首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported previously that salinity-induced elongation constraints in the expansion zone of maize leaves are associated with reduced reactive oxygen species (ROS) production and could be alleviated by the addition of ROS. The NaCl effect was salt-specific and not osmotic. This paper explores the causes for such reduction. The decrease in ROS levels under salinity was not accompanied by increases in soluble apoplastic antioxidant activities such as superoxide dismutase, peroxidases and ascorbate. In experimental systems devoid of cell walls (protoplasts and membrane fractions) superoxide anion (O(2)(-)) production was inhibited by 50 and 100 mM NaCl, 50 microM DPI, 10 mM EGTA, and 5mM verapamil, a Ca(2+) channel inhibitor. Inhibitory effects of NaCl and reduced Ca(2+) supply were also observed in in gel assessment of O(2)(-) -generating activity. The main activity band excised from the ND-PAGE was recognized by an antibody against the C-terminal portion of the tomato gp91(phox) homolog. These results indicate the *O(2)(-) -generating activity negatively affected by NaCl was compatible with that of plasma membrane NADPH oxidase.  相似文献   

2.
Wounded Medicago truncatula leaves produce a burst of O(2)(-) (phase I) between 1 and 15 min, then of O(2)(-) and H(2)O(2) (phase II) between 1 and 3 h. Our previous results suggest reactive oxygen species (ROS) may provide signals to mobilise early (6 h), apoplastic, wound-responsive proteins (WRPs). 2DE and MALDI-TOF/TOF were used to analyse how the suppression of ROS production at different time points by diphenyleneiodonium (DPI), affects the expression of WRPs. Rapid (≤3 min) DPI inhibition of phase I O(2)(-) production suppressed the differential regulation of 7 out of 19 WRPs, which were consequently classified as ROS-dependent WRPs. DPI inhibition of only phase II ROS production failed to suppress the wound regulation of 18 out of 19 WRPs, but led to the altered expression of 1 ROS-dependent WRP and 2 non-WRPs (Group B). The data indicates Group B proteins are alternatively targeted via the modulation of phase II ROS production. This reinforces an important role for phase I O(2)(-) signalling in the early wound response, but indicates that this response is partly regulated by phase II of the oxidative burst. This data provides an informed basis for further proteomic studies aimed at identifying early activated O(2)(-) signalling components in wounded Medicago.  相似文献   

3.
Reactive oxygen species (ROS) in the apoplast of cells in the growing zone of grass leaves are required for elongation growth. This work evaluates whether salinity-induced reductions in leaf elongation are related to altered ROS production. Studies were performed in actively growing segments (SEZ) obtained from leaf three of 14-d-old maize (Zea mays L.) seedlings gradually salinized to 150 mM NaCl. Salinity reduced elongation rates and the length of the leaf growth zone. When SEZ obtained from the elongation zone of salinized plants (SEZs) were incubated in 100 mM NaCl, the concentration where growth inhibition was approximately 50%, O2*- production, measured as NBT formazan staining, was lower in these than in similar segments obtained from control plants. The NaCl effect was salt-specific, and not osmotic, as incubation in 200 mM sorbitol did not reduce formazan staining intensity. SEZs elongation rates were higher in 200 mM sorbitol than in 100 mM NaCl, but the difference could be cancelled by scavenging or inhibiting O2*- production with 10 mM MgCl2 or 200 microM diphenylene iodonium, respectively. The actual ROS believed to stimulate growth is *OH, a product of O2*- metabolism in the apoplast. SEZ(s) elongation in 100 mM NaCl was stimulated by a *OH-generating medium. Fusicoccin, an ATPase stimulant, and acetate buffer pH 4, could also enhance elongation in these segments, although both failed to increase ROS activity. These results show that decreased ROS production contributes to the salinity-associated reduction in grass leaf elongation, acting through a mechanism not associated with pH changes.  相似文献   

