共查询到20条相似文献,搜索用时 15 毫秒
1.
Gibberellin (GA) metabolism from GA12-aldehyde was studied in cell-free systems from 2-d-old germinating embryos of barley. [14C]- or [17-2H2]Gibberellins were used as substrates and all products were identified by combined gas chromatography-mass spectrometry. Stepwise analysis demonstrated the conversion of GA12-aldehyde via the 13-deoxy pathway to GA51 and via the 13-hydroxylation pathway to GA29, GA1 and GA8. In addition, GA3 was formed from GA20 via GA5. We conclude that the embryo is capable of producing gibberellins that can induce -amylase production in the aleurone layer. There was no evidence for 12- or 18-hydroxylation and GA4 was neither synthesised nor metabolised by the system. All metabolically obtained GAs, with the exception of GA3, were also found as endogenous components of the cell-free system in spite of ammonium-sulfate precipitation and desalting steps.Abbreviations GAn
gibberellin An
- GC-MS
combined gas chromatography-mass spectrometry
- HPLC
high-performance liquid chromatography
We thank Mrs. G. Bodtke and Mrs. B. Schattenberg for preparing the barley embryos and the Deutsche Forschungsgemeinschaft for supporting this work. 相似文献
2.
Nitrate and nitrite reductases were both induced by adding three concentrations of nitrate to the nutrient supply of nitrate-starved barley seedlings. Enzyme induction was not proportional to the amount of nitrate introduced. Glutamine synthetase also increased above a high endogenous activity but the increase did not differ significantly between any of the three nitrate treatments. Nitrate accumulated rapidly in leaves of plants given 4.0 mM or 0.5 mM nitrate but not with 0.1 mM nitrate. In all treatments, amino acids in leaves increased for 2 d, chiefly attributable to glutamine, then declined. Transferring plants from the three nitrate treatments to nitrate-free nutrient produced an immediate decline in nitrate reductase but nitrite reductase continued to increase for 2 d, before declining. Glutamine-synthetase activity was not affected by withdrawal of nitrate, nor did nitrate withdrawal retard plant growth during the 9-d period of the experiment. The disparity between accumulated nitrate and nitrate-reducing capacity and the rapid decrease in leaf nitrate when nutrient nitrate supply was removed, indicated the presence of a nitrate-storage pool that could be called upon to maintain amino-acid production in times of nitrogen starvation.Abbreviations GS
glutamine synthetase
- NR
nitrate reductase
- NiR
nitrite reductase 相似文献
3.
Halvor Aarnes 《Planta》1978,140(2):185-192
Homoserine kinase was purified 700-fold by fractional ammonium sulfate precipitation, heat treatment, CM-Sephadex C-50 and DEAE-Sephadex A-50 ion exchange chromatography, and Sephadex G-100 gel filtration. The reaction products O-phosphohomoserine and ADP were the only compounds which caused considerable inhibition of homoserine kinase activity. Product inhibition studies showed non-competitive inhibition between ATP and O-phosphohomoserine and between homoserine and O-phosphohomoserine, and competitive inhibition between ATP and ADP. ADP showed non-competitive inhibition versus homoserine at suboptimal concentrations of ATP. At saturating concentrations of ATP no effect of ADP was observed. The homoserine kinase activity was negligible in the absence of K+ and the Km value for K+ was observed to be 4.3 mmol l–1. A non-competitive pattern was observed with respect to the substrates homoserine and ATP. Threonine synthase in the first green leaf of 6-day-old barley seedlings was partially purified 15-fold by ammonium sulfate fractionation and Sephadex G-100 gel chromatography. Threonine synthase was shown to require pyridoxal 5-phosphate as coenzyme for optimum activity and the enzyme was strongly activated by S-adenosyl-L-methionine. The optimum pH for threonine synthase activity was 7 to 8.Abbreviations PLP
Pyridoxal 5-phosphate
- SAM
S-adenosyl-L-methionine
- HSP
O-phosphohomoserine 相似文献
4.
5.
6.
