首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crop yield and water use efficiency (WUE) in a wheat-maize double cropping system are influenced by short and uneven rainfalls in the North China Plain (NCP), A 2-year experiment was conducted to investigate the effects of irrigation on soil water balance, crop yield and WUE to improve irrigation use efficiency in the cropping system, Soil water depletion (~SWS) by crop generally decreased with the increase of irrigation and rainfall, while ASWS for the whole rotation was relatively stable among these irrigation treatments, High irrigations in wheat season increased initial soil moisture and ASWS for subsequent maize especially in the drought season, Initial soil water influenced mainly by the irrigation and rainfall in the previous crop season, is essential to high yield in such cropping systems, Grain yield decreased prior to evapotranspiraUon (ET) when ET reached about 300mm for wheat, while maize showed various WUEs with similar seasonal ET, For whole rotation, WUE declined when ET exceeded about 650 mm, These results indicate great potential for improving irrigation use efficiency in such wheat-maize cropping system in the NCP, Based on the present results, reasonable irrigation schedules according to different annual rainfall conditions are presented for such a cropping system.  相似文献   

2.
Crop yield and water use efficiency (WUE) in a wheat-maize double cropping system are influenced by short and uneven rainfalls in the North China Plain (NCP). A 2-year experiment was conducted to investigate the effects of irrigation on soil water balance, crop yield and WUE to improve irrigation use efficiency in the cropping system. Soil water depletion (△SWS)by crop generally decreased with the increase of irrigation and rainfall, while △SWS for the whole rotation was relatively stable among these irrigation treatments. High irrigations in wheat season increased initial soil moisture and △SWS for subsequent maize especially in the drought season. Initial soil water influenced mainly by the irrigation and rainfall in the previous crop season, is essential to high yield in such cropping systems. Grain yield decreased prior to evapotranspiration(ET) when ET reached about 300 mm for wheat, while maize showed various WUEs with similar seasonal ET. For whole rotation, WUE declined when ET exceeded about 650 mm. These results indicate great potential for improving irrigation use efficiency in such wheat-maize cropping system in the NCP. Based on the present results, reasonable irrigation schedules according to different annual rainfall conditions are presented for such a cropping system.  相似文献   

3.
Subsurface soil acidity reduces the growth of roots, which can potentially decrease crop yields. However, the magnitude of these yield reductions is dependent on interactions between factors such as the depth and severity of subsurface soil acidity, plant resistance to acidity, and water and nutrient availability. The Agricultural Production Systems Simulator (APSIM) was used to examine effects of these factors and their interactions on wheat yields in the Mediterranean climatic regions of Western Australia. The model was linked to historical meteorological data of the region (up to 90 different seasons), and was run for three locations representing low, medium and high rainfall zones and three constant but contrasting soil acidity profiles in a deep sandy soil with two wheat cultivars differing in aluminium (Al) resistance. The simulated results showed inherently high variability between seasons in grain yield, rooting depth and nitrogen leaching. Subsurface soil acidity could decrease average grain yields by up to 60%, particularly in soil profiles with acidity in deep layers. The adverse effects of acidity on wheat yields were greater in the high than the low rainfall zone. Amelioration of acidity by 75% in the entire profile or in the top 20-cm layer improved the yield of the Al-sensitive wheat cultivar. Growing Al-resistant wheat partially eliminated the negative effects of acidity on yields in soils with severe subsurface acidity and almost fully eliminated these negative effects in soils with moderate subsurface acidity. The yield benefits arising from growing Al-resistant wheat were greater than those from ameliorating acidity in the 0–20 cm layer by liming. Increasing nitrogen input increased yields of both Al-sensitive and Al-resistant wheat grown in acid soils in all the rainfall zones, but the yield increments were much greater in the high than the low rainfall zones. Applications of nitrogen fertilisers mitigate the effect of acidity on yields of Al-sensitive wheat in soils with shallow (10–40 cm) subsurface acidity. Furthermore, the improved yield by growing Al-resistant wheat and amelioration of acidity was correlated with increased rooting depth and was associated with decreased nitrogen leaching. Possible agronomic management options to combat the subsurface acidity problem are discussed.  相似文献   

