首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular potassium concentration, [K+]o, and intracellular calcium, [Ca2+]i, rise during neuron excitation, seizures and spreading depression. Astrocytes probably restrain the rise of K+ in a way that is only partly understood. To examine the effect of glial K+ uptake, we used a model neuron equipped with Na+, K+, Ca2+ and Cl conductances, ion pumps and ion exchangers, surrounded by interstitial space and glia. The glial membrane was either “passive”, incorporating only leak channels and an ion exchange pump, or it had rectifying K+ channels. We computed ion fluxes, concentration changes and osmotic volume changes. Increase of [K+]o stimulated the glial uptake by the glial 3Na/2K ion pump. The [K+]o flux through glial leak and rectifier channels was outward as long as the driving potential was outwardly directed, but it turned inward when rising [K+]o/[K+]i ratio reversed the driving potential. Adjustments of glial membrane parameters influenced the neuronal firing patterns, the length of paroxysmal afterdischarge and the ignition point of spreading depression. We conclude that voltage gated K+ currents can boost the effectiveness of the glial “potassium buffer” and that this buffer function is important even at moderate or low levels of excitation, but especially so in pathological states.  相似文献   

2.
The Na+/K+-ATPase mediates electrogenic transport by exporting three Na+ ions in exchange for two K+ ions across the cell membrane per adenosine triphosphate molecule. The location of two Rb+ ions in the crystal structures of the Na+/K+-ATPase has defined two “common” cation binding sites, I and II, which accommodate Na+ or K+ ions during transport. The configuration of site III is still unknown, but the crystal structure has suggested a critical role of the carboxy-terminal KETYY motif for the formation of this “unique” Na+ binding site. Our two-electrode voltage clamp experiments on Xenopus oocytes show that deletion of two tyrosines at the carboxy terminus of the human Na+/K+-ATPase α2 subunit decreases the affinity for extracellular and intracellular Na+, in agreement with previous biochemical studies. Apparently, the ΔYY deletion changes Na+ affinity at site III but leaves the common sites unaffected, whereas the more extensive ΔKETYY deletion affects the unique site and the common sites as well. In the absence of extracellular K+, the ΔYY construct mediated ouabain-sensitive, hyperpolarization-activated inward currents, which were Na+ dependent and increased with acidification. Furthermore, the voltage dependence of rate constants from transient currents under Na+/Na+ exchange conditions was reversed, and the amounts of charge transported upon voltage pulses from a certain holding potential to hyperpolarizing potentials and back were unequal. These findings are incompatible with a reversible and exclusively extracellular Na+ release/binding mechanism. In analogy to the mechanism proposed for the H+ leak currents of the wild-type Na+/K+-ATPase, we suggest that the ΔYY deletion lowers the energy barrier for the intracellular Na+ occlusion reaction, thus destabilizing the Na+-occluded state and enabling inward leak currents. The leakage currents are prevented by aromatic amino acids at the carboxy terminus. Thus, the carboxy terminus of the Na+/K+-ATPase α subunit represents a structural and functional relay between Na+ binding site III and the intracellular cation occlusion gate.  相似文献   

3.
Cinobufagin and resibufogenin are two major effective bufadienolides of Chan su (toad venom), which is a Chinese medicine obtained from the skin venom gland of toads and is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. Many clinical cases showed that Chan su has severe side-effects on the CNS, causing shortness of breath, breathlessness, seizure, coma and cardiac arrhythmia. We used whole-cell recordings from brain slices to determine the effects of bufadienolides on excitability of a principal neuron in main olfactory bulb (MOB), mitral cells (MCs), and the cellular mechanism underlying the excitation. At higher concentrations, cinobufagin and resibufogenin induced irreversible over-excitation of MCs indicating a toxic effect. At lower concentrations, they concentration-dependently increased spontaneous firing rate, depolarized the membrane potential of MCs, and elicited inward currents. The excitatory effects were due to a direct action on MCs rather than an indirect phasic action. Bufadienolides and ouabain had similar effects on firing of MCs which suggested that bufadienolides activated neuron through a ouabain-like effect, most likely by inhibiting Na+/K+-ATPase. The direct action of bufadienolide on brain Na+ channels was tested by recordings from stably Nav1.2-transfected cells. Bufadienolides failed to make significant changes of the main properties of Nav1.2 channels in current amplitude, current-voltage (I-V) relationships, activation and inactivation. Our results suggest that inhibition of Na+/K+-ATPase may be involved in both the pharmacological and toxic effects of bufadienolide-evoked CNS excitation.  相似文献   

