首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We have recently shown that protein tyrosine phosphatase 1B (PTP1B) associates with the docking protein p130Cas in 3Y1 rat fibroblasts. This interaction is mediated by a proline-rich sequence on PTP1B and the SH3 domain on p130Cas. Expression of wild-type PTP1B (WT-PTP1B), but not a catalytically competent, proline-to-alanine point mutant that cannot bind p130Cas (PA-PTP1B), causes substantial tyrosine dephosphorylation of p130Cas (F. Liu, D. E. Hill, and J. Chernoff, J. Biol. Chem. 271:31290–31295, 1996). Here we demonstrate that WT-, but not PA-PTP1B, inhibits transformation of rat 3Y1 fibroblasts by v-crk, -src, and -ras, but not by v-raf. These effects on transformation correlate with the phosphorylation status of p130Cas and two proteins that are associated with p130Cas, Paxillin and Fak. Expression of WT-PTP1B reduces formation of p130Cas-Crk complexes and inhibits mitogen-activated protein kinase activation by Src and Crk. These data show that transformation suppression by PTP1B requires a functional SH3 ligand and suggest that p130Cas may represent an important physiological target of PTP1B in cells.  相似文献   

2.
BCAR3 binds to the carboxy-terminus of p130Cas, a focal adhesion adapter protein. Both BCAR3 and p130Cas have been linked to resistance to anti-estrogens in breast cancer, Rac activation and cell motility. Using R743A BCAR3, a point mutant that has lost the ability to bind p130Cas, we find that BCAR3-p130Cas complex formation is not required for BCAR3-mediated anti-estrogen resistance, Rac activation or discohesion of epithelial breast cancer cells. Complex formation was also not required for BCAR3-induced lamellipodia formation in BALB/c-3T3 fibroblasts but was required for optimal BCAR3-induced motility. Although both wildtype and R743A BCAR3 induced phosphorylation of p130Cas and the related adapter protein HEF1/NEDD9, chimeric NSP3:BCAR3 experiments demonstrate that such phosphorylation does not correlate with BCAR3-induced anti-estrogen resistance or lamellipodia formation. Wildtype but not R743A BCAR3 induced lamellipodia formation and augmented cell motility in p130Cas−/− murine embryonic fibroblasts (MEFs), suggesting that while p130Cas itself is not strictly required for these endpoints, complex formation with other CAS family members is, at least in cells lacking p130Cas. Overall, our work suggests that many, but not all, BCAR3-mediated signaling events in epithelial and mesenchymal cells are independent of p130Cas association. These studies also indicate that disruption of the BCAR3-p130Cas complex is unlikely to reverse BCAR3-mediated anti-estrogen resistance.  相似文献   

3.
DOCK180 is an atypical guanine nucleotide exchange factor of Rac1 identified originally as one of the two major proteins bound to the SH3 domain of the Crk adaptor protein. DOCK180 induces tyrosine phosphorylation of p130Cas, and recruits the Crk-p130Cas complex to focal adhesions. Recently, we searched for DOCK180-binding proteins with a nano-LC/MS/MS system, and found that ANKRD28, a protein with twenty-six ankyrin domain-repeats, interacts with the SH3 domain of DOCK180. Knockdown of ANKRD28 reduced the migration velocity and altered the distribution of focal adhesion proteins such as Crk, paxillin, and p130Cas. On the other hand, the expression of ANKRD28, p130Cas, Crk, and DOCK180 induced hyper-phosphorylation of p130Cas, which paralleled the induction of multiple long cellular processes. Depletion of ELMO, another protein bound to the SH3 domain of DOCK180, also retarded cell migration, but its expression together with p130Cas, Crk, and DOCK180 induced extensive lamellipodial protrusion around the entire circumference without 130Cas hyperphosphorylation. These data suggest the dual modes of DOCK180-Rac regulation for cell migration.  相似文献   