Rates of CO2 fixation during the light period and the rates of CO2 release during the night period were measured using mature leaves from 39- to 49-d-old spinach (Spinacia oleracea L., US Hybrid 424; grown in 9 h light, 15 h darkness, daily) and mature leaves from 21-d-old barley (Hordeum vulgare L., cv. Apex; grown in 14 h light, 10 h darkness, daily). At certain times during the light and dark periods leaves were harvested for assay of their contents of soluble carbohydrates, starch, malate and the various amino acids. Evaluation of the results of these measurements shows that in spinach and barley leaves 46% and 26%, respectively, of the carbon assimilated during the light period is deposited in the leaves for export during the night period. Taking into account the carbon consumption in the source leaves by dark respiration, it is evaluated that rates of assimilate export during the light period from spinach and barley leaves [38 and 42 atom C · (mg Chl)–1 · h–1] are reduced in the dark period to 16 atom C · (mg Chl)–1 · h–1 in both species. The calculated C/N ratios of the photoassimilates exported during the dark period were 0.029 and 0.015 for spinach and barley leaves, respectively.This work was supported by the Deutsche Forschungsgemeinschaft. We thank Dr. Dieter Heineke for stimulating discussions and Mrs. Petra Hoferichter and Mrs. Marita Feldkämper for their technical assistance. 相似文献
7.
Plants of Hordeum vulgare (barley) were grown initially in a solution containing 150 M phosphate and then transferred on day 6 to solutions with (+P) and without (-P) phosphate supplied. After various times plants from these treatments were supplied with labelled phosphate. Analysis of plant growth and rates of labelled phosphate uptake showed that a general enhancement of uptake and translocation was found, in plants which had been in the-P solution, several days before the rate of dry matter accumulation was affected. Subsequently a detailed analysis of phosphate uptake by segments of intact root axes showed that the enhancement of phosphate uptake by P-stress occurred first in the old and mature parts of the seminal root axis and last in the young zones 1 cm from the root apex. During this transition period there were profound changes in the pattern of P absorption along the length of the root. Most of the additional P absorbed in response to P-stress was translocated to the shoot, particularly in older zones of the axis. Enhancement of phosphate uptake in young zones of nodal axes occurred at an earlier stage than in seminal axes. The results are related to the P-status of shoots and root zones and discussed in relation to the general control by the shoot of phosphate transport in the root. 相似文献
8.
Cell-suspension cultures were initiated from embryogenic calli of various barley cultivars. Seven fast-growing suspension lines were obtained from four different cultivars (cvs. Dissa, Emir, Golden Promise and Igri). Two of these cell suspensions showed morphogenic capacity. From a cell suspension of cv. Dissa, albino plantlets were regenerated when aggregates were cultured on solid medium. Aggregates of cv. Igri usually stopped differentiation at the globular stage, but occasionally formed scutellum-like structures. Five suspension lines were used for protoplast isolation and culture. Dividing protoplasts were obtained from all lines, but with cv. Igri a few divisions only and no further development were observed. Protoplasts from the various lines differed in the time of first division (2–14 d), division frequency (0.09–70.9%) and efficiency of colony formation (0.09–7.3%). Protoplasts isolated from the morphogenic cell suspension of cv. Dissa developed compact calli which sporadically regenerated albino plantlets.Abbreviations CC, MS, N6, SH, Kao8p
culture media; see Material and methods
- cv
chltivar
- dicamba
3,6-dichloro-o-anisic acid
- 2,4-D
2,4-dichlorophenoxyacetic acid
- picloram
4-amino-3,5,6-trichloropicolinic acid 相似文献
9.