4.
5.
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-induced apoptosis. In this study, we showed that TNF-alpha/CHX-induced ROS production and hydrogen peroxide (H(2)O(2))-induced oxidative stress increased apoptosis. Inhibition of Rac1 by a specific inhibitor NSC23766 prevented TNF-alpha-induced ROS production. The antioxidant, N-acetylcysteine (NAC), or rotenone (Rot), the mitochondrial electron transport chain inhibitor, attenuated mitochondrial ROS production and apoptosis. Rot also prevented JNK1/2 activation during apoptosis. Inhibition of Rac1 by expression of dominant negative Rac1 decreased TNF-alpha-induced mitochondrial ROS production. Moreover, TNF-alpha-induced cytosolic ROS production was inhibited by Rac1 inhibition, diphenyleneiodonium (DPI, an inhibitor of NADPH oxidase), and NAC. In addition, DPI inhibited TNF-alpha-induced apoptosis as judged by morphological changes, DNA fragmentation, and JNK1/2 activation. Mitochondrial membrane potential change is Rac1 or cytosolic ROS dependent. Lastly, all ROS inhibitors inhibited caspase-3 activity. Thus these results indicate that TNF-alpha-induced apoptosis requires Rac1-dependent ROS production in intestinal epithelial cells.  相似文献   

6.
NOX4 is an enigmatic member of the NOX (NADPH oxidase) family of ROS (reactive oxygen species)-generating NADPH oxidases. NOX4 has a wide tissue distribution, but the physiological function and activation mechanisms are largely unknown, and its pharmacology is poorly understood. We have generated cell lines expressing NOX4 upon tetracycline induction. Tetracycline induced a rapid increase in NOX4 mRNA (1 h) followed closely (2 h) by a release of ROS. Upon tetracycline withdrawal, NOX4 mRNA levels and ROS release decreased rapidly (<24 h). In membrane preparations, NOX4 activity was selective for NADPH over NADH and did not require the addition of cytosol. The pharmacological profile of NOX4 was distinct from other NOX isoforms: DPI (diphenyleneiodonium chloride) and thioridazine inhibited the enzyme efficiently, whereas apocynin and gliotoxin did not (IC(50)>100 muM). The pattern of NOX4-dependent ROS generation was unique: (i) ROS release upon NOX4 induction was spontaneous without need for a stimulus, and (ii) the type of ROS released from NOX4-expressing cells was H(2)O(2), whereas superoxide (O(2)(-)) was almost undetectable. Probes that allow detection of intracellular O(2)(-) generation yielded differential results: DHE (dihydroethidium) fluorescence and ACP (1-acetoxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine) ESR measurements did not detect any NOX4 signal, whereas a robust signal was observed with NBT. Thus NOX4 probably generates O(2)(-) within an intracellular compartment that is accessible to NBT (Nitro Blue Tetrazolium), but not to DHE or ACP. In conclusion, NOX4 has a distinct pharmacology and pattern of ROS generation. The close correlation between NOX4 mRNA and ROS generation might hint towards a function as an inducible NOX isoform.  相似文献   

7.
8.
Neurological injury and Parkinson disease (PD) are often associated with the increase of nitric oxide (NO) and free radicals from resident glial cells in the brain. In vitro, exposure to L-3-4-dihydroxyphenylalanine (L-DOPA), one of the main therapeutic agents for the treatment of PD, can lead to neurotoxicity. In this study, lipopolysaccharide (LPS) and interferon-gamma (IFN-g) were used to stimulate C6 glioma cells in the presence of varying concentrations of L-DOPA (1 microM-1 mM). The results indicated a slight augmentation of NO(2)(-) production at low concentrations of L-DOPA (<100 microM) and complete inhibition of NO(2)(-) at higher concentrations (500 microM, 1 mM), (p < 0.001). Western blot analysis corroborated that L-DOPA effects on iNOS was at the level of its protein expression. Total reactive oxygen species (ROS) were detected using 2', 7'-dichlorofluorescein diacetate fluorescence dye (2', 7'-DCFC) and there was an increase of intensity with the increasing concentrations of L-DOPA. Furthermore, large amounts of superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were generated from the autoxidation of L-DOPA. C6 cells contain high levels of catalase, with inadequate levels of superoxide dismutase (SOD); therefore, there was an accumulation of O(2)(-), tantamount to elevation in 2'7'-DCFC intensity. Simultaneous accumulation of O(2)(-) and NO(2)(-) would propel formation of peroxynitrite (ONOO-). SOD completely attenuated the autoxidation of L-DOPA and significantly reversed the inhibitory effects on iNOS at high concentrations. The data obtained confirmed that the observed effects on iNOS were not due to the activation of the D(1) or beta1 adrenergic receptors by L-DOPA. It was concluded from this study that L-DOPA contributed to the modulation of iNOS and to the increase of O(2)(-) production in the stimulated glioma cells in vitro.  相似文献   