4.
Elevated expression of p130Cas/BCAR1 (breast cancer anti estrogen resistance 1) in human breast tumors is a marker of poor prognosis and poor overall survival. Specifically, p130Cas signaling has been associated with antiestrogen resistance, for which the mechanism is currently unknown. TAM‐R cells, which were established by long‐term exposure of estrogen (E2)‐dependent MCF‐7 cells to tamoxifen, displayed elevated levels of total and activated p130Cas. Here we have investigated the effects of p130Cas inhibition on growth factor signaling in tamoxifen resistance. To inhibit p130Cas, a phosphorylated substrate domain of p130Cas, that acts as a dominant‐negative (DN) p130Cas molecule by blocking signal transduction downstream of the p130Cas substrate domain, as well as knockdown by siRNA was employed. Interference with p130Cas signaling/expression induced morphological changes, which were consistent with a more epithelial‐like phenotype. The phenotypic reversion was accompanied by reduced migration, attenuation of the ERK and phosphatidylinositol 3‐kinase/Akt pathways, and induction of apoptosis. Apoptosis was accompanied by downregulation of the expression of the anti‐apoptotic protein Bcl‐2. Importantly, these changes re‐sensitized TAM‐R cells to tamoxifen treatment by inducing cell death. Therefore, our findings suggest that targeting the product of the BCAR1 gene by a peptide which mimics the phosphorylated substrate domain may provide a new molecular avenue for treatment of antiestrogen resistant breast cancers. J. Cell. Biochem. 107: 364–375, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.

Background  

The adaptor protein p130 Cas (Cas) has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals.  相似文献   

6.
DOCK180 is a guanine exchange factor of Rac1 originally identified as a protein bound to an SH3 domain of the Crk adaptor protein. DOCK180 induces tyrosine phosphorylation of p130Cas, and recruits the Crk-p130Cas complex to focal adhesions. To understand the role of DOCK180 in cell adhesion and migration, we searched for DOCK180-binding proteins with a nano-LC/MS/MS system, and identified ANKRD28, a protein that contains twenty-six ankyrin domain repeats. Knockdown of ANKRD28 by RNA interference reduced the velocity of migration of HeLa cells, suggesting that this protein plays a physiologic role in the DOCK180-Rac1 signaling pathway. Furthermore, knockdown of ANKRD28 was found to alter the distribution of focal adhesion proteins such as Crk, paxillin, and p130Cas. On the other hand, expression of ANKRD28, p130Cas, Crk, and DOCK180 induced hyper-phosphorylation of p130Cas, and impaired detachment of the cell membrane during migration. Consequently, cells expressing ANKRD28 exhibited multiple long cellular processes. ANKRD28 associated with DOCK180 in an SH3-dependent manner and competed with ELMO, another protein bound to the SH3 domain of DOCK180. In striking contrast to ANKRD28, overexpression of ELMO induced extensive lamellipodial protrusion around the entire circumference. These data suggest that ANKRD28 specifies the localization and the activity of the DOCK180-Rac1 pathway.  相似文献   

7.
The nonreceptor protein-tyrosine kinase c-Src is frequently overexpressed and/or activated in a variety of cancers, including those of the breast. Several heterologous binding partners of c-Src have been shown to regulate its catalytic activity by relieving intramolecular autoinhibitory interactions. One such protein, p130Cas (Cas), is expressed at high levels in both breast cancer cell lines and breast tumors, providing a potential mechanism for c-Src activation in breast cancers. The Cas-binding protein BCAR3 (breast cancer antiestrogen resistance-3) is expressed at high levels in invasive breast cancer cell lines, and this molecule has previously been shown to coordinate with Cas to increase c-Src activity in COS-1 cells. In this study, we show for the first time using gain- and loss-of-function approaches that BCAR3 regulates c-Src activity in the endogenous setting of breast cancer cells. We further show that BCAR3 regulates the interaction between Cas and c-Src, both qualitatively as well as quantitatively. Finally, we present evidence that the coordinated activity of these proteins contributes to breast cancer cell adhesion signaling and spreading. Based on these data, we propose that the c-Src/Cas/BCAR3 signaling axis is a prominent regulator of c-Src activity, which in turn controls cell behaviors that lead to aggressive and invasive breast tumor phenotypes.  相似文献   

8.
NSP protein family members associate with p130Cas, a focal adhesion adapter protein best known as a Src substrate that integrates adhesion-related signaling. Over-expression of AND-34/BCAR3/NSP2 (BCAR3), but not NSP1 or NSP3, induces anti-estrogen resistance in human breast cancer cell lines. BCAR3 over-expression in epithelial MCF-7 cells augments levels of a phosphorylated p130Cas species that migrates more slowly on SDS-PAGE while NSP1 and NSP3 induce modest or no phosphorylation, respectively. Conversely, reduction in BCAR3 expression in mesenchymal MDA-231 cells by inducible shRNA results in loss of such p130Cas phosphorylation. Replacement of NSP3's serine/proline-rich domain with that of AND-34/BCAR3 instills the ability to induce p130Cas phosphorylation. Phospho-amino acid analysis demonstrates that BCAR3 induces p130Cas serine phosphorylation. Mass spectrometry identified phosphorylation at p130Cas serines 139, 437 and 639. p130Cas serine phosphorylation accumulates for several hours after adhesion of MDA-231 cells to fibronectin and is dependent upon BCAR3 expression. BCAR3 knockdown alters p130Cas localization and converts MDA-231 growth to an epithelioid pattern characterized by striking cohesiveness and lack of cellular projections at colony borders. These studies demonstrate that BCAR3 regulates p130Cas serine phosphorylation that is adhesion-dependent, temporally distinct from previously well-characterized rapid Fak and Src kinase-mediated p130Cas tyrosine phosphorylation and that correlates with invasive phenotype.  相似文献   

