首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have determined the 1.35- and 1.45-A structures, respectively, of closed and open iron-loaded forms of Mannheimia haemolytica ferric ion-binding protein A. M. haemolytica is the causative agent in the economically important and fatal disease of cattle termed shipping fever. The periplasmic iron-binding protein of this gram-negative bacterium, which has homologous counterparts in many other pathogenic species, performs a key role in iron acquisition from mammalian host serum iron transport proteins and is essential for the survival of the pathogen within the host. The ferric (Fe(3+)) ion in the closed structure is bound by a novel asymmetric constellation of four ligands, including a synergistic carbonate anion. The open structure is ligated by three tyrosyl residues and a dynamically disordered solvent-exposed anion. Our results clearly implicate the synergistic anion as the primary mediator of global protein conformation and provide detailed insights into the molecular mechanisms of iron binding and release in the periplasm.  相似文献   

2.
Cyanobacteria account for a significant percentage of aquatic primary productivity even in areas where the concentrations of essential micronutrients are extremely low. To better understand the mechanism of iron selectivity and transport, the structure of the solute binding domain of an ATP binding cassette iron transporter, FutA1, was determined in the presence and absence of iron. The iron ion is bound within the "C-clamp" structure via four tyrosine and one histidine residues. There are extensive interactions between these ligating residues and the rest of the protein such that the conformations of the side chains remain relatively unchanged as the iron is released by the opening of the metal binding cleft. This is in stark contrast to the zinc-binding protein, ZnuA, where the domains of the metal-binding protein remain relatively fixed, whereas the ligating residues rotate out of the binding pocket upon metal release. The rotation of the domains in FutA1 is facilitated by two flexible beta-strands running along the back of the protein that act like a hinge during domain motion. This motion may require relatively little energy since total contact area between the domains is the same whether the protein is in the open or closed conformation. Consistent with the pH dependence of iron binding, the main trigger for iron release is likely the histidine in the iron-binding site. Finally, neither FutA1 nor FutA2 binds iron as a siderophore complex or in the presence of anions, and both preferentially bind ferrous over ferric ions.  相似文献   

3.
There are several options available for intravenous application of iron supplements, but they all have a similar structure:—an iron core surrounded by a carbohydrate coating. These nanoparticles require processing by the reticuloendothelial system to release iron, which is subsequently picked up by the iron-binding protein transferrin and distributed throughout the body, with most of the iron supplied to the bone marrow. This process risks exposing cells and tissues to free iron, which is potentially toxic due to its high redox activity. A new parenteral iron formation, ferric pyrophosphate citrate (FPC), has a novel structure that differs from conventional intravenous iron formulations, consisting of an iron atom complexed to one pyrophosphate and two citrate anions. In this study, we show that FPC can directly transfer iron to apo-transferrin. Kinetic analyses reveal that FPC donates iron to apo-transferrin with fast binding kinetics. In addition, the crystal structure of transferrin bound to FPC shows that FPC can donate iron to both iron-binding sites found within the transferrin structure. Examination of the iron-binding sites demonstrates that the iron atoms in both sites are fully encapsulated, forming bonds with amino acid side chains in the protein as well as pyrophosphate and carbonate anions. Taken together, these data demonstrate that, unlike intravenous iron formulations, FPC can directly and rapidly donate iron to transferrin in a manner that does not expose cells and tissues to the damaging effects of free, redox-active iron.  相似文献   

4.
Frataxin is an iron-binding mitochondrial matrix protein that has been shown to mediate iron delivery during iron–sulfur cluster and heme biosynthesis. Mitochondrial processing peptidase (MPP) yields a form of human frataxin corresponding to residues 56–210. However, structural and functional studies have focused on a core structure that results from an ill-defined cleavage event at the N-terminus. Herein we show that the N-terminus of MPP-processed frataxin shows a unique high-affinity iron site and that this iron center appears to mediate a self-cleavage reaction. Moreover, the N-terminus appears to block previously defined iron-binding sites located on the carboxylate-rich surface defined by the helix (α1) and the β-sheet (β1), most likely through electrostatic contact with the carboxylate-rich surface on the core protein, as well as inhibiting iron-promoted binding of the iron–sulfur cluster assembly scaffold partner protein, ISU. The physiological significance of iron-mediated release of the N-terminal residues from this anionic surface is discussed.  相似文献   