4.
Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0–200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m3. Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE.  相似文献   

5.
Eight tonnes ha–1 of stubble were used to mulch spring wheat (Triticum aestivum) on a fine textured soil with the aim of controlling both transpiration and soil evaporation during the wet pre-anthesis phase to increase moisture supply during grain filling in the eastern wheatbelt of Western Australia. Mulching reduced leaf area per plant by reducing the culm number; consequently the green area index was reduced. Reduced culm number was associated with low soil temperature which at 50 mm depth averaged 7°C lower under the mulched crop relative to the control crop in mid-season. The smaller canopies of the mulched crop used 15 mm less water than those of the control before anthesis; this difference in water-use was due equally to reduced transpiration and soil evaporation. However, the mulched crop was unable to increase ET during grain filling, a response associated with the persistence of low soil temperature for most of the growth period. Hence, total ET for the season was significantly lower (18 mm) under the mulched crop than the control crop. At harvest, mulching did not have significant effects on total above-ground dry matter and grain yields, but it increased water use efficiency for grain yield by 18%, grain weight by almost 17% and available moisture in both uncropped and cropped plots by an average of 43 mm.To determine whether there was any residual effects of soil treatment on moisture storage during the summer fallow period, soil moisture was monitored both in cropped plots and uncropped plots, that were either mulched or unmulched during the growing season, from harvest in October 1988 until next planting in June 1989. Available moisture at next planting was correlated with moisture storage at harvest despite the differences in run-off, soil evaporation and fallowing efficiency (increase in moisture storage as a percentage of rainfall) between treatments during fallowing. Therefore, the mulched treatments had more moisture available (30 mm), mostly as a result of less water use during cropping in the previous growing season, than the unmulched treatment.The study shows that mulching may be used to restrain both transpiration and soil evaporation early in the season to increase availability of soil moisture during grain filling. Secondly, mulching during the previous growing season had little effect on soil moisture during the summer fallow period, however, the moisture saved by mulching during cropping was conserved for the following season. These results indicate the importance of evaluating mulching of winter crops in terms of crop yield in the subsequent growing season as well as in the current season in which the soil was treated.Abbreviations D through drainage - DAS days after sowing of the crop on 31 May 1988 - DM dry matter produced in the above-ground portion of the crop (kg ha–1) - E0 evaporation from Class A pan (mm) - Es evaporation from uncropped soil (mm) - Esc evaporation from soil beneath the wheat canopy (mm) - ET evapotranspiration (mm) - FE fallowing efficiency (gain in soil moisture storage/rainfall) - GAI green area index (area of green vegetation per unit land area) - GWUE water-use efficiency for grain production (grain yield/total ET, kg ha–1mm–1) - K extinction coefficient (see equation 1) - RO run-off of moisture from soil surface during/following rainfall (mm) - SM available soil moisture (mm) at harvest (SMh) or at planting (SMp) - WUE water-use efficiency for total above-ground dry matter yield (see GWUE)  相似文献   

6.
Atmospheric CO2 levels are expected to exceed 700 mol mol–1 by the end of the 21st century. The influence of increased CO2 concentration on crop plants is of major concern. This study investigated water- and nitrogen-use efficiency (WUE and NUE, respectively, were defined by the amount of biomass accumulated per unit water or N uptake) of spring wheat (Triticum aestivumL.) grown under two atmospheric CO2 concentrations (350 and 700 mol mol–1), two soil moisture treatments (well-watered and drought) and five nitrogen amendment treatments. Results showed that enriched CO2 concentration increased canopy WUE, and more N supply led to higher WUE under the increased CO2. Canopy WUE was significantly lower in well-watered treatments than in drought treatment, but increased with the increased N supply. Elevated CO2 reduced the apparent recovery fraction of applied N by the plant root system (Nr, defined as the ratio of the increased N uptake to N applied), but increased the NUE and agronomic N efficiency (NAE, defined as the ratio of the increased biomass to N applied). Water limitation and high N application reduced the Nr, NUE and NAE, indicating a poor N efficiency. In addition, there was a close relationship between the root mass ratio and NUE. Canopy WUE was negatively related to the root mass ratio and NUE. Our results indicated that CO2 enrichment enhanced WUE more at high N application, but increased NUE more when N application was less.  相似文献   