Pinarosa Avato 《Planta》1984,162(6):487-494
Experimental evidence for a membranebound microsomal ester synthetase from Bonus barley primary leaves is reported. The results are consistent with at least two mechanisms for the synthesis of barley wax esters: an acyl-CoA-fattyalcohol-transacylase-type reaction and an apparent direct esterification of alcohols with fatty acids. Biosynthesis of wax esters was not specific with regard to the chain length of the tested alcohols. The microsomal preparation readily catalyzed the esterification of C16-, C18-, C22- or C24-labelled alcohols with fatty acids of endogenous origin. Exogenous long-chain alcohols were exclusively incorporated into the alkyl moieties of the esters. Addition of ATP, CoA and-or free fatty acids was not effective in stimulating or depressing the esterifying activity of the microsomal fraction. Partial solubilization of the ester synthetase was obtained using phosphate-buffered saline.Abbreviations P
pellet
- PBS
phosphate-buffered saline
- S
supernatant
- SDS
sodium dodecyl sulphate 相似文献
10.
Electron-dense precipitate was found consistently in the plastid envelope compartment in etiolated barley (Hordeum vulgare L.) leaves, incubated prior to fixation with succinate or malate as substrates and ferricyanide as the electron acceptor. Sulfhydryl reagents p-chloromercuribenzoate and N-ethylmaleimide abolished this reaction, while KCN did not affect it. Prefixation with 0.1% glutaraldehyde followed by incubation in basic media did not change the fine structural localization of precipitate, whereas pretreatment with 1.25% glutaraldehyde resulted in aspecific precipitation. Omission of the subtrate from the medium brought about diminished or negative reaction. Our results indicate that a (possibly not yet assembled) nitrate reductase complex is present in the plastid envelope compartment, the diaphorase part of which is responsible for the observed precipitation.Abbreviations PCMB
p-chloromercuribenzoate
- NEM
N-ethylmaleimide
- NR
nitrate reductase
- SDH
succinic dehydrogenase 相似文献
11.
Five mutant lines of barley (Hordeum vulgare L.), which are only able to grow at elevated levels of CO2, contain less than 5% of the wild-type activity of ferredoxin-dependent glutamate synthase (EC 1.4.7.1). Two of these lines (RPr 82/1 and RPr 82/9) have been studied in detail. Leaves and roots of both lines contain normal activities of NADH-dependent glutamate synthase (EC 1.4.1.14) and the other enzymes of ammonia assimilation. Under conditions that minimise photorespiration, both mutants fix CO2 at normal rates; on transfer to air, the rates drop rapidly to 15% of the wild-type. Incorporation of 14CO2 into sugar phosphates and glycollate is increased under such conditions, whilst incorporation of radioactivity into serine, glycine, glycerate and sucrose is decreased; continuous exposure to air leads to an accumulation of 14C in malate. The concentrations of malate, glutamine, asparagine and ammonia are all high in air, whilst aspartate, alanine, glutamate, glycine and serine are low, by comparison with the wild-type parent line (cv. Maris Mink), under the same conditions. The metabolism of [14C]glutamate and [14C]glutamine by leaves of the mutants indicates a very much reduced ability to convert glutamine to glutamate. Genetic analysis has shown that the mutation in RPr 82/9 segregates as a single recessive nuclear gene.Abbreviations GDH
glutamate dehydrogenase (EC 1.4.1.2)
- GS
glutamine synthetase (EC 6.3.1.2)
- RuBP
ribulose 1,5-bisphosphate 相似文献
12.
Three C hordein fractions were prepared by ion-exchange chromatography of a total hordein preparation on carboxymethyl cellulose at pH 4.6 Polyacrylamide gel electrophoresis at pH 3.2 and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) at pH 8.9 showed that each fraction contained a single major band. The apparent molecular weights of these were determined by SDS-PAGE as 58, 57, and 54,000. When compared by isoelectric focusing, however, the 58 and 57,000 components each separated into two major bands and the 54,000 component into four. Amino acid analysis showed that although the three fractions had similar compositions with high glutamate+glutamine (38–39%), proline (30–32%) and phenylalanine (8–9%) contents, some differences were present, notably in the relative content of lysine. The three fractions had identical amino acid sequences for the first ten residues at the N-terminal end. They also had identical sequences for the first five residues at the C-terminal end, with the exception that a mixture of two amino acids were released from position 4 of the 58,000 fraction only. Peptide mapping with three enzymes (trypsin, chymotrypsin and V8 protease) indicated that the 58 and 57,000 fractions were more closely related to each other than to the 54,000 fraction. It is suggested that the 57 and 58,000 fractions and the 54,000 fraction constitute two families of closely related polypeptides which are coded by genes derived from the duplication and divergence of a single ancestral gene. 相似文献
13.
