of protein C activation (20). Additionally, the binding of ligands to exosite 1 alters the rates of chromogenic substrate hydrolysis (21, 22). Allosteric effects are not limited to exosite 1, because prothrombin fragment 2 (F2), a cleavage product of prothrombin, binds exosite 2 and decreases the rate at which thrombin converts fibrinogen to fibrin (23, 24) and is inhibited by antithrombin (25, 26). In support of the concept that these alterations are allosteric in origin, fluorescent probes bound to the active site of thrombin undergo a change in fluorescence intensity when exosite 2 is occupied (24, 27).Although there is good evidence for allosteric regulation of the active site by the exosites, it remains unclear whether there is direct allosteric connection between the exosites. Reciprocal effects between exosites 1 and 2 have been observed by some investigators (2830), but not by others (25, 31). The aim of the current study was to use different techniques and additional ligands to resolve this controversy. First, we examined the effect of exosite 2-directed ligands on the fluorescence intensity of a thrombin variant that was labeled in exosite 1. Next, we examined the effect of these ligands on thrombin binding to fibrin. To exploit the observation that thrombin binds γAA-fibrinogen exclusively via exosite 1 (2, 32), leaving exosite 2 accessible, this subpopulation was isolated (32). We used intact fibrin clots and surface plasmon resonance (SPR) to examine the influence of exosite 2-directed ligands on thrombin binding to γAA-fibrin. In addition, diffusion studies were performed to examine the effect of exosite-directed ligands on the rate of thrombin dissociation from preformed fibrin clots. Finally, we explored whether exosite 1-directed ligands modulate the binding of thrombin to an exosite 2-directed ligand.  相似文献   

14.
Thrombin exosite 1 binds the predominant gamma(A)/gamma(A)-fibrin form with low affinity. A subpopulation of fibrin molecules, gamma(A)/gamma'-fibrin, has an extended COOH terminus gamma'-chain that binds exosite 2 of thrombin. Bivalent binding to gamma(A)/gamma'-fibrin increases the affinity of thrombin 10-fold, as determined by surface plasmon resonance. Because of its higher affinity, thrombin dissociates 7-fold more slowly from gamma(A)/gamma'-fibrin clots than from gamma(A)/gamma(A)-fibrin clots. After 24 h of washing, however, both gamma(A)/gamma'- and gamma(A)/gamma(A)-fibrin clots generate fibrinopeptide A when incubated with fibrinogen, indicating the retention of active thrombin. Previous studies demonstrated that heparin heightens the affinity of thrombin for fibrin by simultaneously binding to fibrin and exosite 2 on thrombin to generate a ternary heparin-thrombin-fibrin complex that protects thrombin from inhibition by antithrombin and heparin cofactor II. In contrast, dermatan sulfate does not promote ternary complex formation because it does not bind to fibrin. Heparin-catalyzed rates of thrombin inhibition by antithrombin were 5-fold slower in gamma(A)/gamma'-fibrin clots than they were in gamma(A)/gamma(A)-fibrin clots. This difference reflects bivalent binding of thrombin to gamma(A)/gamma'-fibrin because (a) it is abolished by addition of a gamma'-chain-directed antibody that blocks exosite 2-mediated binding of thrombin to the gamma'-chain and (b) the dermatan sulfate-catalyzed rate of thrombin inhibition by heparin cofactor II also is lower with gamma(A)/gamma'-fibrin than with gamma(A)/gamma(A)-fibrin clots. Thus, bivalent binding of thrombin to gamma(A)/gamma'-fibrin protects thrombin from inhibition, raising the possibility that gamma(A)/gamma'-fibrin serves as a reservoir of active thrombin that renders thrombi thrombogenic.  相似文献   

15.
Inactivation of thrombin (T) by the serpins heparin cofactor II (HCII) and antithrombin (AT) is accelerated by a heparin template between the serpin and thrombin exosite II. Unlike AT, HCII also uses an allosteric interaction of its NH2-terminal segment with exosite I. Sucrose octasulfate (SOS) accelerated thrombin inactivation by HCII but not AT by 2000-fold. SOS bound to two sites on thrombin, with dissociation constants (KD) of 10 ± 4 μm and 400 ± 300 μm that were not kinetically resolvable, as evidenced by single hyperbolic SOS concentration dependences of the inactivation rate (kobs). SOS bound HCII with KD 1.45 ± 0.30 mm, and this binding was tightened in the T·SOS·HCII complex, characterized by Kcomplex of ∼0.20 μm. Inactivation data were incompatible with a model solely depending on HCII·SOS but fit an equilibrium linkage model employing T·SOS binding in the pathway to higher order complex formation. Hirudin-(54–65)(SO3) caused a hyperbolic decrease of the inactivation rates, suggesting partial competitive binding of hirudin-(54–65)(SO3) and HCII to exosite I. Meizothrombin(des-fragment 1), binding SOS with KD = 1600 ± 300 μm, and thrombin were inactivated at comparable rates, and an exosite II aptamer had no effect on the inactivation, suggesting limited exosite II involvement. SOS accelerated inactivation of meizothrombin 1000-fold, reflecting the contribution of direct exosite I interaction with HCII. Thrombin generation in plasma was suppressed by SOS, both in HCII-dependent and -independent processes. The ex vivo HCII-dependent process may utilize the proposed model and suggests a potential for oversulfated disaccharides in controlling HCII-regulated thrombin generation.  相似文献   

