首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thymus has been viewed as the main site of tolerance induction to self-antigens that are specifically expressed by thymic cells and abundant blood-borne self-antigens, whereas tolerance to tissue-restricted self-antigens has been ascribed to extrathymic (peripheral) tolerance mechanisms. However, the phenomenon of promiscuous expression of tissue-restricted self-antigens by medullary thymic epithelial cells has led to a reassessment of the role of central T-cell tolerance in preventing organ-specific autoimmunity. Recent evidence indicates that both genetic and epigenetic mechanisms account for this unorthodox mode of gene expression. As we discuss here, these new insights have implications for our understanding of self-tolerance in humans, its breakdown in autoimmune diseases and the significance of this tolerance mode in vertebrate evolution.  相似文献   

2.
Development and maturation of thymic dendritic cells during human ontogeny   总被引:2,自引:0,他引:2  
Thymic dendritic cells (TDC) are dendritic cells situated mainly in the cortico-medullary zone and in the medullary region of the thymus. However, the phenotype of TDC during ontogeny is poorly documented. The aim of this study has been to investigate the development and maturation of TDC during human ontogeny. Immunohistochemical analyses and immunoelectron-microscopic investigation of 21 human thymus specimens have been performed to detect the subtypes of TDC by using various DC-related and DC-development-related markers. TDC express a Langerhans-cell-like phenotype during human ontogeny. Cells expressing thymic stromal lymphopoietin receptor have been observed in Hassal’s corpuscles of the thymus. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is also expressed in thymic epithelial cells (TEC) localized in Hassal’s corpuscles. During human ontogeny, GM-CSF is produced by TEC of Hassal’s corpuscles and might play a key role in the differentiation of TDC having Langerhans-cell-like phenotypes.  相似文献   

3.
The thymus is a heterogeneous immune organ in which immature T-cells develop and eventually specialize to make certain immune responses of their own. Among various types of stromal cells in the thymus, thymic epithelial cells (TECs) have a crucially important function for presenting self-antigens and secreting cytokines to thymocytes for their maturation into T-cells. In this study we show that the p73 gene, a homologue of the tumor suppressor gene p53, was expressed in the nucleus of the human TEC in vivo and in TEC lines in vitro. Because p73 has the capacity to be a transactivator like p53, it may contribute to T-cell development in the context of TEC biology as regulated in the cell cycle and apoptosis.  相似文献   

4.
CD4(+) regulatory T cells (Tregs) control adaptive immune responses and promote self-tolerance. Various humanized mouse models have been developed in efforts to reproduce and study a human immune system. However, in models that require T cell differentiation in the recipient murine thymus, only low numbers of T cells populate the peripheral immune systems. T cells are positively selected by mouse MHC and therefore do not function well in an HLA-restricted manner. In contrast, cotransplantation of human fetal thymus/liver and i.v. injection of CD34(+) cells from the same donor achieves multilineage human lymphohematopoietic reconstitution, including dendritic cells and formation of secondary lymphoid organs, in NOD/SCID mice. Strong Ag-specific immune responses and homeostatic expansion of human T cells that are dependent on peripheral human APCs occur. We now demonstrate that FOXP3(+)Helios(+) "natural" Tregs develop normally in human fetal thymic grafts and are present in peripheral blood, spleen, and lymph nodes of these humanized mice. Humanized mice exhibit normal reversal of CD45 isoform expression in association with thymic egress, postthymic "naive" to "activated" phenotypic conversion, and suppressive function. These studies demonstrate the utility of this humanized mouse model for the study of human Treg ontogeny, immunobiology and therapy.  相似文献   

5.
During development in the thymus, each T lymphocyte is equipped with one, essentially unique, T cell receptor (TCR)-specificity. Due to its random nature, this process inevitably also leads to the emergence of potentially dangerous T lymphocytes that may recognize ‘self.’ Nevertheless, autoimmune tissue destruction, the cause of diseases such as multiple sclerosis and diabetes, is the exception rather than the rule. This state of immunological self-tolerance is to a large degree based upon a process called ‘negative selection’: prior to joining the circulating lymphocyte pool, immature T cells test their receptor on self-antigens within the thymic microenvironment, and TCR engagement at this immature stage elicits an apoptotic suicide program. We now find evidence that macroautophagy supports the tolerogenic presentation of self-antigens in the thymus.  相似文献   