Gisela Mäck 《Planta》1995,196(2):231-238
One cytosolic glutamine synthetase (GS, EC 6.3.1.2) isoform (GS 1a) was active in the germinating seeds of barley (Hordeum vulgare L.). A second cytosolic GS isoform (GS 1b) was separated from the leaves as well as the roots of 10-d-old seedlings. The chloroplastic isoform (GS 2) was present and active only in the leaves. The three GS isoforms were active in N-supplied (NH+
4 or NO
3
–
) as well as in N-free-grown seedlings. This indicates (i) that a supply of nitrogen to the germinating seeds was not necessary for the induction of the GS isoforms and (ii) that no nitrogen-specific isoforms appeared during growth of seedlings with different nitrogen sources. The activity of GS, however, depended on the seedlings' nitrogen source: the specific activity was much higher in the leaves and much lower in the roots of NH+
4-grown barley than in the respective organs of NO
3
–
-fed or N free-grown plants. With increasing concentrations of NH+
4 (supplied hydroponically during growth), the specific activity of GS 1b increased in the leaves, but decreased in the roots. The activity of GS 2 (leaf) also increased with increasing NH+
4 supply, whereas GS 1a activity (leaf and root) was not affected. The changes in the activities of GS 1b and GS 2 were correlated with changes in the subunit compositions of the active holoenzymes: growth at increased levels of external NH+
4 resulted in an increased abundance of one of the four GS subunits, and of two of the five GS 1b subunits in the leaves. In the roots, however, the abundance of these two GS 1b subunits was decreased under the same growth conditions, indicating an organ-specific difference either in the expression of the genes coding for the respective GS 1b subunits or in the assembly of the GS 1b holoenzymes. Furthermore, growth at different levels of NH+
4 resulted in changes in the substrate affinities of the isoforms GS 1b (root and leaf) and GS 2 (leaf), presumably due to the changes in the subunit compositions of the active holoenzymes.Abbreviations FPLC
fast protein liquid chromatography
- GHA
-glutamyl hydroxamate
- GS
glutamine synthetase
Dr. Roger Wallsgrove's (Rothamsted Experimental Station, Harpenden, UK) generous gift of GS antiserum is greatly appreciated. 相似文献
14.
Genetic analysis of the accumulation of COR14 proteins in wild (Hordeum spontaneum) and cultivated (Hordeum vulgare) barley 总被引:2,自引:0,他引:2
C. Crosatti E. Nevo A. M. Stanca L. Cattivelli 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1996,93(5-6):975-981
The cold-regulated (COR14) protein of 14 kDa is a polypeptide accumulated under low-temperature conditions in the chloroplasts of barley leaves. In H. vulgare the COR14 antibody cross-reacts with two proteins, with a slightly different relative molecular weight around the marker of 14.4 kDa, referred to as COR14a and COR14b (high and low relative molecular weight, respectively). In a collection of H. spontaneum genotypes a clear polymorphism was found for the corresponding COR proteins. While some accessions showed the same COR pattern as cultivated barley, in 38 out of 61 accessions examined the COR14 antibody cross-reacted with an additional coldregulated protein with a relative molecular weight of about 24 kDa (COR24). The accumulation of COR24 was often associated with the absence of COR14b; the relationship between the COR14b/COR24 polymorphism and the adaptation of H. spontaneum to different environments is discussed. By studying COR14 accumulation in cultivated barley we have found that the threshold induction-temperature of COR14a is associated with the loci controlling winter hardiness. This association was demonstrated by using either a set of 30 cultivars of different origin, or two sets of frost-tolerant and frost-sensitive F1 doubled-haploid lines derived from the cross Dicktoo (winter type) x Morex (spring type). These results suggest that the threshold induction-temperature of COR14a can be a potential biochemical marker for the identification of superior frostresistant barley genotypes. 相似文献
15.