9.
In the present study, the effect of two particular reactive oxygen species (ROS), superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) on buffalo (Bubalus bubalis) sperm capacitation and associated protein tyrosine phosphorylation was studied. Ejaculated buffalo spermatozoa were suspended in sp-TALP medium at 50 x 10(6)/mL and incubated at 38.5 degrees C for 6h with or without heparin (10(g/mL; a positive control), or xanthine (X; 0.5mM)-xanthine oxidase (XO; 0.05 U/mL)-catalase (C; 2100 U/mL) system that generates O(2)(-) or NADPH (5mM) that stimulates the endogenous O(2)(-) production or H(2)O(2) (50 microM). The specific effect of O(2)(-), H(2)O(2) and NADPH on buffalo sperm capacitation and protein tyrosine phosphorylation was assessed by the addition of superoxide dismutase (SOD), catalase and diphenylene iodonium (DPI), respectively, to the incubation medium. Each of X+XO+C system, NADPH and H(2)O(2) induced a significantly higher percentage (P<0.05) of capacitation in buffalo spermatozoa compared to control. However, DPI inhibited this NADPH-induced capacitation and protein tyrosine phosphorylation and suggested for existence of an oxidase in buffalo spermatozoa. Using immunoblotting technique, at least seven tyrosine-phosphorylated proteins (20, 32, 38, 45, 49, 78 and 95 kDa) were detected in capacitated buffalo spermatozoa. Out of these, the tyrosine phosphorylation of p95 was induced extensively by both O(2)(-) as well as exogenous source of H(2)O(2) and using specific activators and inhibitors of signaling pathways, it was found this induction was regulated through a cAMP-dependent PKA pathway. Further, immunofluorescent localization study revealed that these ROS-induced tyrosine-phosphorylated proteins are mostly distributed in the midpiece and principal piece regions of the flagellum of capacitated spermatozoa and suggested for increased molecular activity in flagellum during capacitation. Thus, the study revealed that both O(2)(-) and H(2)O(2) promote capacitation and associated protein tyrosine phosphorylation in buffalo spermatozoa and unlike human and bovine, a different subset of sperm proteins were tyrosine-phosphorylated during heparin- and ROS-induced capacitation and regulation of these ROS-induced processes were mediated through a cAMP/PKA signaling pathway.  相似文献   

10.
以2’,7’-二氯二氢荧光素二乙酯(dichlorofluorescein diacetate,H2DCF-DA)为荧光探针孵育拟南芥叶表皮条,利用荧光光谱和激光共聚焦扫描显微技术,对高辐照蓝光诱导下叶肉细胞活性氧(reactive oxygen spe-cies,ROS)的生成,进行了分子识别和亚细胞定位检测。结果表明:植物细胞在蓝光诱导下,可以产生大量的ROS。过氧化氢酶清除实验表明:高辐照蓝光诱导产生的ROS,主要成分是H2O2,并且主要定位在叶绿体和细胞膜上。  相似文献   

11.
Short-term treatment (30min) of barley roots with a low 10μM Cd concentration induced significant H(2)O(2) production in the elongation and differentiation zone of the root tip 3h after treatment. This elevated H(2)O(2) production was accompanied by root growth inhibition and probably invoked root swelling in the elongation zone of the root tip. By contrast, a high 60μM Cd concentration induced robust H(2)O(2) production in the elongation zone of the root tip already 1h after short-term treatment. This robust H(2)O(2) generation caused extensive cell death 6h after short-term treatment. Similarly to low Cd concentration, exogenously applied H(2)O(2) caused marked root growth inhibition, which at lower H(2)O(2) concentration was accompanied by root swelling. The auxin signaling inhibitor p-chlorophenoxyisobutyric acid effectively inhibited 10μM Cd-induced root growth inhibition, H(2)O(2) production and root swelling, but was ineffective in the alleviation of 60μM Cd-induced root growth inhibition and H(2)O(2) production. Our results demonstrated that Cd-induced mild oxidative stress caused root growth inhibition, likely trough the rapid reorientation of cell growth in which a crucial role was played by IAA signaling in the root tip. Strong oxidative stress induced by high Cd concentration caused extensive cell death in the elongation zone of the root tip, resulting in the cessation of root growth or even in root death.  相似文献   