6.
'Horor autotoxicus', as it was termed by Erhlich, is a rare clinical event despite the genetic potential of every individual to mount immune responses to self-antigens. This can be explained by the fact that the developing immune system learns to recognize self-antigens and to tolerate them. The key to autoimmunity therefore lies in unravelling the mechanisms of self-tolerance. Studies of conventional models of unresponsiveness have failed to provide a definitive answer owing to the difficulty in controlling for the large number of antigen-related variables associated with self-tolerance and in following the fate of individual clones of self-reactive lymphocytes which emerge in very low numbers from the pre-immune repertoire. These problems have now been overcome by creation of transgenic mice tolerant to endogenous antigens and containing high frequencies of autoreactive T or B lymphocytes. According to the results obtained to date, different mechanisms of tolerance induction operate for self-reactive T lymphocytes compared with B lymphocytes. Thus self-tolerance in T lymphocytes appears to depend largely on clonal deletion within the thymus. By contrast, self-reactive B lymphocytes are functionally silenced without undergoing deletion provided that the transgenic B lymphocytes express both IgM and IgD on their surfaces. This dichotomy makes good sense given that the T-lymphocyte repertoire once shaped within the thymus is not subject to further mutation whereas antigen receptors on mature B lymphocytes undergo hypermutation in the periphery.  相似文献   

7.
8.
Nonlymphoid, stromal cells in the mouse thymus are believed to be important in T cell maturation and have been proposed to play a central role in the acquisition of major histocompatibility complex (MHC) restriction and self-tolerance by maturing thymocytes. Both cortical and medullary epithelial cells in the thymus express high levels of class II (A) major histocompatibility antigens (MHC Ags). We show here that a specific subset of these A epithelial cells express a transformation-associated antigen (6C3Ag) found previously on the surfaces of Abelson murine leukemia virus-transformed pre-B cells and on those bone marrow-derived stromal cell clones which support normal and preneoplastic pre-B cell proliferation. Among solid lymphoid organs, only the thymus contains 6C3Ag1 cells and within the thymus, this antigen is found exclusively on A epithelial cells in cortical regions. It is striking that the expression of the 6C3Ag on thymic epithelium is developmentally regulated, suggesting a role for this lymphostromal antigen in the maturation of the thymic microenvironment.  相似文献   

9.
T-cell ontogenesis has been disclosed to depend on the interactions of thymus with endocrine glands and nervous system as follows: i/ Thymic deprivation not only impaired the immunological development but also brought about the dysgenesis of pituitary anterior lobe. Conversely, hypophysectomy resulted in thymus atrophy with the disturbed immune responses. ii/ Binding of pituitary acidophilic cell hormones to their receptors on thymus epithelial cells (TECs) augmented the release of thymic hormonal peptides (THPs) in vitro. iii/ Elevation of blood glucocorticoid level after stress caused atrophy of thymus cortex through double positive thymocyte apoptosis. Morpho-molecular alterations of cytoplasm preceded nuclear damage in the apoptotic thymocytes. iv/ Administration of thymosin to the streptozotocin-induced diabetic mice repressed mononuclear cell infiltration to the pancreatic islets. v/ Autonomic nerve fibers innervate thymic parenchyma. Binding of acetylcholines (Achs) to Ach receptors on TECs enhanced protein synthetic activity which seemed to connect with THP production. vi/ Thymectomy not only depressed the immune responses but also accelerated the reduction of leaming and memory ability with aging. The operation appears to disturb the brain adrenoceptor functions and to suppress the regulatory roles of hypothalamus to other nervous tissues. vii/ Several kinds of THPs, separated from the culture supernatant of TEC line by high performance liquid chromatography, showed a favorable effect on the thymocytes at different stage of differentiation and maturation. viii/ Thymosin, thymulin and THPs were capable of proliferating and differentiating thymocytes in vitro. However, the administration of each thymic product to the thymus-deprived animals could not restore from their "wasting disease". Since TECs are composed of a heterogeneous population, it would be one of essential ways for isolating "true thymus hormone" (TTH) to use the material which consists of functionally homogeneous subset of TECs. ix/ An additional grafting of pituitary gland to the thymus-grafted nude mice improved the disturbed T-cell ontogeny. Accordingly, the administration of "TTH" and pituitary acidophilic cell hormones might be more hopeful procedure for rescuing the thymus-deprived animals from "wasting disease".  相似文献   

10.
Medullary thymic epithelial cells function as antigen-presenting cells in negative selection of self-reactive T cell clones, a process essential for the establishment of central self-tolerance. These cells mirror peripheral tissues through promiscuous expression of a diverse set of tissue-restricted self-antigens. The genes and signaling pathways that regulate the development of medullary thymic epithelial cells are not fully understood. Here we show that mice deficient in NF-kappaB2, a member of the NF-kappaB family, display a marked reduction in the number of mature medullary thymic epithelial cells that express CD80 and bind the lectin Ulex europaeus agglutinin-1, leading to a significant decrease in the extent of promiscuous gene expression in the thymus of NF-kappaB2(-/-) mice. Moreover, NF-kappaB2(-/-) mice manifest autoimmunity characterized by multiorgan infiltration of activated T cells and high levels of autoantibodies to multiple organs. A subpopulation of the mice also develops immune complex glomerulonephritis. These findings identify a physiological function of NF-kappaB2 in the development of medullary thymic epithelial cells and, thus, the control of self-tolerance induction.  相似文献   

