首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basal retinal neurons of the marine mollusc Bulla gouldiana continue to express a circadian modulation of their membrane conductance for at least two cycles in cell culture. Voltage-dependent currents of these pacemaker cells were recorded using the whole-cell perforated patch-clamp technique to characterize outward currents and investigate their putative circadian modulation. Three components of the outward potassium current were identified. A transient outward current (IA) was activated after depolarization from holding potentials greater than -30 mV, inactivated with a time constant of 50 ms, and partially blocked by 4-aminopyridine (1-5 mM). A Ca(2+)-dependent potassium current (IK(Ca)) was activated by depolarization to potentials more positive than -10 mV and was blocked by removing Ca2+ from the bath or by applying the Ca2+ channel blockers Cd2+ (0.1-0.2 mM) and Ni2+ (1-5 mM). A sustained Ca(2+)-independent current component including the delayed rectifier current (IK) was recorded at potentials positive to -20 mV in the absence of extracellular Na+ and Ca2+ and was partially blocked by tetraethylammonium chloride (TEA, 30mM). Whole-cell currents recorded before and after the projected dawn and normalized to the cell capacitance revealed a circadian modulation of the delayed rectifier current (IK). However, the IA and IK(Ca) currents were not affected by the circadian pacemaker.  相似文献   

2.
Membrane ionic currents of the GH3 pituitary cell line have been studied using voltage clamp techniques. The inward current is completely blocked by cobalt (Co2+) ions and appeared to be carried by calcium ions. Three outward currents can be differentiated on the ground of kinetics and pharmacological studies: a transient current blocked by 4-aminopyridine (4 AP) and two delayed outward current which are voltage dependent. One is blocked by tetraethylammonium (TEA); the second is blocked by Co2+ and represents a calcium-activated potassium conductance.  相似文献   

3.
The effects of tetraethylammonium (TEA) on the delayed K+ current and on the Ca2+-activated K+ current of the Aplysia pacemaker neurons R-15 and L-6 were studied. The delayed outward K+ current was measured in Ca2+-free ASW containing tetrodotoxin (TTX), using brief depolarizing clamp pulses. External TEA blocks the delayed K+ current reversibly in a dose-dependent manner. The experimental results are well fitted with a Michaelis-Menten expression, assuming a one-to-one reaction between TEA and a receptor site, with an apparent dissociation constant of 6.0 mM. The block depends on membrane voltage and is reduced at positive membrane potentials. The Ca2+-activated K+ current was measured in Ca2+-free artificial seawater (ASW) containing TTX, using internal Ca2+ ion injection to directly activate the K+ conductance. External TEA and a number of other quaternary ammonium ions block the Ca2+-activated K+ current reversibly in a dose-dependent manner. TEA is the most effective blocker, with an apparent dissociation constant, for a one-to-one reaction with a receptor site, of 0.4 mM. The block decreases with depolarization. The Ca2+-activated K+ current was also measured after intracellular iontophoretic TEA injection. Internal TEA blocks the Ca2+-activated K+ current (but the block is only apparent at positive membrane potentials), is increased by depolarization, and is irreversible. The effects of external and internal TEA can be seen in measurements of the total outward K+ current at different membrane potentials in normal ASW.  相似文献   

4.
After the offset of illumination, barnacle photoreceptors undergo a large hyperpolarization that lasts seconds or minutes. We studied the mechanisms that generate this afterpotential by recording afterpotentials intracellularly from the medial photoreceptors of the giant barnacle Balanus nubilus. The afterpotential has two components with different time-courses: (a) an earlier component due to an increase in conductance to K+ that is not blocked by extracellular tetraethylammonium ion (TEA+) or 3-aminopyridine (3-AP) and (b) a later component that is sensitive to cardiac glycosides and that requires extracellular K+, suggesting that it is due to an electrogenic Na+ pump. The K+ conductance component increases in amplitude with increasing CA++ concentration and is inhibited by extracellular Co++; the Co++ inhibition can be overcome by increasing the Ca++ concentration. Thus, the K+ conductance component is Ca++ dependent. An afterpotential similar to that evoked by a brief flash of light is generated by depolarization with current in the dark and by eliciting Ca++ action potentials in the presence of TEA+ in the soma, axon, or terminal regions of the photoreceptor. The action potential undershoot is generated by an increase in conductance to K+ that is resistant to TEA+ and 3-AP and inhibited by Co++. The similarity in time-course and pharmacology of the hyperpolarization afterpotentials elicited by (a) a brief flash of light, (b) depolarization with current, and (c) an action potential indicates that Ca++-dependent K+ channels throughout the photoreceptor membrane are responsible for all three hyperpolarizing events.  相似文献   