4.
To explore non-synaptic mechanisms in paroxysmal discharges, we used a computer model of a simplified hippocampal pyramidal cell, surrounded by interstitial space and a “glial-endothelial” buffer system. Ion channels for Na+, K+, Ca2+ and Cl , ion antiport 3Na/Ca, and “active” ion pumps were represented in the neuron membrane. The glia had “leak” conductances and an ion pump. Fluxes, concentration changes and cell swelling were computed. The neuron was stimulated by injecting current. Afterdischarge (AD) followed stimulation if depolarization due to rising interstitial K+ concentration ([K+]o) activated persistent Na+ current (I Na,P). AD was either simple or self-regenerating; either regular (tonic) or burst-type (clonic); and always self-limiting. Self-regenerating AD required sufficient I Na,P to ensure re-excitation. Burst firing depended on activation of dendritic Ca2+ currents and Ca-dependent K+ current. Varying glial buffer function influenced [K+]o accumulation and afterdischarge duration. Variations in Na+ and K+ currents influenced the threshold and the duration of AD. The data show that high [K+]o and intrinsic membrane currents can produce the feedback of self-regenerating afterdischarges without synaptic input. The simulated discharge resembles neuron behavior during paroxysmal firing in living brain tissue. Action Editor: David Terman  相似文献   

5.
Experiments on hippocampal slices have recorded that a novel pattern of epileptic seizures with alternating excitatory and inhibitory activities in the CA1 region can be induced by an elevated potassium ion (K+) concentration in the extracellular space between neurons and astrocytes (ECS-NA). To explore the intrinsic effects of the factors (such as glial K+ uptake, Na+–K+-ATPase, the K+ concentration of the bath solution, and K+ lateral diffusion) influencing K+ concentration in the ECS-NA on the epileptic seizures recorded in previous experiments, we present a coupled model composed of excitatory and inhibitory neurons and glia in the CA1 region. Bifurcation diagrams showing the glial K+ uptake strength with either the Na+–K+-ATPase pump strength or the bath solution K+ concentration are obtained for neural epileptic seizures. The K+ lateral diffusion leads to epileptic seizure in neurons only when the synaptic conductance values of the excitatory and inhibitory neurons are within an appropriate range. Finally, we propose an energy factor to measure the metabolic demand during neuron firing, and the results show that different energy demands for the normal discharges and the pathological epileptic seizures of the coupled neurons.  相似文献   

6.
The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In constrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.  相似文献   

7.
The influence of ConA on the energy metabolism of quiescent rat thymocytes was investigated by measuring the effects of inhibitors of protein synthesis, proteolysis, RNA/DNA synthesis, Na+K+-ATPase, Ca2+-ATPase and mitochondrial ATP synthesis on respiration. Only about 50% of the coupled oxygen consumption of quiescent thymocytes could be assigned to specific processes using two different media. Under these conditions the oxygen is mainly used to drive mitochondrial proton leak and to provide ATP for protein synthesis and cation transport, whereas oxygen consumption to provide ATP for RNA/DNA synthesis and ATP-dependent proteolysis was not measurable. The mitogen ConA produced a persistent increase in oxygen consumption by about 30% within seconds. After stimulation more than 80% of respiration could be assigned to specific processes. The major oxygen consuming processes of ConA-stimulated thymocytes are mitochondrial proton leak, protein synthesis and Na+K+-ATPase with about 20% each of total oxygen consumption, while Ca2+-ATPase and RNA/DNA synthesis contribute about 10% each. Quiescent thymocytes resemble resting hepatocytes in that most of the oxygen consumption remains unexplained. In contrast, the pattern of energy metabolism in stimulated thymocytes is similar to that described for Ehrlich Ascites tumour cells and splenocytes, which may also be in an activated state. Most of the oxygen consumption is accounted for, so the unexplained process(es) in unstimulated cells shut(s) off on stimulation.  相似文献   