11.
In the thymus, immature CD4+8+ thymocytes expressing randomly rearranged T-cell receptor α- and b-chain genes undergo positive and negative selection events based on their ability to recognize self-peptide/major histocompatibility complex (MHC) molecules expressed by thymic stromal cells. In vivo analysis of the role of thymic stromal cells during intrathymic selection is made difficult by the cellular complexity of the thymic microenvironment in the steady-state adult thymus, and by the lack of appropriate targeting strategies to manipulate gene expression in particular thymic stromal compartments. We have shown that the thymic microenvironment can be readily manipulated in vitro through the use of reaggregate thymus organ cultures, which allow the preparation of three-dimensional thymus lobes from defined stromal and lymphoid cells. Although other in vitro systems support some aspects of T-cell development, reaggregate thymus organ culture remains the only in vitro system able to support efficient MHC class I and II-mediated thymocyte selection events, and so can be used as an effective tool to study the cellular and molecular regulation of positive and negative selection in the thymus.Download video file.(93M, mp4)  相似文献   

12.
In the thymus, immature CD4+8+ thymocytes expressing randomly rearranged T-cell receptor α- and b-chain genes undergo positive and negative selection events based on their ability to recognize self-peptide/major histocompatibility complex (MHC) molecules expressed by thymic stromal cells. In vivo analysis of the role of thymic stromal cells during intrathymic selection is made difficult by the cellular complexity of the thymic microenvironment in the steady-state adult thymus, and by the lack of appropriate targeting strategies to manipulate gene expression in particular thymic stromal compartments. We have shown that the thymic microenvironment can be readily manipulated in vitro through the use of reaggregate thymus organ cultures, which allow the preparation of three-dimensional thymus lobes from defined stromal and lymphoid cells. Although other in vitro systems support some aspects of T-cell development, reaggregate thymus organ culture remains the only in vitro system able to support efficient MHC class I and II-mediated thymocyte selection events, and so can be used as an effective tool to study the cellular and molecular regulation of positive and negative selection in the thymus.Download video file.(67M, mp4)  相似文献   

13.
To test the capacity of the epithelial component of the chick embryo thymus to induce tolerance to major histocompatibility complex (MHC) antigens, pre-colonized thymic rudiments were grafted into chick embryonic recipients. Semi-allogeneic or allogeneic transplantations were done between two lines of chickens histocompatible at the MHC locus. Approximately 10% of these thymic chimeras hatched and were studied 3 mo after hatching. Thymic grafts were not rejected by the allogeneic host. The tolerance of chimeric chickens to thymus donor MHC antigens was tested by using a skin graft rejection test and a graft-vs-host (GvH) assay. Chimeric chickens that received an MHC-incompatible thymic graft during the embryonic life tolerated skin graft with the MHC haplotype of the thymus donor. Nevertheless, the lymphocytes within the thymic graft, the host thymus, and the blood were tolerant to the host MHC antigens but were alloreactive in GvH reaction for the MHC antigens of the thymic graft type. These results suggest that the epithelial component of the thymus when taken before the starting of the colonization by hemopoietic precursors and grafted into an early chick embryonic host can induce a tolerance for the MHC determinants involved in allograft rejection but not in the GvH reaction.  相似文献   

14.
Immune proteasomes in thymus are involved in processing of self-antigens, which are presented by MHC class I molecules for rejection of autoreactive thymocytes in adults and probably in perinatal rats. The distribution of immune proteasome subunits LMP7 and LMP2 in thymic cells have been investigated during rat perinatal ontogenesis. Double immunofluorescent labeling revealed LMP7 and LMP2 in thymic epithelial and dendritic cells, as well as in CD68 positive cells - macrophages, monocytes - at all developmental stages. LMP2 and LMP7 were also detected by flow cytometry in almost all thymic CD90 lymphocytes through pre- and postnatal ontogenesis. Our results demonstrate that the immune proteasomes are expressed in all types of thymic antigen presenting cells during perinatal ontogenesis, suggesting the establishment of the negative selection in the thymus at the end of fetal life. The observation of the immune proteasome expression in T lymphocytes suggests their role in thymocyte differentiation besides antigen processing in thymus.  相似文献   

