首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Cohesins are evolutionarily conserved essential multi-protein complexes that are important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders.  相似文献   

7.
8.
Changes in chromatin structure are a key aspect in the epigenetic regulation of gene expression. We have used a lac operator array system to visualize by light microscopy the effect of heterochromatin protein 1 (HP1) alpha (HP1alpha) and HP1beta on large-scale chromatin structure in living mammalian cells. The structure of HP1, containing a chromodomain, a chromoshadow domain, and a hinge domain, allows it to bind to a variety of proteins. In vivo targeting of an enhanced green fluorescent protein-tagged HP1-lac repressor fusion to a lac operator-containing, gene-amplified chromosome region causes local condensation of the higher-order chromatin structure, recruitment of the histone methyltransferase SETDB1, and enhanced trimethylation of histone H3 lysine 9. Polycomb group proteins of both the HPC/HPH and the EED/EZH2 complexes, which are involved in the heritable repression of gene activity, are not recruited to the amplified chromosome region by HP1alpha and HP1beta in vivo targeting. HP1alpha targeting causes the recruitment of endogenous HP1beta to the chromatin region and vice versa, indicating a direct interaction between the two HP1 homologous proteins. Our findings indicate that HP1alpha and HP1beta targeting is sufficient to induce heterochromatin formation.  相似文献   

9.
10.
11.
12.
13.
We describe a system designed to express biotinylated proteins in mammalian cells in vivo and its application to the study of protein-DNA interactions in vivo by chromatin immunoprecipitation (ChIP). The system is based on coexpression of the target protein fused to a short biotin acceptor domain together with the biotinylating enzyme BirA from Escherichia coli. The superior strength of the biotin-avidin interaction allows one to employ more stringent washing conditions in the ChIP protocol, resulting in a better signal/noise ratio.  相似文献   

14.
Role of high mobility group (HMG) chromatin proteins in DNA repair   总被引:6,自引:0,他引:6  
Reeves R  Adair JE 《DNA Repair》2005,4(8):926-938
  相似文献   

15.
16.
Histones are involved in the regulation of almost all events within the eukaryotic cell nucleus that utilize DNA as a substrate. We have developed a novel approach for examining the function of histone proteins and specific domains of these proteins in these various nuclear processes, and in particular assembly of chromatin throughout the cell cycle. This approach exploits several unique characteristics of the slime mold Physarum polycephalum, including the natural synchrony of all (approximately 10(8)) nuclei throughout the cell cycle and the ability of this organism to take up exogenous proteins. Here, culture techniques and biochemical procedures for the incorporation of exogenous core histones into Physarum chromatin in vivo are described. The procedures for subsequent verification of the assembly of exogenous proteins into bona fide nucleosomes are also described.  相似文献   

17.
Changes in chromatin structure regulate gene expression and genome maintenance. Molecules that bind to the nucleosome, the complex of DNA and histone proteins, are key modulators of chromatin structure. Previous work indicated that cholesterol, a ubiquitous cellular lipid, may bind to chromatin in vivo, suggesting a potential function for lipids in modulating chromatin architecture. However, the molecular mechanisms of cholesterol's action on chromatin structure have remained unclear. Here, we explored the biophysical impact of cholesterol on nucleosome and chromatin fibers reconstituted in vitro and characterized in silico the cholesterol binding to the nucleosome. Our findings support that cholesterol assists 10 and 30 nm chromatin formation and induces folding of long chromatin fibers as a result of direct interaction of the cholesterol to six nucleosomal binding sites.  相似文献   

18.
19.
Smads and chromatin modulation   总被引:2,自引:0,他引:2  
  相似文献   

20.
The view that autosomal gene expression is controlled exclusively by protein trans-acting factors has been challenged recently by the identification of RNA molecules that regulate chromatin. In the majority of cases where RNA molecules are implicated in DNA control, the molecular mechanisms are unknown, in large part because the RNA.protein complexes are uncharacterized. Here, we identify a novel set of RNA-binding proteins that are well known for their function in chromatin regulation. The RNA-interacting proteins are components of the mammalian DNA methylation system. Genomic methylation controls chromatin in the context of transposon silencing, imprinting, and X chromosome dosage compensation. DNA methyltransferases (DNMTs) catalyze methylation of cytosines in CGs. The methyl-CGs are recognized by methyl-DNA-binding domain (MBD) proteins, which recruit histone deacetylases and chromatin remodeling proteins to effect silencing. We show that a subset of the DNMTs and MBD proteins can form RNA.protein complexes. We characterize the MBD protein RNA-binding activity and show that it is distinct from the methyl-CG-binding domain and mediates a high affinity interaction with RNA. The RNA and methyl-CG binding properties of the MBD proteins are mutually exclusive. We speculate that DNMTs and MBD proteins allow RNA molecules to participate in DNA methylation-mediated chromatin control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号