5.
Voltage-dependent membrane currents were investigated in enzymatically dissociated photoreceptors of Lima scabra using the whole-cell clamp technique. Depolarizing steps to voltages more positive than -10 mV elicit a transient inward current followed by a delayed, sustained outward current. The outward current is insensitive to replacement of a large fraction of extracellular Cl- with the impermeant anion glucuronate. Superfusion with tetraethylammonium and 4-aminopyridine reversibly abolishes the outward current, and internal perfusion with cesium also suppresses it, indicating that it is mediated by potassium channels. Isolation of the inward current reveals a fast activation kinetics, the peak amplitude occurring as early as 4-5 ms after stimulus onset, and a relatively rapid, though incomplete inactivation. Within the range of voltages examined, spanning up to +90 mV, reversal was not observed. The inward current is not sensitive to tetrodotoxin at concentrations up to 10 microM, and survives replacement of extracellular Na with tetramethylammonium. On the other hand, it is completely eliminated by calcium removal from the perfusing solution, and it is partially blocked by submillimolar concentrations of cadmium, suggesting that it is entirely due to voltage-dependent calcium channels. Analysis of the kinetics and voltage dependence of the isolated calcium current indicates the presence of two components, possibly reflecting the existence of separate populations of channels. Barium and strontium can pass through these channels, though less easily than calcium. Both the activation and the inactivation become significantly more sluggish when these ions serve as the charge carrier. A large fraction of the outward current is activated by preceding calcium influx. Suppression of this calcium-dependent potassium current shows a small residual component resembling the delayed rectifier. In addition, a transient outward current sensitive to 4-aminopyridine (Ia) could also be identified. The relevance of such conductance mechanisms in the generation of the light response in Lima photoreceptors is discussed.  相似文献   

6.
Two types of potassium current in rabbit cultured Schwann cells   总被引:1,自引:0,他引:1  
Voltage-gated outward currents were studied in rabbit cultured Schwann cells with the 'whole-cell' configuration of the patch-clamp method. Four components of such currents were identified. The first, which was abolished by replacement of the external chloride ions by the large impermeant anion gluconate, was identified as a chloride current. The second and third were identified as potassium currents. One type of potassium current was reduced substantially by either 4-aminopyridine (4-AP) or tetraethylammonium ion (TEA). Its sensitivity to blocking by 4-AP was highly voltage-dependent: the equilibrium dissociation constant (K) was threefold greater when measured at +10 mV than when measured at -40 mV (where it was about 80 microM). The second type of potassium current was relatively insensitive to 4-AP, but was blocked by TEA. The TEA sensitivity of the two types of potassium currents was similar and displayed no obvious voltage-dependence (K approximately 200 microM). The fourth component of current was not reduced by 4-AP or TEA at concentrations less than 10 mM. Whether or not this last component is a potassium current is unclear.  相似文献   

7.
The voltage-dependent K (KV) channel in Daudi human B lymphoma cells was characterized by using patch-clamp techniques. Whole-cell voltage-clamp experiments demonstrated that cell membrane depolarization induced a transient (time-dependent) outward current followed by a steady-state (time-independent) component. The time-dependent current resembled behavior of the type n channel, such as use dependence and a unique blockade by tetraethylammonium (TEA). Both time-dependent and time-independent currents were blocked by quinine with a similar IC50 (14.2 mM and 12.6 mM). Treatment with antisense oligonucleotide of human Kv1.3 gene significantly reduced both currents by 80%. Single-channel experiments showed that only one type of KV channel was recorded with a unitary conductance of approximately 19 pS. Consistent with whole-cell recordings, the channel activity in cell-attached patches remained in response to prolonged depolarization, and the remaining channel activity was blocked by quinine, but not TEA. Channel activity was scarcely seen in cell-attached patches after antisense treatment. Whole-cell current-clamp data showed that TEA, which blocks only the time-dependent current, caused a slight decrease in the membrane potential. In contrast, quinine and antisense, which block both time-dependent and -independent currents, strongly reduced the membrane potential. These data together suggest that the KV channel in Daudi cells does not completely inactivate and that the remaining channel activity due to this incomplete inactivation appears to be primarily responsible for maintaining the membrane potential.  相似文献   