The HVA1 protein belongs to the LEA3 group, which is expressed during the late stage of seed maturation. It is also induced by exogenous abscisic acid (ABA) and a variety of environmental stresses in germinating barley (Hordeum vulgare L.). In the present work, the potential role of HVA1 was investigated by studying its tissue distribution and subcellular localization in mature and stressed seeds by immuno-microscopic methods. In the mature seed, HVA1 protein was detected in all tissues except the non-living starchy endosperm. During germination the amount of HVA1 protein decreased but did not totally disappear. Incubation with 100 μM ABA, cold treatment or drought stress dramatically increased HVA1 expression in the germinated seed. In this work, the distribution of a LEA3 group protein was studied in a cereal seed for the first time by immuno-electron microscopy. In the scutellum and aleurone layer, HVA1 was localized both in the cytoplasm and protein storage vacuoles (PSVs). HVA1 protein was found to be threefold more abundant in PSVs than in the cytoplasm of an unstressed seed tissue. The ratio increased with ABA or stress treatments to at least ninefold. The role of HVA1 in PSVs remains unclear: a previously suggested possibility is ion sequestration to prevent precipitation during stress. On the other hand, HVA1 protein could also be degraded in PSVs. HVA1 protein does not have the signal peptide typical of proteins which are glycosylated and targeted into the vacuole via the Golgi complex. Because HVA1 is not glycosylated, it may use an alternative, ER-independent vacuolar pathway, also found in yeast cells. 相似文献
16.
A mutant line, RPr79/2, of barley (Hordeum vulgare L. cv. Maris Mink) has been isolated that has an apparent defect in photorespiratory nitrogen metabolism. The metabolism of 14C-labelled glutamine, glutamate and 2-oxoglutarate indicates that the mutant has a greatly reduced ability to synthesise glutamate, especially in air, although in-vitro enzyme analysis indicates the presence of wild-type activities of glutamine synthetase (EC 6.3.1.2) glutamate synthase (EC 1.4.7.1 and EC 1.4.1.14) and glutamate dehydrogenase (EC 1.4.1.2). Several characteristics of RPr79/2 are very similar to those described for glutamate-synthase-deficient barley and Arabidopsis thaliana mutants, including the pattern of labelling following fixation of 14CO2, and the rapid rise in glutamine content and fall in glutamate in leaves on transfer to air. The CO2-fixation rate in RPr79/2 declines much more slowly on transfer from 1% O2 to air than do the rates in glutamate-synthase-deficient plants, and RPr79/2 plants do not die in air unless the temperature and irradiance are high. Analysis of (glutamine+NH3+2-oxoglutarate)-dependent O2 evolution by isolated chloroplasts shows that chloroplasts from RPr79/2 require a fivefold greater concentration of 2-oxoglutarate than does the wild-type for maximum activity. The levels of 2-oxoglutarate in illuminated leaves of RPr79/2 in air are sevenfold higher than in Maris Mink. It is suggested that RPr79/2 is defective in chloroplast dicarboxylate transport. 相似文献
17.
Protoplast preparations from barley (Hordeum vulgare L.) enzymatically converted [5-3H]tryptophan to [3H]indole-3-acetic acid (IAA). Both a chloroplast and a crude cytoplasmic fraction, isolated from protoplasts that had previously been fed [5-3H]tryptophan, contained [3H]IAA. Chloroplast and cytoplasmic preparations, isolated from protoplasts and thereafter incubated with [5-3H]tryptophan, also synthesized [3H]IAA, although, in both instances the pool size was less than 50% of that detected in the in-vivo feeds. There were no significant differences in the amounts of [3H]IAA that accumulated in protoplast and chloroplast preparations incubated in light and darkness.Abbreviations HPLC
high-performance liquid chromatography
- IAA
indole-3-acetic acid
- RC
radiocounting 相似文献
18.