5.
The iron-binding ability of apotransferrins is rapidly abolished in the reaction with periodate anions, which destroys 4 mol of tyrosine per mol of protein. Treatment of ovotransferrin with cyanogen bromide and tryptic digestion of the glycopeptide fragment demonstrated the existence of an intramolecular cross-link in the C-terminal domain of the oxidized protein. The cross-linked residues were identified as Tyr-421 and Tyr-524 and the product is similar in structure to 3,3'-dityrosine.  相似文献   

6.
Human serum transferrin (hTF) is a bilobal iron-binding and transport protein that carries iron in the blood stream for delivery to cells by a pH-dependent mechanism. Two iron atoms are held tightly in two deep clefts by coordination to four amino acid residues in each cleft (two tyrosines, a histidine, and an aspartic acid) and two oxygen atoms from the "synergistic" carbonate anion. Other residues in the binding pocket, not directly coordinated to iron, also play critical roles in iron uptake and release through hydrogen bonding to the liganding residues. The original crystal structures of the iron-loaded N-lobe of hTF (pH 5.75 and 6.2) revealed that the synergistic carbonate is stabilized by interaction with Arg-124 and that both the arginine and the carbonate adopt two conformations (MacGillivray, R. T. A., Moore, S. A., Chen, J., Anderson, B. F., Baker, H., Luo, Y. G., Bewley, M., Smith, C. A., Murphy, M. E., Wang, Y., Mason, A. B., Woodworth, R. C., Brayer, G. D., and Baker, E. N. (1998) Biochemistry 37, 7919-7928). In the present study, we show that the two conformations are also found for a structure at pH 7.7, indicating that this finding was not strictly a function of pH. We also provide structures for two single point mutants (Y45E and L66W) designed to force Arg-124 to adopt each of the previously observed conformations. The structures of each mutant show that this goal was accomplished, and functional studies confirm the hypothesis that access to the synergistic anion dictates the rate of iron release. These studies highlight the importance of the arginine/carbonate movement in the mechanism of iron release in the N-lobe of hTF. Access to the carbonate via a water channel allows entry of protons and anions, enabling the attack on the iron.  相似文献   

7.
The obligate human pathogen Haemophilus influenzae utilizes a siderophore-independent (free) Fe(3+) transport system to obtain this essential element from the host iron-binding protein transferrin. The hFbpABC transporter is a binding protein-dependent ABC transporter that functions to shuttle (free) Fe(3+) through the periplasm and across the inner membrane of H. influenzae. This investigation focuses on the structure and function of the hFbpB membrane permease component of the transporter, a protein that has eluded prior characterization. Based on multiple-sequence alignments between permease orthologs, a series of site-directed mutations targeted at residues within the two conserved permease motifs were generated. The hFbpABC transporter was expressed in a siderophore-deficient Escherichia coli background, and effects of mutations were analyzed using growth rescue and radiolabeled (55)Fe(3+) transport assays. Results demonstrate that mutation of the invariant glycine (G418A) within motif 2 led to attenuated transport activity, while mutation of the invariant glycine (G155A/V/E) within motif 1 had no discernible effect on activity. Individual mutations of well-conserved leucines (L154D and L417D) led to attenuated and null transport activities, respectively. As a complement to site-directed methods, a mutant screen based on resistance to the toxic iron analog gallium, an hFbpABC inhibitor, was devised. The screen led to the identification of several significant hFbpB mutations; V497I, I174F, and S475I led to null transport activities, while S146Y resulted in attenuated activity. Significant residues were mapped to a topological model of the hFbpB permease, and the implications of mutations are discussed in light of structural and functional data from related ABC transporters.  相似文献   

8.
BACKGROUND: Lesions in the gene for frataxin, a nuclear-encoded mitochondrial protein, cause the recessively inherited condition Friedreich's ataxia. It is thought that the condition arises from disregulation of mitochondrial iron homeostasis, with concomitant oxidative damage leading to neuronal death. Very little is, as yet, known about the biochemical function of frataxin. RESULTS: Here, we show that the mature form of recombinant frataxin behaves in solution as a monodisperse species that is composed of a 15-residue-long unstructured N terminus and an evolutionarily conserved C-terminal region that is able to fold independently. The structure of the C-terminal domain consists of a stable seven-stranded antiparallel beta sheet packing against a pair of parallel helices. The structure is compact with neither grooves nor cavities, features that are typical of iron-binding modules. Exposed evolutionarily conserved residues cover a broad area and all cluster on the beta-sheet face of the structure, suggesting that this is a functionally important surface. The effect of two clinically occurring mutations on the fold was checked experimentally. When the mature protein was titrated with iron, no tendency to iron-binding or to aggregation was observed. CONCLUSIONS: Knowledge of the frataxin structure provides important guidelines as to the nature of the frataxin binding partner. The absence of all the features expected for an iron-binding activity, the large conserved area on its surface and lack of evidence for iron-binding activity strongly support an indirect involvement of frataxin in iron metabolism. The effects of point mutations associated with Friedreich's ataxia can be rationalised by knowledge of the structure and suggest possible models for the occurrence of the disease in compound heterozygous patients.  相似文献   