7.
A study was conducted during the 1996–97 crop growth season at ICARDA in northern Syria, to investigate the influence of wheat canopy architecture on the partitioning of moisture between soil evaporation and crop transpiration, on a soil with high hydraulic conductivity. The study was conducted on the long-term two course wheat-lentil rotation trial, established on a swelling clay soil (Calcixerollic xerochrept). The wheat canopy architecture was manipulated by sowing the crop at either of two row-spacings, 0.17 or 0.30 m, both at a constant sowing rate equivalent to 120 kg ha–1. In this study, evapotranspiration from the crop was inferred from changes in soil moisture content over time, evaporation and rainfall interception were measured daily using microlysimetry, drainage was estimated as being the difference between potential daily evapotranspiration, and the evapotranspiration estimated from the soil water deficit. Between sowing and day 80 (tillering stage), evapotranspiration was calculated to consist mainly of soil evaporation. However, after day 80, transpiration became an increasingly dominant component of evapotranspiration. For both row-spacings, cumulative evapotranspiration over the season was approximately 373 mm. In the narrow-row crop, transpiration and soil evaporation were approximately 185 mm and 183 mm of water respectively. Conversely for the wide row-spaced crop, 172 mm of water was transpired while about 205 mm of water evaporated from the soil surface. While green leaf area index did not differ between row-spacings, the architecture of the crops as a result of sowing affected solar radiation penetration such that more incident radiation was intercepted at the soil surface of the wide row-spaced crop. This is likely to have made some contribution to the elevated levels of evaporation from the soil beneath the canopy of the wide-sown crop.  相似文献   

8.
APSIM 模型的发展与应用   总被引:7,自引:0,他引:7  
土壤-作物模拟模型已成为向农业生产管理决策提供科学依据的一个有效工具,APSIM(Agricultural Production System Simulator)模型是澳大利亚科学家开发研制的,用于模拟农业系统穰生物过程,特别是气候风险下系统各组分生态和经济输出的机理模型,APSIM已在温带大 陆性气候,温带海洋性气候,亚热带干旱气候和地中海气候带下的粘土,胀缩土(duplex),变性土(vertisol),粉粒砂壤,粉粒壤土和粉粒粘壤土等土壤上进行了验证和应用。可以用于小麦等20余种作物的模拟,APSIM模型在作物结构和轮作序列调整,作物产量,质量预测和控制及不同种植方式下水土流失调控等方面具有良好的描述能力。  相似文献   

9.
Summary The effects of winter waterlogging and a subsequent drought on the growth of winter barley and winter wheat have been examined. We used lysimeters containing soil monoliths with facilities to control the water table and a mobile shelter to control rainfall. Winter wheat was grown on a clay and on a sandy loam, but winter barley only on the clay soil. Lysimeters were either freely-drained during the winter or waterlogged with the water table 10 cm below the soil surface from 2 December until 31 March (that could occur by rainfall with a return period of 2 to 3 years). The lysimeters then were either irrigated so that the soil moisture deficit did not exceed 84 mm, or subjected to drought by limiting rainfall (equivalent to a 1 in 10 dry year in the driest area of England) so that the deficits reached maximum values of 150 mm in the clay and 159 mm in the sandy loam by harvest.Winter waterlogging restricted tillering and restricted the number of ears for all crops; grain yield of the winter barley was decreased by 219 g/m2 (30%), and that of winter wheat by 170 g/m2 (24%) and 153 g/m2 (21% on the clay and sandy loam respectively.The drought treatment reduced the straw weight of winter barley by 75 g/m2 (12%) but did not significantly depress the grain yield. For winter wheat on the clay, where the soil was freely-drained during the winter, drought depressed total shoot weight by 344 g/m2 (17%) and grain weight by 137 g/m2 (17%), but after winter waterlogging, drought did not further depress total or grain weight. In contrast, the winter wheat on the sandy loam was not significantly affected by drought.From these results, which are discussed in relation to other experiments in the United Kingdom, it seems that winter waterlogging is likely to cause more variation in the yield of winter barley and winter wheat than drought.  相似文献   