8.
Total energy production in rabbit reticulocytes amounted to 136·52 ± 6·50μmol ATP h?1ml?1 of reticulocytes: 88·3 per cent was provided by oxidative phosphorylation, whereas only 11·7 per cent by aerobic glycolysis. Na+K+-ATPase accounted for 23 per cent, i.e. 27·65 ± 2·55μmol ATP h?1ml?1 of reticulocytes, in the overall energy consumption in reticulocytes of rabbits. Under basal conditions ATP for Na+K+-ATPase activity was derived exclusively from oxidative phosphorylation. However, when the activity of Na+K+-ATPase was increased due to the stimulation of adenylate cyclase by (?)-isoprenaline, the additional energy required was provided by aerobic glycolysis. These results indicate that two different compartments, one cytosolic and the other mitochondrial, provide energy for Na+K+-ATPase activity in reticulocytes.  相似文献   

9.
The initiation and propagation of action potentials (APs) places high demands on the energetic resources of neural tissue. Each AP forces ATP-driven ion pumps to work harder to restore the ionic concentration gradients, thus consuming more energy. Here, we ask whether the ionic currents underlying the AP can be predicted theoretically from the principle of minimum energy consumption. A long-held supposition that APs are energetically wasteful, based on theoretical analysis of the squid giant axon AP, has recently been overturned by studies that measured the currents contributing to the AP in several mammalian neurons. In the single compartment models studied here, AP energy consumption varies greatly among vertebrate and invertebrate neurons, with several mammalian neuron models using close to the capacitive minimum of energy needed. Strikingly, energy consumption can increase by more than ten-fold simply by changing the overlap of the Na+ and K+ currents during the AP without changing the APs shape. As a consequence, the height and width of the AP are poor predictors of energy consumption. In the Hodgkin–Huxley model of the squid axon, optimizing the kinetics or number of Na+ and K+ channels can whittle down the number of ATP molecules needed for each AP by a factor of four. In contrast to the squid AP, the temporal profile of the currents underlying APs of some mammalian neurons are nearly perfectly matched to the optimized properties of ionic conductances so as to minimize the ATP cost.  相似文献   

10.
This study focuses on the oxygen-dependence of active and passive K+ fluxes across membranes of cerebellar granule cells of neonatal rats. Maximal Na+,K+-ATPase activity along with minimal passive K+ influx was observed within oxygen concentration range characteristic for neonatal rat cerebellum. Prolonged exposure to hypoxia as well as hyperoxia resulted in suppression of the Na+,K+-ATPase and activation of the passive K+ flux. Toxic effects of hypoxia could be partially prevented by inhibition of NO production with L-NAME. This was accomplished by suppression of Na+,K+-ATPase with subsequent reduction in ATP consumption concurrently with the reduction in passive K+ flux. Activation of the Na+,K+-ATPase by NO at physiological pO2 could be abolished by inhibition of NO synthase by L-NAME or soluble guanylyl cyclase with ODQ. However, treatment of cells with activator of PKG Rp-8-CTP did not mimic normoxic activation of the active K+ influx. Oxygen-induced responses under normoxic conditions were differentially mediated by α1 isoform of the Na+,K+-ATPase catalytic subunit, whereas α2/3 isoform was predominantly active under conditions of severe hypoxia. We conclude that both hypoxia and hyperoxia trigger a gradual dissipation of transmembrane K+ gradient and loss of excitability of cerebellar neurons. The latter may be partially reversed by suppression of NO production under hypoxic conditions  相似文献   

11.
The affinity for K+ of silkworm nerve Na+/K+-ATPase is markedly lower than that of mammalian Na+/K+-ATPase (Homareda 2010). In order to obtain clues on the molecular basis of the difference in K+ affinities, we cloned cDNAs of silkworm (Bombyx mori) nerve Na+/K+-ATPase α and β subunits, and analyzed the deduced amino acid sequences. The molecular masses of the α and β subunits were presumed to be 111.5 kDa with ten transmembrane segments and 37.7 kDa with a single transmembrane segment, respectively. The α subunit showed 75% identity and 93% homology with the pig Na+/K+-ATPase α1 subunit. On the other hand, the amino acid identity of the β subunit with mammalian counterparts was as low as 30%. Cloned α and β cDNAs were co-expressed in cultured silkworm ovary-derived cells, BM-N cells, which lack endogenous Na+/K+-ATPase. Na+/K+-ATPase expressed in the cultured cells showed a low affinity for K+ and a high affinity for Na+, characteristic of the silkworm nerve Na+/K+-ATPase. These results suggest that the β subunit is responsible for the affinity for K+ of Na+/K+-ATPase.  相似文献   