9.
Short-time iodination of metal-free ovotransferrin indicated that the tyrosine groups involved in the iron-binding activity are indistinguishable from other structural tyrosines. Modification of a minimum of 14 tyrosine residues per molecule of protein was required to achieve a complete loss of metal-binding activity. In contrast, a maximum modification of 10 tyrosine residues in iron-ovotransferrin complex could be produced with no loss of iron-binding activity. The difference in the extent of modification of tyrosines, therefore, indicated the involvement of four tyrosines in the binding of two atoms of iron. A minimal modification of histidine residues was also found, which was limited to one residue per molecule of both ovotransferrin and its iron complex. The possible participation of two tryptophan residues in the iron-binding activity is also suggested in the present study.  相似文献   

10.
The mitochondrial protein frataxin is essential for cellular regulation of iron homeostasis. Although the exact function of frataxin is not yet clear, recent reports indicate the protein binds iron and can act as a mitochondrial iron chaperone to transport Fe(II) to ferrochelatase and ISU proteins within the heme and iron-sulfur cluster biosynthetic pathways, respectively. We have determined the solution structure of apo yeast frataxin to provide a structural basis of how frataxin binds and donates iron to the ferrochelatase. While the protein's alpha-beta-sandwich structural motif is similar to that observed for human and bacterial frataxins, the yeast structure presented in this report includes the full N-terminus observed for the mature processed protein found within the mitochondrion. In addition, NMR spectroscopy was used to identify frataxin amino acids that are perturbed by the presence of iron. Conserved acidic residues in the helix 1-strand 1 protein region undergo amide chemical shift changes in the presence of Fe(II), indicating a possible iron-binding site on frataxin. NMR spectroscopy was further used to identify the intermolecular binding interface between ferrochelatase and frataxin. Ferrochelatase appears to bind to frataxin's helical plane in a manner that includes its iron-binding interface.  相似文献   

11.
Lactoferrin (Lf) is a bi-lobed, iron-binding protein found on mucosal surfaces and at sites of inflammation. Gram-negative pathogens from the Neisseriaceae and Moraxellaceae families are capable of using Lf as a source of iron for growth through a process mediated by a bacterial surface receptor that directly binds host Lf. This receptor consists of an integral outer membrane protein, lactoferrin binding protein A (LbpA), and a surface lipoprotein, lactoferrin binding protein B (LbpB). The N-lobe of the homologous transferrin binding protein B, TbpB, has been shown to facilitate transferrin binding in the process of iron acquisition. Currently there is little known about the role of LbpB in iron acquisition or how Lf interacts with the bacterial receptor proteins. No structural information on any LbpB or domain is available. In this study, we express and purify from Escherichia coli the full-length LbpB and the N-lobe of LbpB from the bovine pathogen Moraxella bovis for crystallization trials. We demonstrate that M. bovis LbpB binds to bovine but not human Lf. We also report the crystal structure of the N-terminal lobe of LbpB from M. bovis and compare it with the published structures of TbpB to speculate on the process of Lf mediated iron acquisition.  相似文献   

12.
Iron regulatory protein 2 coordinates cellular regulation of iron metabolism by binding to iron responsive elements in mRNA. The protein is synthesized constitutively but is rapidly degraded when iron stores are replete. This iron-dependent degradation requires the presence of a 73-residue degradation domain, but its functions have not yet been established. We now show that the domain can act as an iron sensor, mediating its own covalent modification. The domain forms an iron-binding site with three cysteine residues located in the middle of the domain. It then reacts with molecular oxygen to generate a reactive oxidizing species at the iron-binding site. One cysteine residue is oxidized to dehydrocysteine and other products. This covalent modification may thus mark the protein molecule for degradation by the proteasome system.  相似文献   