9.
Elevated levels of p130Cas (Crk-associated substrate)/BCAR1 (breast cancer antiestrogen resistance 1 gene) are associated with aggressiveness of breast tumors. Following phosphorylation of its substrate domain, p130Cas promotes the integration of protein complexes involved in multiple signaling pathways and mediates cell proliferation, adhesion, and migration. In addition to the known BCAR1-1A (wild-type) and 1C variants, we identified four novel BCAR1 mRNA variants, generated by alternative first exon usage (1B, 1B1, 1D, and 1E). Exons 1A and 1C encode for four amino acids (aa), whereas 1D and 1E encode for 22 aa and 1B1 encodes for 50 aa. Exon 1B is non-coding, resulting in a truncated p130Cas protein (Cas1B). BCAR1-1A, 1B1, and variant 1C mRNAs were ubiquitously expressed in cell lines and a survey of human tissues, whereas 1B, 1D, and 1E expression was more restricted. Reconstitution of all isoforms except for 1B in p130Cas-deficient murine fibroblasts induced lamellipodia formation and membrane ruffling, which was unrelated to the substrate domain phosphorylation status. The longer isoforms exhibited increased binding to focal adhesion kinase (FAK), a molecule important for migration and adhesion. The shorter 1B isoform exhibited diminished FAK binding activity and significantly reduced migration and invasion. In contrast, the longest variant 1B1 established the most efficient FAK binding and greatly enhanced migration. Our results indicate that the p130Cas exon 1 variants display altered functional properties. The truncated variant 1B and the longer isoform 1B1 may contribute to the diverse effects of p130Cas on cell biology and therefore will be the target of future studies.  相似文献   

10.
Previously we have demonstrated that focal adhesion kinase (FAK)-promoted migration on fibronectin (FN) by its overexpression in CHO cells is dependent on FAK autophosphorylation at Y397 and subsequent binding of Src to this site. In this report, we have examined the role of FAK association with Grb2 and p130Cas, two downstream events of the FAK/Src complex that could mediate integrin-stimulated activation of extracellular signal-regulated kinases (Erks). We show that a Y925F FAK mutant was able to promote cell migration as efficiently as FAK and that the transfected FAK demonstrated no detectable association with Grb2 in CHO cells. In contrast, cells expressing a FAK P712/715A mutant demonstrated a level of migration comparable to that of control cells. This mutation did not affect FAK kinase activity, autophosphorylation, or Src association but did significantly reduce p130Cas association with FAK. Furthermore, FAK expression in CHO cells increased tyrosine phosphorylation of p130Cas and its subsequent binding to several SH2 domains, which depended on both the p130Cas binding site and the Src binding site. However, we did not detect increased activation of Erks in cells expressing FAK, and the MEK inhibitor PD98059 did not decrease FAK-promoted cell migration. Finally, we show that coexpression of p130Cas further increased cell migration on FN and coexpression of the p130Cas SH3 domain alone functioned as a dominant negative mutant and decreased cell migration. Together, these results demonstrate that p130Cas, but not Grb2, is a mediator of FAK-promoted cell migration and suggest that FAK/ p130Cas complex targets downstream pathways other than Erks in mediating FAK-promoted cell migration.  相似文献   