12.
Zhang X  Zhang L  Dong F  Gao J  Galbraith DW  Song CP 《Plant physiology》2001,126(4):1438-1448
One of the most important functions of the plant hormone abscisic acid (ABA) is to induce stomatal closure by reducing the turgor of guard cells under water deficit. Under environmental stresses, hydrogen peroxide (H(2)O(2)), an active oxygen species, is widely generated in many biological systems. Here, using an epidermal strip bioassay and laser-scanning confocal microscopy, we provide evidence that H(2)O(2) may function as an intermediate in ABA signaling in Vicia faba guard cells. H(2)O(2) inhibited induced closure of stomata, and this effect was reversed by ascorbic acid at concentrations lower than 10(-5) M. Further, ABA-induced stomatal closure also was abolished partly by addition of exogenous catalase (CAT) and diphenylene iodonium (DPI), which are an H(2)O(2) scavenger and an NADPH oxidase inhibitor, respectively. Time course experiments of single-cell assays based on the fluorescent probe dichlorofluorescein showed that the generation of H(2)O(2) was dependent on ABA concentration and an increase in the fluorescence intensity of the chloroplast occurred significantly earlier than within the other regions of guard cells. The ABA-induced change in fluorescence intensity in guard cells was abolished by the application of CAT and DPI. In addition, ABA microinjected into guard cells markedly induced H(2)O(2) production, which preceded stomatal closure. These effects were abolished by CAT or DPI micro-injection. Our results suggest that guard cells treated with ABA may close the stomata via a pathway with H(2)O(2) production involved, and H(2)O(2) may be an intermediate in ABA signaling.  相似文献   

13.
Vitamin D metabolites and its less-calcemic analogs (vitamin D compounds) are beneficial for bone and modulate cell growth and energy metabolism. We now analyze whether 25(OH)D(3) (25D), 1,25(OH)(2)D(3) (1,25D), 24,25(OH)(2)D(3) (24,25D), JKF1624F(2)-2 (JKF) or QW1624F(2)-2 (QW) regulate lipooxygenase (LO) mRNA expression and its products; hydroxyl-eicosatetraenoic acid (12 and 15HETE) formation, as well as reactive oxygen species (ROS) production in human bone cell line (SaOS2) and their interplay with modulation of cell proliferation and energy metabolism. All compounds except 25D increased 12LO mRNA expression and modulated 12 and 15HETE production whereas ROS production was increased by all compounds, and inhibited by NADPH oxidase inhibitors diphenyleneiodonium (DPI) and N-acetylcysteine (NAc). Baicaleine (baic) the inhibitor of 12 and 15LO activity blocked only slightly the stimulation of DNA synthesis by all compounds, whereas DPI inhibited almost completely the stimulation of DNA and CK by all compounds. Treatments of cells with 12 or 15HETE increased DNA synthesis and CK that were only slightly inhibited by DPI. These results indicate that vitamin D compounds increased oxidative stress in osteoblasts in part via induction of LO expression and activity. The increased ROS production mediates partially elevated cell proliferation and energy metabolism, whereas the LO mediation is not essential. This new feature of vitamin D compounds is mediated by intracellular and/or membranal binding sites and its potential hazard could lead to damage due to increased lipid oxidation, although the transient mediation of ROS in cell proliferation is beneficial to bone growth in a yet unknown mechanism.  相似文献   

14.
15.
In endothelium, reoxygenation after hypoxia (H/R) has been shown to induce production of reactive oxygen species (ROS) by complex III of the mitochondrial respiratory chain. The purpose of the present study was to test the involvement of ceramide in this phenomenon. Human umbilical vein endothelial cells underwent 2 h of hypoxia (PO2, approximately 20 mmHg) without glucose and 1 h of reoxygenation (PO2, approximately 120 mmHg) with glucose. ROS production was measured by the fluorescent marker 2',7'-dichlorodihydrofluorescein diacetate, and cell death by propidium iodide. We showed that 1) after 1 h of reoxygenation, fluorescence had risen and that ROS production was inhibited by desipramine, an inhibitor of sphingomyelinase, an enzyme responsible for ceramide production (126 +/- 7% vs. 48 +/- 12%, P < 0.05); 2) administration of ceramide (N-acetylsphingosine) per se (i.e., in the absence of H/R) induced ROS production (65 +/- 3%), which was inhibited by complex III inhibitor: antimycin A (24 +/- 3%, P < 0.0001), or stigmatellin (31 +/- 2%, P < 0.0001); 3) hypoxia/reoxygenation-induced ROS production was not affected by either ceramide-activated protein kinase inhibitor dimethyl aminopurine or mitochondrial permeability transition inhibitor cyclosporin A but was significantly inhibited by the antiapoptotic protein Bcl-2 (82 +/- 8%, P < 0.05); 4) ceramide-induced ROS production was also inhibited by Bcl-2 (41 +/- 4%, P < 0.0001). These results demonstrate that in endothelial cells submitted to hypoxia and glucose depletion followed by reoxygenation with glucose, the pathway implicated in mitochondrial complex III ROS production is ceramide dependent and is decreased by the antiapoptotic protein Bcl-2.  相似文献   