10.
Nitrogen release patterns from decomposing shoot residues of Tephrosia candida, Crotalaria grahamiana, Mucuna pruriens, Macrotyloma axillare, Macroptillium atropurpureum and Desmodium intortum were studied in the laboratory for a period of 22 weeks in a sandy clay soil and 10 weeks in a clay soil using a leaching tube technique. The residual effect of soil incorporated shoot residues of T. candida, T. vogelii, C. grahamiana, M. pruriens and C. juncea on maize yield was evaluated at four sites each in the high rainfall zone (mean precipitation 2100 mm year−1) and low rainfall zone (mean precipitation 800 mm year−1) of Bukoba District, Tanzania. N mineralised from the legume residues ranged from 24 to 61% of the initial N after 22 weeks in a sandy clay soil and −1 to 34% after 10 weeks in a clay soil. The N mineralisation rates of the residues decreased in both soils in the order M. atropurpureum>M. axillare>C. grahamiana>D. intortum>T.␣candida>M. pruriens and were mostly strongly related to (polyphenols+lignin)-to-N ratio, lignin-to-N ratio and lignin. Relative to the control, legume residues resulted in two and threefold increase in maize grain yield i.e. from 1.1 to 3.2 Mg ha−1 and from 1.4 to 3.8 Mg ha−1 in a high and low rainfall zone respectively. However, maize yield response to legume residues was limited when compared with application of 50 kg N ha−1 of mineral fertiliser. The % fertiliser equivalency (%FE) of legumes ranged between 25 and 59% with higher values recorded with C. grahamiana. At harvest, apparent N recoveries in maize ranged between 23 and 73% of the N applied in the legume residues. Highest recovery was found with application of C. grahamiana and least recovery from T. candida residues. These results suggested that application of legume residues alone might not be sufficient to meet N requirements and to achieve the yield potential of maize crop in Bukoba soils unless supplemented with small doses of mineral fertilisers.  相似文献   

11.
Aims Oxygation refers to irrigation of crops with aerated water, through air injection using the venturi principle or the supply of hydrogen peroxide in the root zone, both using subsurface drip irrigation (SDI) system. Oxygation improves water use efficiency (WUE), producing more yield and, and therefore, optimizes the use of drip and SDI. But the efficiency of oxygation is quite possibly dependent on a number of factors. The primary objective of this study was, therefore, to quantify the effects of oxygation, emitter depths and soil type on crop root zone oxygen content, soil respiration, plant physiological response, biomass yield, quality and WUE of three crop species.Methods This study investigated the potential of oxygation to enhance soil respiration, plant growth, yield and water use efficiencies (WUE) of cotton and wheat in experiments in enclosed heavy-duty concrete troughs (tubs) and pineapple and cotton in field experiments. Experimental treatments in tubs for wheat included comparisons between two soil types (vertisol and ferrosol) and superimposed were two oxygation methods (Mazzei air injector and Seair Diffusion System) compared to a control, and for cotton, emitters at two depths using Mazzei air injectors were compared to a control. The field experiments compared Mazzei air injectors and a control for cotton in Emerald and pineapple in Yeppoon, both in central Queensland, Australia.Important findings In all experiments, soil oxygen content and soil respiration markedly increased in response to the oxygation treatments. The O 2 concentration in the crop root zone increased by 2.4–32.6%, for oxygation compared to control at the same depth. The soil respiration increased by 42–100%. The number of wheat ears, leaf dry weight and total dry matter were significantly greater in Mazzei and Seair oxygation compared to the control. Fresh biomass of wheat increased by 11 and 8%, and dry weight of wheat increased by 8 and 3% in Mazzei and Seair oxygation treatments compared to the control, respectively. Likewise, the irrigation water use efficiency increased with oxygation compared to the control in wheat. The yield, WUE and number of other physiological parameters in wheat were enhanced in vertisol compared to ferrosol. The seed cotton yield in the tub experiment increased with oxygation by 14%, and significant differences for fresh biomass, dry matter and yield were also noted between oxygation and the control in the field. Lint yield and WUE both increased by 7% using Mazzei in the cotton field trial during 2008–09. There were significant effects of oxygation on pineapple fresh biomass, and dry matter weight, industry yield and a number of quality parameters were significantly improved. The total fruit yield and marketable increased by 17 and 4% and marketable WUE increased by 3% using Mazzei. Our data suggest that the benefits of oxygation are notable not only for dicotyledonous cotton but also for monocotyledonous wheat and pineapple representing different rooting morphologies and CO2 fixation pathways.  相似文献   

