首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Somatic embryogenesis is an important biotechnological tool that has significant potential to be used in studies related to environmental stress. In this study, embryogenic cell masses of Abies alba and Picea abies were grown on media enriched with 50–500 µM cadmium (Cd2+) or lead (Pb2+). The effects of cadmium and lead were evaluated during the subsequent stages of somatic embryogenesis: proliferation, maturation, and germination. The following characteristics were evaluated: proliferation potential, cell viability, average number of somatic embryos obtained per 1 g of fresh weight, and morphology of the developed somatic embryos. The tested heavy metals significantly reduced the proliferation rate of A. alba and P. abies embryogenic cell masses. The highest tested cadmium concentration markedly slowed or stopped the growth of embryogenic cell masses in both species. Unexpectedly, the proliferation ratio remained fairly high for the P. abies cell lines treated with lead at all concentrations tested. During the maturation stage, the total number of somatic embryos declined under cadmium exposure. The formation of early precotyledonary and cotyledonary somatic embryos in both species was similarly reduced, although cadmium caused a higher death rate and was more toxic than lead. To the best of our knowledge, this is the first report to study the effects of heavy metals on A. alba embryogenic cell masses during the proliferation stage as well as on the maturation and germination processes of both species. This in vitro system can be used for testing the response of large sets of genotypes, and the best performing lines can be used in the future for in vivo performance tests of heavy metal-polluted soils.  相似文献   

2.
A simple and efficient protocol for direct somatic embryogenesis and plant regeneration of kohlrabi (Brassica oleracea var. gongylodes) was developed. Somatic embryos were induced from immature zygotic embryos at different developmental stages cultured on Murashige and Skoog medium supplemented with 0, 0.5, 1.0, or 1.5 mg/l 2,4-dichlorophenoxyacetic acid. Zygotic embryos at the early cotyledonary stage, which were cultured for 4 wk on plant growth regulator-free (PGR-free) medium, displayed the highest percentage of somatic embryogenesis (80.7%). Embryogenic tissue could be subcultured on the same medium for over 1 yr. Embryogenic lines derived from early cotyledonary stage zygotic embryos displayed the highest intensity of secondary embryogenesis (highest mean number of new somatic embryos per responsive somatic embryo explant). Histological analyses confirmed the direct origin of the secondary somatic embryos. Prolonged culturing of embryogenic tissue on PGR-free medium led to somatic embryo development into plantlets that were successfully acclimated in the greenhouse with a survival rate of 72.5%. Flow cytometry analysis showed no ploidy variation in 96.7% of the acclimated plants.  相似文献   

3.
The objective of this study was to characterize the histodifferentiation of somatic embryogenesis obtained from leaf explants of C. arabica. Therefore, we histologically analyzed the respective stages of the process: leaf segments at 0, 4, 7, 15 and 30 days of cultivation, Type 1 primary calli (primary calli with embryogenic competence) and 2 (primary calli with no embryogenic competence), embryogenic calli, globular, torpedo and cotyledonary embryos, and mature zygotic embryos. Callus formation occurred after seven days of culture, with successive divisions of procambium cell. In this cultivation phase, it was found that Type 1 primary calli are basically formed by parenchymal cells with reduced intercellular spacing, whereas Type 2 primary calli are predominantly composed of parenchymal cells with ample intercellular spaces and embryogenic calli composed entirely of meristematic cells. After 330 days, it was evident from the differentiation of somatic embryogenesis that there was formation of globular somatic embryos, consisting of a characteristic protoderm surrounding the fundamental meristem. With the maturation of these propagules after 360 days, torpedo-stage somatic embryos arose, in which tissue polarization and early differentiation of procambial strands were verified. After 390 days, cotyledonary somatic embryos were obtained, where the onset of vessel elements differentiation was verified, a characteristic also observed in mature zygotic embryos. We concluded that somatic embryogenesis obtained from C. arabica leaves initiates from procambium cell divisions that, in the course of cultivation, produce mature somatic embryos suitable for regenerating whole plants.  相似文献   