16.
In the present study, the possible involvement of reactive oxygen species (ROS) in prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis of Bombyx mori prothoracic glands (PGs) was investigated. Results showed that PTTH treatment resulted in a rapidly transient increase in the intracellular ROS concentration, as measured using 2′,7′-dichlorofluorescin diacetate (DCFDA), an oxidation-sensitive fluorescent probe. The antioxidant, N-acetylcysteine (NAC), abolished PTTH-induced increase in fluorescence. Furthermore, PTTH-induced ROS production was partially inhibited by the NAD(P)H oxidase inhibitor, apocynin, indicating that NAD(P)H oxidase is one of the sources for PTTH-stimulated ROS production. Four mitochondrial oxidative phosphorylation inhibitors (rotenone, antimycin A, the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), and diphenylene iodonium (DPI)) significantly attenuated ROS production induced by PTTH. These data suggest that the activity of complexes I and III in the electron transport chain and the mitochondrial inner membrane potential (ΔΨ) contribute to PTTH-stimulated ROS production. In addition, PTTH-stimulated ecdysteroidogenesis was greatly inhibited by treatment with either NAC or mitochondrial inhibitors (rotenone, antimycin A, FCCP, and DPI), but not with apocynin. These results indicate that mitochondria-derived, but not membrane NAD(P)H oxidase-mediated ROS signaling, is involved in PTTH-stimulated ecdysteroidogenesis of PGs in B. mori.  相似文献   

17.
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH oxidase. Since it acts as a potent inhibitor in studies with neutrophils and macrophages, no inhibitory effect can often be found in non-phagocyte cells. In our experiments, apocynin even stimulated reactive oxygen species (ROS) production by vascular fibroblasts. Even when added to macrophages, apocynin initially caused an increase in ROS production. The inhibition of ROS formation followed, suggesting that in the presence of leukocyte myeloperoxidase and hydrogen peroxide, apocynin is converted to another compound. Apocynin pre-activated with H2O2 and horseradish peroxidase (HRP) inhibited ROS production immediately. In non-phagocytes, apocynin stimulated ROS production and no inhibition was observed even after 60 min. Apocynin treated with H2O2 and HRP, however, decreased ROS production in the same manner as in macrophages. The stimulatory effect on ROS production can be abolished by tiron and superoxide dismutase (SOD), suggesting that superoxide was the produced species. The effect of apocynin was inhibited by diphenylene iodinium (DPI), a non-scavenging NADPH oxidase inhibitor. It can be summarized that apocynin stimulates cell superoxide production. In the presence of peroxidase and hydrogen peroxide, however, it is converted into another compound that acts as an inhibitor of superoxide production. It strongly suggests that under conditions in vivo, apocynin can have opposite effects on phagocytes and non-phagocyte cells. It acts as an inhibitor of phagocyte NADPH oxidase but also as a ROS production stimulator in non-phagocyte cells.  相似文献   