12.
Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800–850 seeds m−2. Average yields of 7.42 t ha−1 and WUE of 1.84 kg m−3 were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%–8.9% higher yield and 4.2%–9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.  相似文献   

13.
基于西北夏玉米生产实际和降雨特征,用自制模拟降雨器,于2010年6-9月研究了250、350和450 mm模拟雨量下翻耕、免耕、免耕覆盖对夏玉米农田水分利用效率及产量的影响.结果表明: 在6-9月250 mm雨量下免耕水分利用效率比翻耕高26%,产量比翻耕高16.5%;350 mm雨量下免耕水分利用效率和产量分别比翻耕高17.6%和6.1%;在450 mm雨量下免耕的蓄水效应低于翻耕,水分利用效率比翻耕低1.1%,产量比翻耕低0.6%.免耕覆盖克服了免耕在雨量充沛时水分蓄积量低于翻耕的缺点,在3种雨量下均可有效抑制棵间蒸发,减少翻耕地表裸露造成的无效水分消耗,增加土层贮水量,增大蒸腾量占水分消耗的比例,250 mm雨量下免耕覆盖水分利用效率比翻耕高48.6%,产量比翻耕高32.9%;350 mm雨量下免耕覆盖水分利用效率比翻耕高51.6%,产量比翻耕高27.1%;450 mm雨量下免耕覆盖水分利用效率比翻耕高23.7%,产量比翻耕高13.1%.综上,免耕夏玉米在250和350 mm雨量下相对于翻耕有增产和提高水分利用效率的优势,免耕覆盖夏玉米在250、450 mm雨量下产量和水分利用效率显著高于翻耕.  相似文献   

14.
农田水氮关系及其协同管理   总被引:6,自引:0,他引:6  
作物施氮反应及其氮肥利用率不仅取决于氮肥管理,还与水资源管理有关,并且受到地区气候因素的影响。针对中国灌溉农区氮肥环境污染问题日益突出,协调农田水氮管理,如通过改善水资源管理,发挥水氮协同效应,以提高水分利用效率来改善氮肥利用率,实现水氮利用率双赢,是当前农业水氮管理中亟待探讨和回答的问题。通过对农田水氮协同相关研究文献资料的综述,以华北平原集约种植体系水氮管理为例,根据历年统计数据,分析了该区年水热条件下粮食产量与水、氮及水氮利用效率之间的关系。研究表明,水和氮与作物产量在一定范围表现为水氮的协同效应。水分利用效率一般随灌溉水量减少及氮肥用量增加而提高;氮肥利用效率随氮用量增加而下降。适量节水和减氮分别有助水分利用效率和氮肥利用效率的改善。在气候变暖、变干条件下,适量施氮成为改善水氮利用效率的关键对策。  相似文献   

15.
基于西北夏玉米生产实际和降雨特征,用自制模拟降雨器,于2010年6-9月研究了250、350和450 mm模拟雨量下翻耕、免耕、免耕覆盖对夏玉米农田水分利用效率及产量的影响.结果表明: 在6-9月250 mm雨量下免耕水分利用效率比翻耕高26%,产量比翻耕高16.5%;350 mm雨量下免耕水分利用效率和产量分别比翻耕高17.6%和6.1%;在450 mm雨量下免耕的蓄水效应低于翻耕,水分利用效率比翻耕低1.1%,产量比翻耕低0.6%.免耕覆盖克服了免耕在雨量充沛时水分蓄积量低于翻耕的缺点,在3种雨量下均可有效抑制棵间蒸发,减少翻耕地表裸露造成的无效水分消耗,增加土层贮水量,增大蒸腾量占水分消耗的比例,250 mm雨量下免耕覆盖水分利用效率比翻耕高48.6%,产量比翻耕高32.9%;350 mm雨量下免耕覆盖水分利用效率比翻耕高51.6%,产量比翻耕高27.1%;450 mm雨量下免耕覆盖水分利用效率比翻耕高23.7%,产量比翻耕高13.1%.综上,免耕夏玉米在250和350 mm雨量下相对于翻耕有增产和提高水分利用效率的优势,免耕覆盖夏玉米在250、450 mm雨量下产量和水分利用效率显著高于翻耕.  相似文献   