8.
Intracellular perfusion technique has been applied to the muscle fibers of the barnacle species, Balanus nubilus. In these fibers, generation and the form of the calcium spike was governed by the frequency of stimulation and intra- and extracellular calcium concentrations. Voltage-clamp experiments showed that the magnitude of the potassium outward current was controlled by the intracellular calcium concentration whose increase, nearly 10(3)-fold, raised the resting membrane conductance and the outward potassium current. On the other hand, application of 10 mM zinc ions inside the muscle fiber had no effect on either the resting potential or the outward potassium current but suppressed the early inward calcium current. Similarly, the inward calcium current was decreased by low concentration of sodium ions in the extracellular fluid only when its ionic strength was made low by substituting sucrose for the sodium salt. Measurement of outward current with the muscle fiber in calcium-free ASW solution and intracellularly perfused with several cationic solutions established the selectivity sequence TEA less than Cs less than Li less than Tris less than Rb less than Na less than K for the potassium channel.  相似文献   

9.
The decline of calcium inward currents evoked by a long-lasting membrane depolarization was studied on isolated snail neurons internally perfused with a K+-free solution. Two exponential components superimposed on a steady inward current could be distinguished, a slow decline with a time constant of several hundreds of milliseconds, observed at all the testing potentials used, and a fast one with a time constant of several dozens of milliseconds, which appeared at depolarizations to about -10 mV and above. When the calcium current was blocked by extracellular Cd2+ or verapamil, an outward current could be recorded at the same depolarizations. Subtraction of the latter current from the total current, recorded prior to the blockage, largely reduced the fast component of the decline of the total current. An increase in pHi from 7.3 to 8.1 led to the elimination of both the outward current and the fast component of the calcium current decline. The slow component remained practically unchanged, with its rate depending upon the current amplitude. It was slowed following intracellular administration of EDTA, and after equimolar substitution of Ba2+ for Ca2+. It is concluded that the fast component of the calcium inward current decline is mainly due to the superposition of the outward current produced by low selective channels. Only the slow component represents an actual decline of the inward current through calcium channels; it is due to ion accumulation at the inner surface of the cell membrane.  相似文献   

10.
Four ionic current components were identified in the total membrane current recorded under voltage clamp conditions from the muscle membrane of the crayfish (Astacus fluviatilis). The early inward current component is dependent on the presence of Ca2+ ions, disappears in Ca2+ free solutions and is insensitive to variaton of external Na+ ions and to tetrodotoxin. The outward current consists of at least three components, an early, a late and a slow outward current. The outward currents are sensitive to TEA and their reversal potentials differ. The early potassium current may be separated in a proportion of fibres by a hump from the later potassium current. An insufficient space clamp as a cause of the hump was excluded by comparing the size of the clamped membrane area with the distribution of large membrane clefts in the fibre. The early outward current is critically dependent on the presence of Ca2+ ions and is relatively more sensitive to TEA ions and to conditioning depolarisation than the late outward current.  相似文献   

11.
In voltage clamp studies of cardiac Purkinje fibers, a large early outward current is consistently observed during depolarizations to voltages more positive than -20 mV. After the outward peak of the current, the total membrane current declines slowly. Dudel et al. (1967. Pfluegers Arch. Eur. J. Physiol. 294:197--212) reduced the extracellular chloride concentration and found that the outward peak and the decline of the current were abolished. They concluded that the total membrane current at these voltages was largely determined by a time- and voltage-dependent change in the membrane chloride conductance. We reinvestigated the chloride sensitivity of this current, taking care to minimize possible sources of error. When the extracellular chloride concentration was reduced to 8.6% of control, the principal effect was a 20% decrease in the peak amplitude of the outward current. This implies that the membrane chloride conductance is not the major determinant of the total current at these voltages. The reversal potential of current tails obtained after a short conditioning depolarization was not changed by alterations in the extracellular chloride or potassium concentrations. We suspect that the tail currents contain both inward and outward components, and that the apparent reversal potential of the net tail current largely reflects the kinetics of the outward component, so that this experiment does not rule out potassium as a possible charge carrier. The possibility that potassium carries much of the early outward current was further investigated using tetraethylammonium, which blocks potassium currents in nerve and skeletal muscle. This drug substantially reduced the early outward current, which suggests that much of the early outward current is carried by potassium ions.  相似文献   