16.
Bothrojaracin, a 27-kDa C-type lectin from Bothrops jararaca venom, is a selective and potent thrombin inhibitor (K(d) = 0.6 nM) which interacts with the two thrombin anion-binding exosites (I and II) but not with its catalytic site. In the present study, we analyzed the allosteric effects produced in the catalytic site by bothrojaracin binding to thrombin exosites. Opposite effects were observed with alpha-thrombin, which possesses both exosites I and II, and with gamma-thrombin, which lacks exosite I. On the one hand, bothrojaracin altered both kinetic parameters K(m) and k(cat) of alpha-thrombin for small synthetic substrates, resulting in an increased efficiency of alpha-thrombin catalytic activity. This effect was similar to that produced by hirugen, a peptide based on the C-terminal hirudin sequence (residues 54-65) which interacts exclusively with exosite I. On the other hand, bothrojaracin decreased the amidolytic activity of gamma-thrombin toward chromogenic substrates, although this effect was observed with higher concentrations of bothrojaracin than those used with alpha-thrombin. In agreement with these observaions, bothrojaracin produced opposite effects on the fluorescence intensity of alpha- and gamma-thrombin derivatives labeled at the active site with fluorescein-Phe-Pro-Arg-chloromethylketone. These observations support the conclusion that bothrojaracin binding to thrombin produces two different structural changes in its active site, depending on whether it interacts exclusively with exosite II, as seen with gamma-thrombin, or with exosite I (or both I and II) as observed with alpha-thrombin. The ability of bothrojaracin to evoke distinct modifications in the thrombin catalytic site environment when interacting with exosites I and II make this molecule an interesting tool for the study of allosteric changes in the thrombin molecule.  相似文献   

17.
The glycoprotein (GP) Ib-IX complex is a platelet surface receptor that binds thrombin as one of its ligands, although the biological significance of thrombin interaction remains unclear. In this study we have used several approaches to investigate the GPIb alpha-thrombin interaction in more detail and to study its effect on the thrombin-induced elaboration of fibrin. We found that both glycocalicin and the amino-terminal fragment of GPIb alpha reduced the release of fibrinopeptide A from fibrinogen by about 50% by a noncompetitive allosteric mechanism. Similarly, GPIb alpha caused in thrombin an allosteric reduction in the rate of turnover of the small peptide substrate d-Phe-Pro-Arg-pNA. The K(d) for the glycocalicin-thrombin interaction was 1 microm at physiological ionic strength but was highly salt-dependent, decreasing to 0.19 microm at 100 mm NaCl (Gamma(salt) = -4.2). The salt dependence was characteristic of other thrombin ligands that bind to exosite II of this enzyme, and we confirmed this as the GPIb alpha-binding site on thrombin by using thrombin mutants and by competition binding studies. R68E or R70E mutations in exosite I of thrombin had little effect on its interaction with GPIb alpha. Both the allosteric inhibition of fibrinogen turnover caused by GPIb alpha binding to these mutants, and the K(d) values for their interactions with GPIb alpha were similar to those of wild-type thrombin. In contrast, R89E and K248E mutations in exosite II of thrombin markedly increased the K(d) values for the interactions of these thrombin mutants with GPIb alpha by 10- and 25-fold, respectively. Finally, we demonstrated that low molecular weight heparin (which binds to thrombin exosite II) but not hirugen (residues 54-65 of hirudin, which binds to exosite I of thrombin) inhibited thrombin binding to GPIb alpha. These data demonstrate that GPIb alpha binds to thrombin exosite II and in so doing causes a conformational change in the active site of thrombin by an allosteric mechanism that alters the accessibility of both its natural substrate, fibrinogen, and the small peptidyl substrate d-Phe-Pro-Arg-pNA.  相似文献   