4.
Somatic embryogenesis was achieved from cell suspension cultures of niger (Guizotia abyssinica Cass.). Initially, friable embryogenic calluses were induced from cotyledonary leaves of niger on Murashige and Skoog (MS) agar medium containing 5 μM 2,4-Dichlorophenoxyacetic acid (2,4-D) and 0.5 μM kinetin (KIN). Cell suspension cultures were established by using embryogenic calluses in MS liquid medium containing 5 μM 2,4-D and 0.5 μM KIN. Initiation of somatic embryogenesis and development up to globular stage from embryogenic cell clumps occurred in the liquid medium itself. Thereafter embryogenic cell aggregates were transferred to MS agar medium supplemented with 3 μM KIN for embryo differentiation, whereas maturation of somatic embryos occurred in MS agar medium containing 10 μM abscisic acid.  相似文献   

5.
Douglas-fir is a conifer species of major economic importance worldwide, including Western Europe and New Zealand. Herein we describe some characterization and significant refinement of somatic embryogenesis in Douglas-fir, with focus on maturation. The most typical structures observed in the embryonal masses were large polyembryogenic centres (up to 800–1500 µm) with a broad meristem, creating a compact cell “package” with suspensor cells. Singulated somatic embryos composed of both a embryonal head (300–400 µm) and long, tightly arranged suspensor were also frequent. Embryo development was enhanced following embryonal mass dispersion on filter paper discs at low density (50–100 mg fresh mass). Moreover, increasing gellan gum concentration in maturation medium (up to 10 g L?1) improved both the quantity and quality of cotyledonary somatic embryos (SEs), which were subsequently able to germinate and develop into plantlets at high frequency. Embryogenic yield was highly variable among the seven embryogenic lines tested (27–1544 SE g?1 fresh mass). Interestingly secondary somatic embryogenesis could be induced from cotyledonary SEs of both low- and highly-productive lines with some useful practical outcomes: secondary lines from low-performance lines (30–478 SE g?1 fresh mass) displayed significantly higher embryogenic yield (148–1343 SE g?1 fresh mass). In our best conditions, the total protein content in cotyledonary SEs increased significantly with maturation duration (up to 150 µg mg?1 fresh mass after 7 weeks) but remained below that of mature zygotic embryos (300 µg mg?1). The protein pattern was similar in both somatic and zygotic embryos, with major storage proteins identified as 7S-vicilin- and legumin-like proteins.  相似文献   

6.
For promoting the maturation of two embryogenic cell lines of Abies cephalonica Loud., the effect of two sucrose concentrations (87.6 and 175.2 mM) applied alone (Control) or in combination with activated charcoal (AC) (1 week) or with polyethylene glycol (PEG1 and PEG4) (1 or 4 weeks) was studied. The effect of each maturation medium was tested with four concentrations of abscisic acid (4, 8, 16 and 32 μM ABA). AC supplement significantly increased the percentage of embryogenic cell masses (ECMs) with cotyledonary embryos but did not affect the average number of embryos per 1 g of ECMs fresh weight. The highest percentages of ECMs (77.5%) with cotyledonary somatic embryos and the highest average number of somatic embryos (36.5 ± 13.4) were found on media with PEG for 4 weeks. The maturation media with 87.6 mM sucrose significantly increased the number of ECMs able to form cotyledonary embryos (66.8%) when PEG was included in the maturation medium, but did not affect the average number of somatic embryos. Overall correlation between proliferation diameter during maturation phase and the number of ECMs with somatic embryos (r = −0.40) as well as all significant correlations within individual experimental variants were consistently negative after 8 weeks of maturation, meaning that proliferation growth hampers the formation of somatic embryos. The highest germination percentages 21.6% and 18.2% were obtained when somatic embryos were maturated on media with or without AC supplement, respectively. Lowest germination percentages, 9.1% and 4.4%, were obtained on maturation media with PEG4 and PEG1.  相似文献   