18.
We have previously demonstrated the participation of reactive oxygen species (ROS) in the positive inotropic effect of a physiological concentration of Angiotensin II (Ang II, 1 nM). The objective of the present work was to evaluate the role and source of ROS generation in the positive inotropic effect produced by an equipotent concentration of endothelin-1 (ET-1, 0.4 nM). Isolated cat ventricular myocytes were used to measure sarcomere shortening with a video-camera, superoxide anion (()O(2)(-)) with chemiluminescence, and ROS production and intracellular pH (pH(i)) with epifluorescence. The ET-1-induced positive inotropic effect (40.4+/-3.1%, n=10, p<0.05) was associated to an increase in ROS production (105+/-29 fluorescence units above control, n=6, p<0.05). ET-1 also induced an increase in ()O(2)(-) production that was inhibited by the NADPH oxidase blocker, apocynin, and by the blockers of mitochondrial ATP-sensitive K(+) channels (mK(ATP)), glibenclamide and 5 hydroxydecanoic acid. The ET-1-induced positive inotropic effect was inhibited by apocynin (0.3 mM; 6.3+/-6.6%, n=13), glibenclamide (50 muM; 8.8+/-3.5%, n=6), 5 hydroxydecanoic acid (500 muM; 14.1+/-8.1, n=9), and by scavenging ROS with MPG (2 mM; 0.92+/-5.6%, n=8). ET-1 enhanced proton efflux (J(H)) carried by the Na(+)/H(+) exchanger (NHE) after an acid load, effect that was blocked by MPG. Consistently, the ET-induced positive inotropic effect was also inhibited by the NHE selective blocker HOE642 (5 muM; 9.37+/-6.07%, n=7). The data show that the effect of a concentration of ET-1 that induces an increase in contractility of about 40% is totally mediated by an intracellular pathway triggered by mitochondrial ROS formation and stimulation of the NHE.  相似文献   

19.
The matrix fibronectin protein plays an important role in vascular remodeling. Notoginsenoside R1 is the main ingredient with cardiovascular activity in Panax notoginseng; however, its molecular mechanisms are poorly understood. We report that notoginsenoside R1 significantly decreased TNF-alpha-induced activation of fibronectin mRNA, protein levels, and secretion in human arterial smooth muscle cells (HASMCs) in a dose-dependent manner. Notoginsenoside R1 scavenged hydrogen peroxide (H2O2) in a dose-dependent manner in the test tube. TNF-alpha significantly increased intracellular ROS generation and then ERK activation, which was blocked by notoginsenoside R1 or DPI and apocynin, inhibitors of NADPH oxidase, or the antioxidant NAC. Our data demonstrated that TNF-alpha-induced upregulation of fibronectin mRNA and protein levels occurs via activation of ROS/ERK, which was prevented by treatment with notoginsenoside R1, DPI, apocynin, NAC, or MAPK/ERK inhibitors PD098059 and U0126. Notoginsenoside R1 significantly inhibited H2O2-induced upregulation of fibronectin mRNA and protein levels and secretion; it also significantly inhibited TNF-alpha and H2O2-induced migration. These results suggest that notoginsenoside R1 inhibits TNF-alpha-induced ERK activation and subsequent fibronectin overexpression and migration in HASMCs by suppressing NADPH oxidase-mediated ROS generation and directly scavenging ROS.  相似文献   

20.
There is increasing evidence that intracellular reactive oxygen species (ROS) play a role in cell signaling and that the NADPH oxidase is a major source of ROS in endothelial cells. At low concentrations, agonist stimulation of membrane receptors generates intracellular ROS and repetitive oscillations of intracellular Ca(2+) concentration ([Ca(2+)](i)) in human endothelial cells. The present study was performed to examine whether ROS are important in the generation or maintenance of [Ca(2+)](i) oscillations in human aortic endothelial cells (HAEC) stimulated by histamine. Histamine (1 microm) increased the fluorescence of 2',7'-dihydrodichlorofluorescin diacetate in HAEC, an indicator of ROS production. This was partially inhibited by the NADPH oxidase inhibitor diphenyleneiodonium (DPI, 10 microm), by the farnesyltransferase inhibitor H-Ampamb-Phe-Met-OH (2 microm), and in HAEC transiently expressing Rac1(N17), a dominant negative allele of the protein Rac1, which is essential for NADPH oxidase activity. In indo 1-loaded HAEC, 1 microm histamine triggered [Ca(2+)](i) oscillations that were blocked by DPI or H-Ampamb-Phe-Met-OH. Histamine-stimulated [Ca(2+)](i) oscillations were not observed in HAEC lacking functional Rac1 protein but were observed when transfected cells were simultaneously exposed to a low concentration of hydrogen peroxide (10 microm), which by itself did not alter either [Ca(2+)](i) or levels of inositol 1,4,5-trisphosphate (Ins-1,4,5-P(3)). Thus, histamine generates ROS in HAEC at least partially via NADPH oxidase activation. NADPH oxidase-derived ROS are critical to the generation of [Ca(2+)](i) oscillations in HAEC during histamine stimulation, perhaps by increasing the sensitivity of the endoplasmic reticulum to Ins-1,4,5-P(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号