12.
Deficiency of 3-methylcrotonyl-CoA carboxylase activity is an inherited metabolic disease biochemically characterized by accumulation and high urinary excretion of 3-methylcrotonylglycine (3MCG), and also of 3-hydroisovalerate in lesser amounts. Affected patients usually have neurologic dysfunction, brain abnormalities and cardiomyopathy, whose pathogenesis is still unknown. The present study investigated the in vitro effects of 3MCG on important parameters of energy metabolism, including CO2 production from labeled acetate, enzyme activities of the citric acid cycle, as well as of the respiratory chain complexes I–IV (oxidative phosphorylation), creatine kinase (intracellular ATP transfer), and synaptic Na+,K+-ATPase (neurotransmission) in brain cortex of young rats. 3MCG significantly reduced CO2 production, implying that this compound compromises citric acid cycle activity. Furthermore, 3MCG diminished the activities of complex II-III of the respiratory chain, mitochondrial creatine kinase and synaptic membrane Na+,K+-ATPase. Furthermore, antioxidants were able to attenuate or fully prevent the inhibitory effect of 3MCG on creatine kinase and synaptic membrane Na+,K+-ATPase activities. We also observed that lipid peroxidation was elicited by 3MCG, suggesting the involvement of free radicals on 3MCG-induced effects. Considering the importance of the citric acid cycle and the electron flow through the respiratory chain for brain energy production, creatine kinase for intracellular energy transfer, and Na+,K+-ATPase for the maintenance of the cell membrane potential, the present data indicate that 3MCG potentially impairs mitochondrial brain energy homeostasis and neurotransmission. It is presumed that these pathomechanisms may be involved in the neurological damage found in patients affected by 3-methylcrotonyl-CoA carboxylase deficiency.  相似文献   

13.
Summary Electrophysiological experiments were performed to analyze the Na+/K+-ATPase in full-grown prophase-arrested oocytes ofXenopus laevis. If the Na+/K+-ATPase is inhibited by dihydroouabain (DHO), the resting potential of the membrane of Na+-loaded oocytes may depolarize by nearly 50 mV. This hyperpolarizing contribution to the resting potential depends on the degree of activation of the Na+/K+-ATPase and varies with intra-cellular Na+ activity (a Na i ), and extracellular K+ (K 0 + ) It is concluded that variations ofa Na i among different oocytes are primarily responsible for the variations of resting potentials measured in oocytes ofX. laevis. Under voltage-clamp conditions, the DHO-sensitive current also exhibits dependence ona Na i that may be described by a Hill equation with a coefficient of 2. This current will be shown to be identical with the electrogenic current generated by the 3Na+/2K+ pump. The voltage dependence of the pump current was investigated at saturating values ofa Na i (33 mmol/liter) and of K 0 + (3 mmol/liter) in the range from –200 to +100 mV. The current was found to exhibit a characteristic maximum at about +20 mV. This is taken as evidence that in the physiological range at least two steps within the cycle of the pump are voltage dependent and are oppositely affected by the membrane potential.  相似文献   

14.
Enteric neurons located in the gastro-intestinal tract are of particular importance to control digestive functions such as motility and secretion. In our recent publication, we showed that mouse myenteric neurons exhibit 2 types of tetrodotoxin-resistant Na+ currents: a fast inactivating Na+ current produced by Nav1.5 channels, present in nearly all myenteric neurons, and a persistent Na+ current attributed to Nav1.9 channels, restricted to the intrinsic primary afferent neurons (IPANs). By combination of experimental recording and computer simulation we found that Nav1.5 contributed to the upstroke velocity of action potentials (APs), whereas Nav1.9 opposed AP repolarization. Here, we detailed the Na+, Ca2+ and K+ currents used in our computational model of IPAN. We refined the prototype cell to reproduce the sustained firing pattern recorded in situ. As shown in experimental conditions we demonstrated that Nav1.9 channels critically determine the up-state life-time and thus, are essential to sustain tonic firing.  相似文献   