7.
Vitis vinifera L. cv. ‘Manicure Finger’ is one of the major table grape varieties in China. To provide a strong foundation for genetic transformation with potential for crop improvement, we undertook plant regeneration via somatic embryogenesis. Anthers and gynoecia were harvested from immature flowers and used as explants to induce embryogenic calli. Explants cultured in MS1 medium (based on Murashige and Skoog basal salts), supplemented with 4.5-μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4-μM 6-benzylaminopurine (6-BA) showed the highest rates of embryogenic callus induction (3.7%?±?1.3% for anthers and 4.8%?±?2.5% for gynoecia). After several months, somatic embryos were produced from embryogenic calli cultured in plant growth regulator-free MS2 medium (with reduced sucrose). Somatic embryos (SE) at the cotyledonary stage were isolated and cultured on three different media (MS2, MS3, or B) for conversion into plantlets, the efficiency of which ranged from 63.9%?±?4.8% to 83.9%?±?8.4%. After 1 mo of in vitro culture, 80% of plants with at least six leaves were successfully transplanted into soil. SE was repeatedly induced from previously induced somatic embryos for up to 1.5 yr. Using embryogenic calli as starting material, suspension cultures containing embryogenic cell aggregates were also established in liquid MS medium supplemented with 4.5-μM 2,4-D. The embryogenic cell aggregates continued to proliferate without differentiating for successive subculture cycles. After transfer to 2,4-D-free liquid medium for 4 wk, an average of 63.7%?±?9.0% mature SEs were produced per 20 mL of liquid medium. More than 40% of somatic embryos at cotyledonary stage, derived from the suspension cultures, successfully germinated into plants using solid medium.  相似文献   

8.
A method for secondary somatic embryogenesis was developed on embryos derived from embryogenic callus formed on Hepatica nobilis seedlings. Somatic embryogenesis (SE) was induced on seedlings (on the hypocotyl and epicotyl parts) grown on the Murashige and Skoog (1962) medium (MS) supplemented with 1 µM naphthaleneacetic acid (NAA), and/or 0.1 µM 6-benzyladenine (BA) and on medium without plant growth regulators (PGR). The best response of embryogenic callus formation was observed on the medium containing 1 µM NAA alone or with 0.1 µM BA. Individual somatic embryos, formed on embryogenic callus on the medium without PGR (MS0), at heart, torpedo and cotyledonary stage, were transferred to the media where secondary somatic embryo formation and development into plantlets occurred. Although the most efficient repetitive cycles of secondary SE were recorded for all stages of somatic embryos (heart, torpedo, cotyledonary) on the MS0 medium (77.8–87.4 %), secondary somatic embryos were also obtained on all media supplemented with cytokinins. The best rate of somatic embryos germination was achieved on MS media with 0.2 µM NAA and 2 µM BA, and 0.1 µM NAA and 1 µM BA (48.8–52.0 %) when more mature embryos (cotyledonary stage) were used. Plantlets grown from somatic embryos were successfully acclimatized to greenhouse conditions.  相似文献   

9.
Efficient protocols for somatic embryogenesis of papaya (Carica papaya L.) have great potential for selecting elite hybrid genotypes. Addition of polyethylene glycol (PEG), a nonplasmolyzing osmotic agent, to a maturation medium increases the production of somatic embryos in C. papaya. To study the effects of PEG on somatic embryogenesis of C. papaya, we analyzed somatic embryo development and carbohydrate profile changes during maturation treatments with PEG (6%) or without PEG (control). PEG treatment (6%) increased the number of normal mature somatic embryos followed by somatic plantlet production. In both control and PEG treatments, pro-embryogenic differentiation to the cotyledonary stage was observed and was significantly higher with PEG treatment. Histomorphological analysis of embryonic cultures with PEG revealed meristematic centers containing small isodiametric cells with dense cytoplasm and evident nuclei. Concomitant with the increase in the differentiation of somatic embryos in PEG cultures, there was an increase in the endogenous content of sucrose and starch, which appears to be related to a rising demand for energy, a key point in the conversion of C. papaya somatic embryos. The endogenous carbohydrate profile may be a valuable parameter for developing optimized protocols for the maturation of somatic embryos in papaya.  相似文献   