11.
12.
As part of a program to further understand the mechanism by which extracellular signals are coordinated and cell-specific outcomes are generated, we have cloned a novel class of related adaptor molecules (NSP1, NSP2, and NSP3) and have characterized in more detail one of the members, NSP1. NSP1 has an Shc-related SH2 domain and a putative proline/serine-rich SH3 interaction domain. Treatment of cells with epidermal growth factor or insulin leads to NSP1 phosphorylation and increased association with a hypophosphorylated adaptor protein, p130(Cas). In contrast, cell contact with fibronectin results in Cas phosphorylation and a transient dissociation of NSP1 from p130(Cas). Increased expression of NSP1 in 293 cells induces activation of JNK1, but not of ERK2. Consistent with this observation, NSP1 increases the activity of an AP-1-containing promoter. Thus, we have described a novel family of adaptor proteins, one of which may be involved in the process by which receptor tyrosine kinase and integrin receptors control the c-Jun N-terminal kinase/stress-activated protein kinase pathway.  相似文献   

13.
The docking protein p130Cas has, together with FAK, been found as a target of the Yersinia virulence effector YopH. YopH is a protein tyrosine phosphatase that is delivered into host cells via the bacterial type III secretion machinery, and the outcome of its activity is inhibition of host cell phagocytosis. In the present study using p130Cas-/- cells, and p130Cas-/- cells expressing variants of GFPp130Cas, we show that this docking protein, via its substrate domain, is responsible for subcellular targeting of YopH in eukaryotic cells. Since YopH inhibits phagocytosis, p130Cas was expected to be critical for signalling mediating bacterial internalization. However, p130Cas-/- cells did not exhibit reduced capacity to internalize Yersinia. On the other hand, when a dominant negative variant of p130Cas was expressed in these cells, the phagocytic capacity was severely impaired. Moreover, the p130Cas-/- cells displayed a marked reduced sensitivity towards YopH-mediated detachment compared to wild-type cells. Transfecting these cells with full-length p130Cas rendered cells hypersensitive to both mechanical and Yersinia-mediated detachment. This hypersensitivity was not seen upon transfection with the dominant negative substrate domain-deleted variant of p130Cas. This implicates p130Cas as a prominent regulator of cell adhesion, where its substrate-binding domain has a significant function.  相似文献   

14.
Prostate cancer metastasis is often associated with poor prognosis. The molecular coupling of the adaptor protein Crk to the docking protein p130(Cas) serves as a switch that regulates cell migration in several invasive cancer cells and Ack appears to act upstream of CrkII to modulate the cell motility. However, the precise role of Ack, Crk and p130(Cas) complex in prostate cancer migration remains unknown. In this study we examined the expression of Crk and p130(Cas) in prostate cancer cell lines, and found that CrkI and p130(Cas) protein level was higher in highly invasive PC-3M and PC-3 cell lines than in moderately invasive DU-145 cells. Upon shRNA mediated knockdown of CrkI and p130(Cas) in PC-3M cells, cell migration and invasion were significantly inhibited as analyzed by wound healing assay and transwell invasion assay. Furthermore, co-immunoprecipitation assay showed that p130(Cas) interacted with CrkI in PC-3M cells and the stability of p130(Cas) and CrkI depended on each other. AckI interacted with both CrkI and p130(Cas) and the interaction of AckI with CrkI seemed to be independent of p130(Cas) . Taken together, our results demonstrate the high expression of CrkI and p130(Cas) in invasive prostate cancer cells and the important role of CrkI/p130(Cas) complex in the migration and invasion of prostate cancer cells. These data suggest that CrkI/p130(Cas) could be exploited as potential molecular therapeutic target for prostate cancer metastasis.  相似文献   

15.
The effect of platelet-activating factor (PAF) on protein tyrosine phosphorylation was studied in rat hippocampal slices. PAF caused an increase in the tyrosine phosphorylation of two phosphoproteins, which we identified by immunoprecipitation assays as the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. The PAF effect was time- and dose-dependent. In addition, the involvement of PAF receptor was demonstrated by using PCA-4248, a specific receptor antagonist. When NO synthase was inhibited by NG-monomethyl-L-arginine (L-NMA), PAF-stimulated protein tyrosine phosphorylation was inhibited. In conclusion, our results indicate that PAF increased the tyrosine phosphorylation of both p125FAK and p130Cas proteins by the production of NO in hippocampus, suggesting that PAF may play a role in the functioning of this cerebral area.  相似文献   