12.
Outward currents remaining after addition of 20–50 mM of tetraethylammonium (TEA) ions to the extracellular or intracellular solution, were investigated in perfused isolatedHelix neurons. After this addition, the inactivated inward current carried by potassium ions, the potential-dependent and kinetic characteristics of which differ from those of potassium outward currents suppressed by TEA, is preserved in the membrane. A component dependent on the inward calcium current was found in this TEA-resistant outward current; it was abolished by replacement of the extra-cellular calcium ions by magnesium ions, by blocking of the calcium channels by extracellular cadmium ions, and by their destruction by intracellular fluoride ions. Increasing the intracellular concentration of free calcium ions by perfusing the cell with solutions containing calcium-EGTA buffer potentiated the TEA-resistant component of the outward current, whereas removal of these ions with EGTA weakened it. It is concluded that a system of outward current channels whose activation depends on the presence of calcium ions near the inner surface of the membrane is present in the somatic membrane. It is suggested that to keep these channels capable of being activated, calcium ions must bind with the structures forming their internal opening.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 11, No. 5, pp. 460–468, September–October, 1979.  相似文献   

13.
Summary Plasmalemmal ionic currents from excitable motor cells of the primary pulvinus ofMimosa pudica were investigated by patch-clamp techniques. In almost all of the enzymatically isolated protoplasts, a delayed rectifier potassium current was activated by depolarization, while no currents were detected upon hyperpolarization. This sustained outward current was reversibly blocked by Ba and TEA and serves to repolarize the membrane potential. Outward single channel currents that very likely underly the macroscopic outward potassium current had an elementary conductance of 20 pS. In addition, in a few protoplasts held at hyperpolarized potentials, depolarization-activated transient inward currents were observed, and under current clamp, action potential-like responses were triggered by depolarizing current injections or by mechanical perturbations. The activation characteristics of both inward currents and spikes showed striking similarities compared to those of action potentialsin situ.  相似文献   

14.
Hair cells of the inner ear are endowed with different types of ionic channels. To characterize voltage- and ion-dependent channels in vestibular hair cells, experiments were performed in enzymatically isolated hair cells of frog semicircular canals by using the whole-cell configuration of the patch-clamp technique. A large outward current, identified as a K+ current, was recorded when 132 mM KCl were present in the pipette filling solution. It could be dissected pharmacologically into three different components. The first component, which was transient and selectively blocked by 10 mM external 4AP, is most likely an IA-type current. The second one, sensitive to 20 mM external TEA, might be a delayed rectifier K+ current, while the third component insensitive to TEA and showing faster activation time course has been interpreted as a K+ current of IKCa-type. After blocking the outward current by substituting Cs+ for K+ and adding 20 mM TEA to the internal solution, a sustained inward current, identified as a Ca++ current, could be recorded. This current did not inactivate, and was blocked by Cd++ more effectively than Ni++, thus suggesting the presence of Ca++ channels similar to the neuronal "L" channels. Since both K+ and Ca++ channels were recruited at potentials near the resting level, it is suggested that they are involved in the modulation of the resting as well as the evoked transmitter release from the basal pole of the hair cells.  相似文献   

15.
The effects of serotonin (5-HT) on membrane potential, membrane resistance, and select ionic currents were examined in large pedal neurons (LP1, LP3) of the mollusk Hermissenda. Calcium (Ca) action potentials were evoked in sodium-free artificial seawater containing tetramethylammonium, tetraethylammonium, and 4-aminopyridine (0-Na, 4-AP, TEA ASW). They failed at stimulation rates greater than 0.5/sec and were blocked by cadmium (Cd). Under voltage clamp the calcium current (ICa) responsible for them also failed with repeated stimulation. Thus, ICa inactivation accounts for refractoriness of the Ca action potential. The addition of 10 microM 5-HT to 0-Na, 4-AP, TEA ASW produced a slight depolarization and increased excitability and input resistance. Under voltage clamp the background current decreased. The voltage-dependent inward, late outward, and outward tail currents, sensitive to Cd, increased. ICa inactivation persisted. Under voltage clamp with Ca influx blocked by Cd, the addition of 10 microM 5-HT decreased the remaining current uniformly over membrane potentials of -10 to -100 mV. Thus, 5-HT reduces a background current that is active within the physiological range of the membrane potential, voltage insensitive, independent of Ca influx, noninactivating, and not blocked by 4-AP or TEA.  相似文献   