10.
11.
12.
Several coniferous species belonging to the Pinaceae family can be propagated via somatic embryogenesis, while species belonging to the Cupressaceae family cannot. The aim of this study was to identify possibilities and limitations with somatic embryogenesis in Cupressaceae. Juniperus communis was chosen as model species. We show that a high initiation frequency of embryogenic cell lines can be established from intact megagametophytes at the time when intensive cleavage polyembryogeny takes place. The embryogenic cell lines proliferate fast on medium lacking plant growth regulators. Early somatic embryos develop after transfer to medium with decreased content of nitrogen and calcium. The early embryos mature after exposure to abscisic acid. Mature cotyledonary embryos germinate after partial desiccation. A high proportion, over 40%, of the germinating embryos retain the embryogenic potential in the basal part, resulting in development of new embryogenic tissue.  相似文献   

13.
Immature zygotic embryos from 20 open-pollinated (OP) families of maritime pine (Pinus pinaster) plus trees were screened for their somatic embryogenic capacity. The best time for zygotic embryo collection was between 30th June and 16th July 1999 when most embryos were at a pre-cotyledonary stage of development. The somatic embryogenesis (SE) initiation frequency was highest on DCR basal medium with 13.6 µM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4 µM 6-benzylaminopurine (BAP) supplemented with L-glutamine and casein hydrolysate. On this medium, initiation frequencies among OP families ranged from 4.6 to 49.1%. Initiation of embryogenic cell lines from all 20 OP families was possible only on DCR based medium, but the addition of L-glutamine and casein hydrolysate significantly increased the number of zygotic embryos producing SE. Most families showed a similar behaviour on different initiation media; however, a few exceptions were observed. Further development of somatic embryos on maturation medium, consisting of DCR with 120 µM abscisic acid (ABA), 100 g l–1 polyethylene glycol (PEG) and 10 g l–1 gellan gum, occurred in 29% of 896 embryogenic lines representing all 20 OP families. However, development into cotyledonary somatic embryos was observed in only 11% of the cell lines, but this still represented 18 OP families.  相似文献   

14.
Platycladus orientalis is a widespread conifer, which is native in eastern Asia, and has recently attracted much attention due to its ornamental value for landscape and gardens. However, native P. orientalis populations have been in decline over the past century. Here, we established an in vitro propagation and cryopreservation system for P. orientalis via somatic embryogenesis (SE). Whole megagametophytes with four development stages (Early embryogeny: E1 and late embryogeny: L1, L2, and L3) of zygotic embryos from immature P. orientalis cones were used as initial explants and cultured on three different basal media such as initiation medium (IM), Litvay (LV), and Schenk and Hildebrandt (SH). Both the developmental stage of zygotic embryos and kind of basal medium had a significant effect on embryogenesis induction with IM (P?<?0.001, respectively). The highest frequency of embryogenic callus induction was obtained in megagametophytes with zygotic embryos at L2 stage, which ranged as high as 30%. The maturation medium containing IM basal salts, vitamins and amino acids, 15 g l?1 abscisic acid (ABA), 50 g l?1 maltose, and 100 g l?1 polyethylene glycol 4000 (PEG) was found to be the suitable medium for production of somatic embryos. The frequency of somatic embryo formation from both non-cryopreserved and cryopreserved cell lines was also tested. There were no statistical differences on the production of somatic embryos between non-cryopreserved and cryopreserved cells (P?=?0.523). Genetic fidelity of the plantlets regenerated from non-cryopreserved and cryopreserved embryogenic cell lines was assessed by both random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analysis. There was no genetic instability in the regenerated plantlets from cryopreserved embryogenic cell lines. Both the SE protocol and cryopreservation protocols described here have the potential to contribute the conservation and clonal propagation of P. orientalis germplasm.  相似文献   