16.
17.
18.
Dbs is a Rho-specific guanine nucleotide exchange factor (RhoGEF) that regulates neurotrophin-3-induced cell migration in Schwann cells. Here we report that Dbs regulates cell motility in tumor-derived, human breast epithelial cells through activation of Cdc42 and Rac1. Cdc42 and Rac1 are activated in T47D cells that stably express onco- or proto-Dbs, and activation is dependent upon growth of the cells on collagen I. Transient suppression of expression of Cdc42 or Rac1 by small interfering RNAs attenuates Dbs-enhanced motility. Both onco- and proto-Dbs-enhanced motility correlates with an increase in tyrosine phosphorylation of focal adhesion kinase on Tyr-397 and p130Cas on Tyr-410 and an increase in the abundance of the Crk·p130Cas complex. Suppression of expression of Cdc42 or its effector, Ack1, reduces tyrosine phosphorylation of focal adhesion kinase and p130Cas and disrupts the Crk·p130Cas complex. We further determined that suppression of expression of Cdc42, Ack1, p130Cas, or Crk reduces Rac1 activation and cell motility in Dbs-expressing cells to a level comparable with that in vector cells. Therefore, a cascade of activation of Cdc42 and Rac1 by Dbs through the Cdc42 effector Ack1 and the Crk·p130Cas complex is established. Suppression of the expression of endogenous Dbs reduces cell motility in both T47D cells and MDA-MB-231 cells, which correlates with the down-regulation of Cdc42 activity. This suggests that Dbs activates Cdc42 in these two human breast cancer cell lines and that the normal function of Dbs may be required to support cell movement.Rho GTPases are a subfamily of the Ras superfamily of small signaling molecules that are widely expressed in mammalian cells (1). RhoA, Cdc42, and Rac1 are the most extensively studied members of the Rho GTPase family, and each plays a prominent and discrete role in cell migration (2, 3). Cdc42 promotes the formation of filopodia and is required to establish cell polarity (35); Rac1 promotes the formation of lamellipodia at the leading edge of motile cells (6), and RhoA promotes the formation of stress fibers which generate the traction forces needed to retract the cell tail and move the cell body beyond the leading edge (7, 8). Consistent with this important role in cell motility, RhoA, Cdc42, and Rac1 are often overexpressed in human tumors including breast, lung, and colon (9), and overexpression of constitutively active RhoA, Cdc42, or Rac1 increases cell migration and invasion (2, 10, 11).The spatiotemporal regulation of Rho GTPase activity is tightly controlled by three classes of proteins. Rho-specific guanine nucleotide exchange factors (RhoGEFs)2 activate Rho proteins by facilitating the exchange of GDP for GTP; Rho GTPase-activating proteins (RhoGAPs) stimulate the intrinsic rate of hydrolysis of Rho proteins, thus converting them into their inactive state; Rho-specific guanine nucleotide dissociation inhibitors (RhoGDIs) compete with RhoGEFs for binding to GDP-bound Rho proteins and sequester Rho in the inactive state (12).Dbs was identified in the screen for proteins whose overexpression cause malignant growth in murine fibroblasts (13, 14). The full-length Dbs protein (proto-Dbs) is a RhoGEF family member which contains multiple recognizable domains (Fig. 1A) including a Sec14-like domain, spectrin-like repeats, a RhoGEF domain (includes a DH and PH domain), and an SH3 domain (13). The original oncogenic version of Dbs that was identified (amino acid residues 525–1097; designated onco-Dbs) contains the RhoGEF domain alone. When expressed in murine fibroblasts, the transforming and catalytic activity of Dbs is subject to autoinhibition that is mediated by the NH2-terminal Sec14 domain (15). Although the endogenous function of Dbs is not known, recent studies suggest that Dbs and the Rac-specific exchange factor Tiam1 regulate neurotrophin-stimulated cell migration in Schwann cells through activation of Cdc42 and Rac1, respectively (16, 17).Open in a separate windowFIGURE 1.Onco-Dbs and proto-Dbs induce cell migration in tumor-derived breast epithelial cells. A, domain structure of the onco-Dbs and proto-Dbs proteins (Sec14 = Sec14-like domain; Spec = Spectrin-like repeats; DH = Dbl homology domain; PH = pleckstrin homology domain; SH3 = Src homology 3 domain). B, stable expression of HA-epitope-tagged onco-Dbs (Mr = 65) and proto-Dbs (Mr = 129 kDa) was confirmed by Western blot using an anti-HA antibody. Three independent sets of cell lines were generated. C, T47D cells stably expressing vector (Vec), onco-Dbs, or proto-Dbs were compared in a transwell motility assay on filters pre-coated with collagen I. The motility of cells stably expressing onco-Dbs or proto-Dbs is expressed relative to that of cells stably expressing vector. Data are represented as the mean ± S.D. of three independent experiments performed in triplicate. D, T47D cells stably expressing vector, onco-Dbs, or proto-Dbs were cultured to monolayer on dishes coated with poly-l-lysine or collagen I, as indicated. Cells were serum-starved overnight, and then the surface of the plate was scraped. Migration of cells at the wound edge was monitored and photographed at 18 h. Representative images are shown. E, growth curves of T47D cells stably expressing vector, onco-Dbs, or proto-Dbs. Cells were cultured in triplicate on poly-l-lysine (filled symbols) or on dishes pre-coated with collagen I (open symbols) and counted on the indicated days. Data shown are representative of three independent experiments.Conversion of Rho proteins to their active GTP-bound state allows them to interact with effector signaling molecules. Ack1 is a nonreceptor-tyrosine kinase that binds to active Cdc42 but not Rac1 or RhoA (18, 19). Activated Ack1 is overexpressed in primary tumors and cancer cell lines and has been implicated in cancer metastasis (20). Recent studies have identified a signaling complex that regulates the motility of human breast epithelial cells that contains Cdc42, Ack1, p130Cas, and Crk (21). Ack1 and p130Cas interact through their respective SH3 domains, and Ack1 phosphorylates p130Cas in a collagen I-dependent manner. p130Cas was first identified as a hyperphosphorylated adapter protein in cells transformed by v-Src and v-Crk (22, 23). Further studies showed that p130Cas is associated with both cellular Src and Crk in a tyrosine phosphorylation-dependent manner (24, 25). Focal adhesion kinase (FAK) binds to the NH2 terminus of p130Cas and phosphorylates the COOH terminus in a region that is involved in p130Cas binding to Src (26). The binding of Crk to p130Cas recruits binding partners to the SH3 domain of Crk, including C3G and DOCK180, which activate Rap1 and Rac1, respectively (2731). Thus, formation of the Crk·p130Cas complex is considered to be a molecular switch that can induce cell migration by activating Rac1 (32).Here we show that both proto-Dbs and onco-Dbs increase cell migration in human breast adenocarcinoma cells in a collagen I-dependent manner. Increased motility is dependent upon the activation of Rac1 and Cdc42 and is mediated by the assembly of Crk·p130Cas complexes. Suppression of endogenous Dbs expression in human tumor-derived breast epithelial cells limits cell motility, suggesting that Dbs may be a critical regulator of cell behavior in breast cancer.  相似文献   