15.
Summary The outer membranes of plant cells contain channels which are highly selective for K+. In the giant-celled green algaChara corallina, K+ currents in the plasmalemma were measured during the action potential and when the cell was depolarized to the K+ equilibrium potential in high external K+ concentrations. Currents in both conditions were reduced by externally added tetraethylammonium (TEA+), Ba2+, Na+ and Cs+. In contrast to inhibition by TEA+, the latter three ions inhibited inward K+ current in a voltage-dependent manner, and reduced inward current more than outward. Ba2+ and Na+ also appeared to inhibit outward current in a strongly voltage-dependent manner. The blockade by Cs+ is studied in more detail in the following paper. TEA+ inhibited both inward and outward currents in a largely voltage-independent manner, with an apparentK D of about 0.7 to 1.1mm, increasing with increasing external K+. All inhibitors reduced current towards a similar linear leak, suggesting an insensitivity of the background leak inChara to these various K+ channel inhibitors. The selectivity of the channel to various monovalent cations varied depending on the method of measurement, suggesting that ion movement through the K+-selective channel may not be independent.  相似文献   

16.
Enteric neurons located in the gastro-intestinal tract are of particular importance to control digestive functions such as motility and secretion. In our recent publication, we showed that mouse myenteric neurons exhibit 2 types of tetrodotoxin-resistant Na+ currents: a fast inactivating Na+ current produced by Nav1.5 channels, present in nearly all myenteric neurons, and a persistent Na+ current attributed to Nav1.9 channels, restricted to the intrinsic primary afferent neurons (IPANs). By combination of experimental recording and computer simulation we found that Nav1.5 contributed to the upstroke velocity of action potentials (APs), whereas Nav1.9 opposed AP repolarization. Here, we detailed the Na+, Ca2+ and K+ currents used in our computational model of IPAN. We refined the prototype cell to reproduce the sustained firing pattern recorded in situ. As shown in experimental conditions we demonstrated that Nav1.9 channels critically determine the up-state life-time and thus, are essential to sustain tonic firing.  相似文献   

17.
Chalcalburnus tarichi is an anadromous cyprinid fish that has adapted to extreme conditions (salinity 22 ‰, pH 9.8 and alkalinity 153 mEq × l?1) in Lake Van in eastern Turkey. Changes in immunoreactivity of Na+/K+-ATPase in gill tissue and osmolarity and ion levels in plasma were investigated in C. tarichi during reproductive migration. Physicochemical characteristics and ion levels in Lake Van were high compared freshwater. Plasma osmolality and plasma ion concentrations ([Na+], [K+] and [Cl?]) increased after transfer from freshwater to Lake Van. The mitochondria-rich (MR) cells of the gill were stained in both filament and lamellar epithelia of C. tarichi by immunocytochemistry with a specific antiserum for Na+/K+-ATPase in river fish samples. Density and area of MR cells were decreased in lake-adapted fishes. These results indicated that freshwater acclimation capacity is correlated with the size and distribution of MR cells in C. tarichi, in contrast to many teleost fishes.  相似文献   

18.
Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na+/K+ ATPase, which hydrolyzes 1 ATP to move 3 Na+ outside and 2 K+ inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na+ and K+ ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na+ and K+ fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na+/K+ ions per glutamate released. We found that astrocytes are stimulated by the extracellular K+ exiting neurons in excess of the 3/2 Na+/K+ ratio underlying Na+/K+ ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K+ uptake, but not astrocytic Na+-coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K+ in stimulating the activation of astrocytes, which is relevant to the understanding of brain activity and energy metabolism at the cellular level.  相似文献   

19.
《BBA》2013,1827(10):1205-1212
The Na+,K+-ATPase is accepted as an important source of heat generation (thermogenesis) in animals. Based on information gained on the kinetics of the enzyme's partial reactions we consider via computer simulation whether modifications to the function of the combined Na+,K+-ATPase/plasma membrane complex system could lead to an increased body temperature, either through the course of evolution or during an individual's lifespan. The enzyme's kinetics must be considered because it is the rate of heat generation which determines body temperature, not simply the amount of heat per enzymatic cycle. The results obtained indicate that a decrease in thermodynamic efficiency of the Na+,K+-ATPase, which could come about by Na+ substituting for K+ on the enzyme's extracellular face, could not account for increased thermogenesis. The only feasible mechanisms are an increase in the enzyme's expression level or an increase in its ion pumping activity. The major source of Na+,K+-ATPase-related thermogenesis (72% of heat production) is found to derive from passive Na+ diffusion into the cell, which counterbalances outward Na+ pumping to maintain a constant Na+ concentration gradient across the membrane. A simultaneous increase in both Na+,K+-ATPase activity and the membrane's passive Na+ permeability could promote a higher body temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号