16.
A field experiment was conducted under furrow irrigation on a Vertisol in arid northwestern Mexico, to evaluate sustainable production alternatives for irrigated wheat systems. Treatments included: tillage (conventionally tilled raised beds where new beds are formed after disc ploughing before planting [CTB] and permanent raised beds [PB]) and irrigation regimes (full and reduced). Physical and chemical soil quality was compared among treatments. PB improved soil structure and direct infiltration, increased topsoil K concentrations (0–5 cm; 1.6 cmol kg?1 in PB vs. 1.0–1.1 cmol kg?1 in CTB) and reduced Na concentrations (0–5 cm; 1.3–1.4 cmol kg?1 in PB vs. 1.9–2.2 cmol kg?1 in CTB) compared to CTB. Crop growth dynamics were studied throughout the season with an optical handheld NDVI sensor. Crop growth was initially slower in PB compared to CTB, but this was compensated by increased crop growth in the later stages of the crop cycle which influenced final yield, especially under reduced irrigation. These results were reflected in the final grain yield: in the third year after conversion to PB, no difference in grain yield was found between tillage systems under full irrigation. However, under reduced irrigation the improved soil quality with PB resulted in a 19% and 26% increment in bread and durum wheat grain yields, respectively. As projected climatic scenarios forecast higher evapotranspiration, less reliable rainfall and increased drought, our results indicate that PB could contribute to maintaining and increasing wheat yields in a sustainable way.  相似文献   

17.
Straw mulching is an effective measure to conserve soil moisture. However, the existence of straw on the soil surface also affects soil temperature, which in turn influences crop growth, especially of winter crops. Five‐year field experiments (2000–2005) investigated the effects of straw mulching and straw mass on soil temperature, soil evaporation, crop growth and development, yield and water use efficiency (WUE) of winter wheat (Triticum aestivum L.) at Luancheng Station on the North China Plain. Soil is a moderately well‐drained loamy soil with a deep profile at the station. Two quantities of mulch were used: 3000 kg ha?1 [less mulching (LM)] and 6000 kg ha?1 [more mulching (MM)], representing half and all of the straw from the previous crop (maize). In the control (CK), the full quantity of mulch was ploughed into the top 20 cm of soil. The results showed that the existence of straw on the soil surface reduced the maximum, but increased the minimum diurnal soil temperature. When soil temperature was decreasing (from November to early February the next year), soil temperature (0–10 cm) under straw mulching was on average 0.3°C higher for LM and 0.58°C higher for MM than that without mulching (CK). During the period when soil temperature increased (from February to early April, the recovery and jointing stages of winter wheat), average daily soil temperature of 0–10 cm was 0.42°C lower for LM and 0.65°C lower for MM than that of CK. With the increase in leaf area index, the effect of mulching on soil temperature gradually disappeared. The lower soil temperature under mulch in spring delayed the development of winter wheat up to 7 days, which on average reduced the final grain yield by 5% for LM and 7% for MM compared with CK over the five seasons. Mulch reduced soil evaporation by 21% under LM and 40% under MM compared with CK, based on daily measuring of microlysimeters. However, because yield was reduced, the overall WUE was not improved by mulch.  相似文献   