19.
Integrin ligand binding induces a signaling complex formation via the direct association of the docking protein p130(Cas) (Cas) with diverse molecules. We report here that the 14-3-3zeta protein interacts with Cas in the yeast two-hybrid assay. We also found that the two proteins associate in mammalian cells and that this interaction takes place in a phosphoserine-dependent manner, because treatment of Cas with a serine phosphatase greatly reduced its ability to bind 14-3-3zeta. Furthermore, the Cas-14-3-3zeta interaction was found to be regulated by integrin-mediated cell adhesion. Thus, when cells are detached from the extracellular matrix, the binding of Cas to 14-3-3zeta is greatly diminished, whereas replating the cells onto fibronectin rapidly induces the association. Consistent with these results, we found that the subcellular localization of Cas and 14-3-3 is also regulated by integrin ligand binding and that the two proteins display a significant co-localization during cell attachment to the extracellular matrix. In conclusion, our results demonstrate that 14-3-3 proteins participate in integrin-activated signaling pathways through their interaction with Cas, which, in turn, may contribute to important biological responses regulated by cell adhesion to the extracellular matrix.  相似文献   

20.
In the ageing skeleton, the balance of bone reconstruction could commonly be broken by the increasing of bone resorption and decreasing of bone formation. Consequently, the bone resorption gradually occupies a dominant status. During this imbalance process, osteoclast is unique cell linage act the bone resorptive biological activity, which is a highly differentiated ultimate cell derived from monocyte/macrophage. The erosive function of osteoclasts is that they have to adhere the bone matrix and migrate along it, in which adhesive cytoskeleton recombination of osteoclast is essential. In that, the podosome is a membrane binding microdomain organelle, based on dynamic actin, which forms a cytoskeleton superstructure connected with the plasma membrane. Otherwise, as the main adhesive protein, integrin regulates the formation of podosome and cytoskeleton, which collaborates with the various molecules including: c-Cbl, p130Cas, c-Src and Pyk2, through several signalling cascades cross talking, including: M-CSF and RANKL. In our current study, we discuss the role of integrin and associated molecules in osteoclastogenesis cytoskeletal, especially podosomes, regulation and relevant signalling cascades cross talking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号