16.
Ionic currents in two strains of rat anterior pituitary tumor cells   总被引:14,自引:7,他引:7       下载免费PDF全文
The ionic conductance mechanisms underlying action potential behavior in GH3 and GH4/C1 rat pituitary tumor cell lines were identified and characterized using a patch electrode voltage-clamp technique. Voltage-dependent sodium, calcium, and potassium currents and calcium-activated potassium currents were present in the GH3 cells. GH4/C1 cells possess much less sodium current, less voltage-dependent potassium current, and comparable amounts of calcium current. Voltage-dependent inward sodium current activated and inactivated rapidly and was blocked by tetrodotoxin. A slower-activating voltage-dependent inward calcium current was blocked by cobalt, manganese, nickel, zinc, or cadmium. Barium was substituted for calcium as the inward current carrier. Calcium tail currents decay with two exponential components. The rate constant for the slower component is voltage dependent, while the faster rate constant is independent of voltage. An analysis of tail current envelopes under conditions of controlled ionic gradients suggests that much of the apparent decline of calcium currents arises from an opposing outward current of low cationic selectivity. Voltage-dependent outward potassium current activated rapidly and inactivated slowly. A second outward current, the calcium-activated potassium current, activated slowly and did not appear to reach steady state with 185-ms voltage pulses. This slowly activating outward current is sensitive to external cobalt and cadmium and to the internal concentration of calcium. Tetraethylammonium and 4-aminopyridine block the majority of these outward currents. Our studies reveal a variety of macroscopic ionic currents that could play a role in the initiation and short-term maintenance of hormone secretion, but suggest that sodium channels probably do not make a major contribution.  相似文献   

17.
Fluctuations of the Ca2+-activated K+ current were measured in identified Aplysia neurones under voltage clamp conditions. The amplitude of IK,Ca was manipulated by ionophoretic injections of Ca2+. At small amplitudes of Ca2+-activated outward currents the variance of the Ca2+-activated current fluctuations increases linearly with the mean outward current. The single-channel conductance estimated from the variance of the fluctuations and the mean outward current is 11 +/- 3 pS at -30 mV. Power spectra of the Ca2+-activated K+ current can be fitted by the sum of two Lorentzian components with corner frequencies of about 10 Hz and 120 Hz.  相似文献   

18.
Internal perfusion of tetraethylammonium ions (TEA) in squid axons produces a significant high frequency noise component. Although internal TEA suppresses the potassium conductance (G K) noise at relatively low frequencies, it induces high frequency noise which exceeds the intensity of the normal potassium and sodium noise. In addition, the induced noise is dependent on the presence of internal potassium ions (K+) suggesting that this source of noise arises from a modulation of the K+ conductance due to the blocking and unblocking of the K+ channel. The simplest model describing the TEA data is a two-step sequential pseudo-unimolecular reaction where TEA binds during an open conductance state. A unit channel conductance of 2 pS is estimated from the TEA data as well as noise induced by triethyldecylammonium (TEDA) ions. Thus, these data are consistent with the hypothesis that the channel is blocked whenever the quaternary ammonium ion binding site, located near or within the K+ channel, is occupied.  相似文献   

19.
用双微电极电压钳技术在巨孔匙(虫戚)(Megathura)未受精卵细胞膜上记录到多种离子流。主要有一种内向的两价离子流和几种钾离子流:包括钡离子激活的钾离子流,迅速激活又迅速失活的钾离子流(类似于I_A)和异常整流钾离子流。不同细胞的离子流大小不同。在一些卵可能会缺少其中某一种离子流。此外,还观察到浴槽溶液中氯和钠离子浓度改变对膜电位及膜电导的影响。  相似文献   

20.
We have investigated the electrical response of patched GH3 cells to Growth-Hormone Releasing-Hormone (GH-RH). GH-RH (100 nM) enhanced firing frequency of action potentials. This is accompanied by membrane depolarization (5-10 mV) and conductance increase. Voltage clamp studies reveal that GH-RH potentiates calcium inward currents and a calcium-dependent chloride current; transient outward current is diminished. These changes in membrane conductance account for the cytosolic free calcium rise shown by Indo-1 fluorescence measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号