15.
T lymphocytes are generated throughout life, arising from bone marrow-derived progenitors that complete an essential developmental process in the thymus. Thymic T cell education leads to the generation of a self-restricted and largely self-tolerant peripheral T-cell pool and is facilitated by interactions with thymic stromal cells residing in distinct supportive niches. The signals governing thymocyte precursor migration into the thymus, directing thymocyte navigation through thymic microenvironments and mature T-cell egress into circulation were, until recently, largely unknown, but presumed to be mediated to a large extent by chemokine signalling. Recent studies have now uncovered various specific functions for members of the chemokine superfamily in the thymus. These studies have not only revealed distinct but also in some cases overlapping roles for several chemokine family members in various thymocyte migration events and have also shown that homing and positioning of other cells in the thymus, such as dendritic cells and natural killer T cells is also chemokine-dependent. Here, we discuss current understanding of the role of chemokines in the thymus and highlight key future avenues for investigation in this field.  相似文献   

16.
Early events in T lymphocyte genesis in the fetal thymus   总被引:3,自引:0,他引:3  
There is considerable uncertainty about the nature and level of maturation of the stem cells which colonize the thymus. Arguments are presented here which raise doubts about the claims that these cells have undergone substantial maturation along the T-lineage pathway prior to migration to the thymus. Instead, emphasis is placed on the role of thymic stromal cells in T-lymphocyte maturation. The heterogeneous nature of these cells is well established, but progress is described in analyzing the various cell types and their embryological origins. In particular, the expression of the major histocompatibility complex (MHC) antigens on thymic stromal cells might be relevant to the understanding of restriction and tolerance. The early phases of thymus lymphocyte differentiation are described; but no clear account of the generation of T-cell subsets from immature cells can, as yet, be offered.  相似文献   

17.
18.
The generation of a peripheral T-cell pool is essential for normal immune system function. CD4+ and CD8+ T cells are produced most efficiently in the thymus, which provides a complexity of discrete cellular microenvironments. Specialized stromal cells, that make up such microenvironments, influence each stage in the maturation programme of immature T-cell precursors. Progress has recently been made in elucidating events that regulate the development of intrathymic microenvironments, as well as mechanisms of thymocyte differentiation. It is becoming increasingly clear that the generation and maintenance of thymic environments that are capable of supporting efficient T-cell development, requires complex interplay between lymphoid and stromal compartments of the thymus.  相似文献   

19.
Following their migration into the thymus, hemopoeitic stem cell precursors enter a complex developmental pathway involving proliferation, differentiation and alphabetaT-cell receptor (alphabetaTCR)-mediated selection procedures, in order to generate mature T-cell populations ready for export to the periphery. Thus, a critical stage during intrathymic T-cell development involves the generation of functionally mature CD4+8- and CD4-8+ cells from immature CD4+8- precursor thymocytes, a poorly understood process referred to as positive selection. While interactions between the alphabetaTCR and MHC-peptide complexes are known to be essential for the initiation of positive selection, additional unknown signals are also required. Using an in vitro reaggregate thymic organ culture system which allows comparison of the abilities of various cell types to induce maturation of CD4+8+ precursors, we provide evidence that both MHC-peptide complexes and specialised accessory molecules must be provided by thymic epithelium for efficient mediation of positive selection. Moreover, analysis of positive selection in the presence of thymic and non-thymic stromal cells expressing MHC class II molecules with the same limited peptide array suggests that this unique ability of thymic epithelium to mediate positive selection of CD4+8- cells is not solely due to presentation of a specialised peptide repertoire, but is dependent upon provision of specialised accessory interactions.  相似文献   

20.
The CBA/J inbred mouse strain constitutes an interesting in vivo model-system for studies on molecular genetics of thymus ontogeny. Using RT-PCR method we have found previously that several immune system related genes as interleukins and MHC are differentially expressed. During this period the onset of T-cell receptor beta rearrangements also occur. To know which other genes are modulated during the ontogeny of the thymus, the mRNA expression levels of fetal thymus (15 and 16 days gestation) of CBA/J mouse strain were measured by hybridization with a set of four macroarrays containing a panel of 6,144 IMAGE cDNA clones from MTB thymus library. We found 145 differentially expressed sequences; 44 were up- and 101 down-regulated in the thymus at 15-16 days gestation. Among these sequences, only 20 are identified as genes whose functions are known and 125 are still unknown. Our data demonstrated that, despite intense research on maturation of the immune system focusing on the activity of several well-characterized genes, the large scale expression profile during thymus ontogeny is still an open matter. The use of cDNA-array technology is an affordable method to identify new genes that may play a role in this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号