18.
It is expected that the CO2 concentration of the Earth’s atmosphere will reach 600–1000 ppm by the end of the 21st century. Therefore, in this study, we evaluated the effects of elevated CO2 concentrations on the development of rain-fed spring wheat in an attempt to identify a practical pathway to increase crop production. To accomplish this, a field experiment was conducted at Guyuan Experimental Station in a semiarid region of China during 2005–2007. During this experiment, the CO2 concentration was increased to 40.0 ppm and supplemental irrigation and nitrogenous fertilizer (N fertilizer) were applied. The experimental results showed that the elevated CO2 concentration significantly improved the thousand-grain weight and the grain number per spike. Furthermore, supplemental irrigation and N fertilizer application during the elongation and booting stage of rain-fed spring wheat in conjunction with an elevated CO2 concentration improved the water use efficiency (WUE), nitrogen use efficiency (NUE), thousand-grain weight, and the yield by 14.6%, 39.6%, 9.3%, and 14.7%, respectively, when compared to groups subjected to the same treatment but not grown under elevated CO2 concentrations. Furthermore, the spring wheat yield was improved by 81.8% in response to an elevated CO2 concentration, 60 mm of supplemental irrigation and applied N fertilizer (37.5 g m?2 NH4NO3). However, the presence of an elevated CO2 concentration without supplemental irrigation and N fertilizer only resulted in an increase in the wheat yield of 7.8%. Consequently, the combination of elevated CO2 concentration, supplemental irrigation and N fertilizer application played an important role in the improvement of WUE, NUE, thousand-grain weight, and grain yield of rain-fed spring wheat in this region.  相似文献   

19.
渭北旱塬小麦的耗水特性与抗旱增产措施   总被引:1,自引:0,他引:1       下载免费PDF全文
本文系根据1981—1982年,作者在陕西省蒲城县建立了33个试验点的实验研究,结果表明:小麦整个生活期的耗水量界于303—476mm之间,每亩产量约为45—333公斤,水分利用效率为0.38—1.15。说明了小麦产量与耗水量或水分利用效率两者之间是密切相关的,而这又和小麦早春再生长以前的幼苗生长率之间成正相关。在非灌溉条件下,小麦的生长与产量显著地依赖于雨季保存在根层的土壤有效水。为了在不同的水分条件下提高旱地小麦生产力,本文介绍了能够促使小麦的根茎向较深的土层发展的措施,以提高抗旱能力。  相似文献   

20.
Water availability directly influences interactions and competition between weeds and crops. This article is based on the idea that relative water content (RWC) indicates the water uptake within plants and that it is possible to explain the water relationships between plants that are growing together. A field experiment carried out for 3 years (2013–2014, 2014–2015 and 2015–2016) compared the short-term effects of years and tillage systems on wheat grain yield, weed density, wheat-RWC, weed-RWC and soil water content (SWC), at tillering and flowering stages in a winter wheat monoculture system. The three tillage treatments were conventional tillage (CT), minimum tillage (MT) and no-tillage (NT). Wheat grain yield was low all years of study, because of low interannual rainfall, and we did not observe differences between tillage systems. Weed density was also affected by year and not by tillage systems. Lowest winter rainfall (73.4 mm from Nov to Feb) in the last year of the study (2015–2016), decreased the weed density in all tillage systems. Despite the rainfall variability over the 3 years of study, the NT system presented higher weed density (73 plants/m2) than MT and CT systems (39.83 and 46.33 plants/m2). We also observed a higher number of weed species for the NT system, facilitated by a high soil water storage in this system. The wheat-RWC, at tillering stage, varied with years and tillage systems; we found that high winter rainfall (2013–2014) led to higher values in CT (64.5%) compared with MT (52.9%) and NT plots (52.9%). Weed-RWC values did not vary and SWC was greater in NT than in CT and MT. At flowering stage, the year (2015–2016) with highest spring rainfall favoured higher wheat-RWC in NT (56.9%) compared with CT (48.3%). However, the lowest spring rainfall coincided with the lowest weed-RWC, (18% in NT plots) and SWC was always higher in NT soils. The results showed that climatic conditions affected the water competence dynamics between weeds and wheat in different ways. Seemingly, weeds can tolerate a lack of water availability until crop tillering stage independently of tillage system; however, the competition for water was not a problem as crops overcame the high weed density by flowering stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号