15.
Induction of somatic embryos and plant regeneration was demonstrated for the first time in Alnus glutinosa. Somatic embryos were initiated from zygotic embryos collected 1–3 weeks post-anthesis (WPA), i.e., when they were at globular or early cotyledonary stage and were 0.5–1 mm in length. Induction frequency (16.6 %) and the mean number of somatic embryos (4.5 embryos/explant) were highest after culture of zygotic embryos, collected at 3 WPA, on Murashige and Skoog medium (MS) supplemented with 0.9-μM 2,4-dichlorophenoxyacetic acid and 2.22-μM benzyladenine (BA). No embryogenic induction was observed on medium with BA alone. Initial somatic embryos differentiated indirectly from callus tissue formed at the surface of the zygotic embryos. Embryogenic competence was maintained by secondary embryogenesis, which was affected by explant type, plant growth regulators and genotype. Secondary embryogenesis was induced by culture of small groups of whole somatic embryos or isolated cotyledon explants on medium consisting of MS medium (half-strength macronutrients) supplemented with 0.44-μM BA. Histological study of isolated cotyledon explants revealed that secondary embryos developed directly from differentiated embryogenic tissue on the surface of cotyledons. Somatic embryos at successive stages of development, including cotyledonary-stage embryos with shoot and root meristems, were evident. For plantlet conversion, somatic embryos were transferred to maturation medium supplemented with 3 % maltose, followed by 6 weeks of culture in Woody Plant Medium supplemented with 0.44-μM BA and 0.46-μM Zeatin (Z). This novel protocol appears promising for mass propagation, conservation and genetic transformation of black alder.  相似文献   

16.
Glucanase and chitinase enzymes play an important role in different plant processes including defense against pathogens and morphogenesis. Moreover, their role in the processes of somatic embryogenesis has been demonstrated. It has been suggested, that the presence of this type of proteins might be a marker for embryogenic potential of callus cultures. In this work we screened for the presence of glucanases and chitinases in liquid growth media of a set of conifer embryogenic cell lines in order to find correlation with their embryogenic potential. We have found that none of the 12 chitinase isoforms detected in culture media of Pinus nigra Arn. or the nine chitinases detected in media with Abies alba × A. cephalonica and Abies alba × A. numidica embryogenic tissues could be linked to their embryogenic capacity. Similarly, none of the six glucanase isoforms detected in the extracellular fluid of Pinus nigra Arn. cultures can be assigned as a marker of embryogenic potential. Thus, our data indicate the large variability and doubtless importance of glucanases and chitinases for cell growth and development of somatic embryos, however, do not support the premise that they are markers of embryogenesis.  相似文献   

17.
Kelussia odoratissima Mozaff. (or Kelus) is a medicinal plant native to the Zagros Mountains in Iran. This plant is widely used as a food flavoring and for its health-promoting properties. It has been considered an endangered species by the United Nations Development Programme. In this study, a somatic embryogenesis (SE) method was developed for mass propagation of Kelus. The green globular embryogenic callus was induced on cotyledonary leaves using the Murashige and Skoog (MS) medium supplemented with 1 mg/l 2,4-dichlorophenoxyaceticacid (2,4-D) and 0.25 mg/l Kinetin. Different treatments were assayed for proliferation of the embryogenic callus. The calli remained embryogenic in an MS medium containing 2,4-D (1 mg/l). The light treatments and carbon source showed significant effects (P?≤?0.05) on the proliferation and development of somatic embryos. These treatments improved the conversion rate of the cotyledonary-stage embryos by 100%. The average numbers of embryos in the globular, heart, torpedo, and cotyledonary stages decreased by the addition of 3 g/l case in hydrolisate. The genetic stability among tissue culture-derived plants and the mother plant were assessed using the amplification fragment length polymorphism. No polymorphic band was observed among all the plants, exhibiting the genetic stability during in vitro multiplication. This research provides a promising approach for true-to-type plant multiplication of K. odoratissima through SE.  相似文献   