18.
Exosite 1 on thrombin mediates low affinity binding to sites on the NH2 termini of the alpha- and beta-chains of fibrin. A subpopulation of fibrin molecules (gammaA/gamma'-fibrin) has an alternate COOH terminus of the normal gamma-chain (gammaA/gammaA-fibrin) that binds thrombin with high affinity. To determine the roles of exosites 1 and 2 in the high affinity interaction of thrombin with gammaA/gamma'-fibrin, binding studies were done with thrombin variants and exosite 1- or 2-directed ligands. alpha-Thrombin bound gammaA/gamma'-fibrin via high and low affinity binding sites. A peptide analog of the COOH terminus of the gamma'-chain that binds alpha-thrombin via exosite 2 blocked the high affinity binding of alpha-thrombin to gammaA/gamma'-fibrin, suggesting that the interaction of alpha-thrombin with the gamma'-chain is exosite 2-mediated. In support of this concept, (a) gamma-thrombin, which lacks a functional exosite 1, bound to gammaA/gamma'-fibrin, but not to gammaA/gammaA-fibrin; (b) thrombin R93A/R97A/R101A, an exosite 2-defective variant, bound only to gammaA/gamma'-fibrin via low affinity sites; and (c) exosite 2-directed ligands reduced alpha-thrombin binding to gammaA/gamma'-fibrin. However, several lines of evidence indicate that exosite 1 contributes to the high affinity interaction of thrombin with gammaA/gamma'-fibrin. First, the affinity of gamma-thrombin for gammaA/gamma'-fibrin was lower than that of alpha-thrombin. Second, removal of a low affinity binding site on the beta-chain of gammaA/gamma'-fibrin reduced its affinity for alpha-thrombin. Third, exosite 1-directed ligands reduced alpha-thrombin binding to gammaA/gamma'-fibrin. Taken together, these data suggest that, although exosite 2 mediates the interaction of thrombin with the gamma'-chain of gammaA/gamma'-fibrin, simultaneous ligation of exosite 1 by low affinity binding sites is essential for the high affinity interaction of thrombin with gammaA/gamma'-fibrin.  相似文献   

19.
F Lian  L He  N S Colwell  P Lollar  D M Tollefsen 《Biochemistry》2001,40(29):8508-8513
A monoclonal IgG isolated from a patient with multiple myeloma has been shown to bind to exosite II of thrombin, prolong both the thrombin time and the activated partial thromboplastin time (aPTT) when added to normal plasma, and alter the kinetics of hydrolysis of synthetic peptide substrates. Although the IgG does not affect cleavage of fibrinogen by thrombin, it increases the rate of inhibition of thrombin by purified antithrombin approximately 3-fold. Experiments with plasma immunodepleted of antithrombin or heparin cofactor II confirm that prolongation of the thrombin time requires antithrombin. By contrast, prolongation of the aPTT requires neither antithrombin nor heparin cofactor II. The IgG delays clotting of plasma initiated by purified factor IXa but has much less of an effect on clotting initiated by factor Xa. In a purified system, the IgG decreases the rate of activation of factor VIII by thrombin. These studies indicate that binding of a monoclonal IgG to exosite II prolongs the thrombin time indirectly by accelerating the thrombin-antithrombin reaction and may prolong the aPTT by interfering with activation of factor VIII, thereby diminishing the catalytic activity of the factor IXa/VIIIa complex.  相似文献   

20.
Human blood coagulation Factor V (FV) is a plasma protein with little procoagulant activity. Limited proteolysis at Arg(709), Arg(1018), and Arg(1545) by thrombin or Factor Xa (FXa) results in the generation of activated FV, which serves as a cofactor of FXa in prothrombin activation. Both thrombin exosites I and II have been reported to be involved in FV activation, but the relative importance of these regions in the individual cleavages remains unclear. To investigate the role of each exosite in FV activation, we have used recombinant FV molecules with only one of the three activation cleavage sites available, in combination with exosite I- or II-specific aptamers. In addition, structural requirements for exosite interactions located in the B-domain of FV were probed using FV B-domain deletion mutants and comparison with FV activating enzymes from the venom of Russell's viper (RVV-V) and of Levant's viper (LVV-V) known to activate FV by specific cleavage at Arg(1545). Our results indicate that thrombin exosite II is not involved in cleavage at Arg(709) and that both thrombin exosites are important for recognition and cleavage at Arg(1545). Efficient thrombin-catalyzed FV activation requires both the N- and C-terminal regions of the B-domain, whereas only the latter is required by RVV-V and LVV-V. This indicates that proteolysis of FV by thrombin at Arg(709), Arg(1018), and Arg(1545) show different cleavage requirements with respect to interactions mediated by thrombin exosites and areas that surround the respective cleavage sites. In addition, interactions between exosite I of thrombin and FV are primarily responsible for the different cleavage site specificity as compared with activation by RVV-V or LVV-V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号