R. A. Pickering 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1989,78(1):105-112
Summary Plant regeneration from calli was carried out at two locations using several parental genotypes and environments. Selfed immature diploid (VV) barley (Hordeum vulgare) embryos and immature haploid (V) or hybrid (VB) embryos from crosses between H. vulgare and H. bulbosum were used as explants. Golden Promise, Emir and CB 7432 were the best cultivars for plant regeneration, and 15°C tended to be more suitable for plant development than higher temperatures. A total of 844 regenerants were obtained, and over 200 fertile progenies were screened agronomically. Apart from the occurrence of polyploidy and albinism, three variants were identified. One showed maternal inheritance for yellow leaf striping while the other two were controlled by single recessive genes. One of these possessed increased resistance to scald (Rhynchosporium secalis) compared with the donor parent cv Triumph, and one resembled a chlorina mutant. 相似文献
19.
The effect of NH
4
+
on the regulation of NO
3
–
and NO
2
–
transport systems in roots of intact barley (Hordeum vulgareL.) seedlings grown in NO
3
–
or NO
2
–
was studied. Ammonium partially inhibited induction of both transport systems. The inhibition was less severe in NO
2
–
-fed than in NO
3
–
-fed seedlings, presumably due to lower uptake of NH
4
+
in the presence of NO
2
–
. In seedlings pretreated with NH
4
+
subsequent induction was inhibited only when NH
4
+
was also present during induction, even though pretreated roots accumulated high levels of NH
4
+
. This indicates that inhibition may be regulated by NH
4
+
concentration in the cytoplasm rather than its total accumulation in roots. L-Methionine sulfoximine did not relieve the inhibition by NH
4
+
, suggesting that inhibition is caused by NH
4
+
itself rather than by its assimilation product(s). Ammonium inhibited subsequent expression of NO
3
–
transport activity similarly in roots grown in 0.1, 1.0, or 10 mM NO
3
–
for 24 h (steady-state phase) or 4 d (decline phase), indicating that it has a direct, rather than general feedback effect. Induction of the NO
3
–
transport system was about twice as sensitive to NH
4
+
as compared to the NO
2
–
transport system. This may relate to higher turnover rates of membraneassociated NO
3
–
-transport proteins.Abbreviations Mes
2(N-morpholino)ethanesulfonic acid
- MSO
L-methionine sulfoximine 相似文献
20.
Peptide-transport proteins, intrinsic to the epithelial plasmalemmae of the scutella of germinating barley (Hordeum vulgare L.) embryos, have been selectively labelled with p-chloro-[203Hg]mercuribenzenesulphonate using both a substrate-screening technique and a procedure developed to label exclusively vicinal dithiol groups, which were shown previously (Walker-Smith and Payne, 1983, FEBS Lett. 160, 25–30) to be essential components of the peptide-transport system. After radioactive labelling, proteins from the scutellar membranes have been solubilised with lithium diiodosalicylate plus sodium dodecyl sulphate and separated by using polyacrylamide gel electrophoresis. Fluorography and silver staining of these gels has for the first time allowed identification of two presumptive components of the peptide-transport system. These components only become detectable in an extract of the scutellar epithelia after 15 h imbibition, concomitant with a dramatic increase in peptide-transport activity, and they remain present at least 3 d after the onset of germination. [35] Methionine was shown to be incorporated into these proteins between 15–20 h after imbibition, but its incorporation during a similar 5 h period into scutella isolated after 3 d was undetectable, implying a slow turnover of these proteins during the later stages of germination.Abbreviations Ala2, Ala3
dialanine, trialanine
- CHAPS
3-((3-cholamidopropyl) dimethylammonio)-1-propanesulphonate
-
p-CMBS
p-chloromercuribenzenesulphonic acid
- NEM
N-ethylmaleimide
- SDS-PAGE
sodium dodecyl sulphate-polyacrylamide gel electrophoresis
- Tris
2-amino-2-(hydroxymethyl)-1,3-propanediol 相似文献