18.
In somatic embryogenesis (SE) of conifers, the inability of many embryogenic cell lines to form well-developed somatic embryos may results from failure and constraints during the transition of proembryogenic masses (PEMs) to early somatic embryos. In the present work, we propose the inclusion of a preculture and prematuration steps looking at enhancing PEM III-to-early somatic embryos transition. It was further hypothesized that these results would correlate with the contents of endogenous indole-3-acetic acid (IAA), abscisic acid (ABA) and polyamines (PA). To test these hypotheses, the embryogenic culture was subjected to preculture with fluridone (FLD) and prematuration treatments with different combinations of carbon source and polyethylene glycol (PEG). The frequency of PEM III was increased after FLD preculture and the contents of IAA and ABA decreased, while the contents of PA increased. Putrescine (Put) was the most abundant PA present at this stage, followed by spermidine (Spd) and spermine (Spm). In early embryogenesis, prematuration treatments supplemented with maltose or lactose plus PEG enhanced the PEM III-to-early somatic embryos transition. IAA and ABA contents increased at this stage, while a decrease of the total free PA levels was observed. Put was the most abundant PA, followed by Spd and Spm, mainly in the treatment supplemented with PEG. This resulted in a decrease of PA ratio (Put/Spd + Spm) and, hence, PEM III-to-early somatic embryos transition. It was concluded that the preculture with FLD and prematuration treatments promote the PEM III-to-early somatic embryos transition throughout the whole early developmental process in Araucaria angustifolia.  相似文献   

19.
An efficient somatic embryogenesis system has been established in Catharanthus roseus (L.) G. Don in which primary and secondary embryogenic calluses were developed from hypocotyls and primary cotyledonary somatic embryos (PCSEs), respectively. Two types of calluses were different in morphology and growth behaviour. Hypocotyl-derived embryogenic callus (HEC) was friable and fast-growing, while secondary callus derived from PCSE was compact and slow-growing. HEC differentiated into somatic embryos which proliferated quickly on medium supplemented with NAA (1.0 mg l−1) and BA (1.5 mg l−1). Although differentiation and proliferation of somatic embryos were faster in primary HEC, maturation and germination efficiency were better in somatic embryos developed from primary cotyledonary somatic embryo-derived secondary embryogenic callus (PCSEC). At the biochemical level, two somatic embryogenesis systems were different. Both primary and secondary/adventive somatic embryogenesis and the role of plant growth regulators in two modes of somatic embryo formation have been discussed.  相似文献   

20.
Possibility to improve plantlet regeneration from Abies alba Mill. open-pollinated families of 4 trees in Dobroč primeval and 3 trees in managed forest was studied. Immature zygotic embryos were cultured in order to obtain initiation of embryogenic tissue. Totally, three from the families of the managed forest (57%) and two from the primeval families (50%) responded to initiation condition. Initiation frequencies among families ranged in managed forest: 4.5–56.2%, primeval: 5.4–16.8%. Maturation ability was shown by 77.3% of the primeval cell lines, 36.4% cell lines produced cotyledonary somatic embryos. In managed forest, in 62.5% of the cell lines embryo maturation was observed. Cotyledonary embryos developed only in 15% of cell lines. Regenerants were obtained from 9 cell lines of primeval and from 6 cell lines of managed forest. Biochemically, the mature somatic embryos were characterized by the variation in soluble and protein profiles. The corresponding profiles of insoluble proteins exhibited uniform pattern. The variation was characteristic for somatic embryos of individual cell lines rather than for the primeval and managed stands. Enzymatically, no indications were obtained supporting higher metabolic potential of somatic embryos derived from zygotic embryos of silver fir primeval stand than in somatic embryos originating from the trees of managed stand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号