13.
The crystal structure of the iron-free (apo) form of the Haemophilus influenzae Fe(3+)-binding protein (hFbp) has been determined to 1.75 A resolution. Information from this structure complements that derived from the holo structure with respect to the delineation of the process of iron binding and release. A 21 degrees rotation separates the two structural domains when the apo form is compared with the holo conformer, indicating that upon release of iron, the protein undergoes a change in conformation by bending about the central beta-sheet hinge. A surprising finding in the apo-hFbp structure was that the ternary binding site anion, observed in the crystals as phosphate, remained bound. In solution, apo-hFbp bound phosphate with an affinity K(d) of 2.3 x 10(-3) M. The presence of this ternary binding site anion appears to arrange the C-terminal iron-binding residues conducive to complementary binding to Fe(3+), while residues in the N-terminal binding domain must undergo induced fit to accommodate the Fe(3+) ligand. These observations suggest a binding process, the first step of which is the binding of a synergistic anion such as phosphate to the C-terminal domain. Next, iron binds to the preordered half-site on the C-terminal domain. Finally, the presence of iron organizes the N-terminal half-site and closes the interdomain hinge. The use of the synergistic anion and this iron binding process results in an extremely high affinity of the Fe(3+)-binding proteins for Fe(3+) (nFbp K'(eff) = 2.4 x 10(18) M(-1)). This high-affinity ligand binding process is unique among the family of bacterial periplasmic binding proteins and has interesting implications in the mechanism of iron removal from the Fe(3+)-binding proteins during FbpABC-mediated iron transport across the cytoplasmic membrane.  相似文献   

14.
D Legrand  J Mazurier  J Montreuil  G Spik 《Biochimie》1988,70(9):1185-1195
Transferrins are iron-binding glycoproteins involved in iron metabolism and antibacterial defense mechanisms. Since the discovery of transferrins, many studies have attempted to characterize the iron ligands and to establish the conformation of the iron-binding sites. From chemical and spectroscopic studies, it was generally accepted that iron was hexacoordinated to Tyr and His residues, to a water molecule and to a (bi)carbonate ion, electrostatically linked to an Arg residue. On the basis of these studies, on the one hand, and on the basis of the homologies between the amino acid sequences of transferrins, on the other hand, predicted data have been provided about the number and location of the iron ligands. Recent X-ray crystallography studies of human lactotransferrin have partially confirmed the above-mentioned predicted data and have brought invaluable information about the nature of the ligands and the conformation of the iron-binding site. On the basis of the obtained results, a scheme has been proposed in which the iron is coordinated to 2 Tyr, 1 His and 1 Asp residues, to a (bi)carbonate linked to an Arg residue and probably to a water molecule. The iron-binding site is located at the interface between the two domains which constitute each lobe of the transferrins.  相似文献   

15.
Escherichia coli can perform two modes of formate metabolism. Under respiratory conditions, two periplasmically-located formate dehydrogenase isoenzymes couple formate oxidation to the generation of a transmembrane electrochemical gradient; and under fermentative conditions a third cytoplasmic isoenzyme is involved in the disproportionation of formate to CO2 and H2. The respiratory formate dehydrogenases are redox enzymes that comprise three subunits: a molybdenum cofactor- and FeS cluster-containing catalytic subunit; an electron-transferring ferredoxin; and a membrane-integral cytochrome b. The catalytic subunit and its ferredoxin partner are targeted to the periplasm as a complex by the twin-arginine transport (Tat) pathway. Biosynthesis of these enzymes is under control of an accessory protein termed FdhE. In this study, it is shown that E. coli FdhE interacts with the catalytic subunits of the respiratory formate dehydrogenases. Purification of recombinant FdhE demonstrates the protein is an iron-binding rubredoxin that can adopt monomeric and homodimeric forms. Bacterial two-hybrid analysis suggests the homodimer form of FdhE is stabilized by anaerobiosis. Site-directed mutagenesis shows that conserved cysteine motifs are essential for the physiological activity of the FdhE protein and are also involved in iron ligation.  相似文献   

16.
FutA2 is a ferric binding protein from Synechocystis PCC 6803   总被引:1,自引:0,他引:1  
Synechocystis PCC 6803 has a high demand for iron (10 times greater than Escherichia coli) to sustain photosynthesis and is unusual in possessing at least two putative iron-binding proteins of a type normally associated with ATP-binding cassette-type importers. It has been suggested that one of these, FutA2, binds ferrous iron, but herein we clearly demonstrate that this protein avidly binds Fe(III), the oxidation state preference of periplasmic iron-binding proteins. Structures of apo-FutA2 and Fe-FutA2 have been determined at 1.7 and 2.7A, respectively. The metal ion is bound in a distorted trigonal bipyramidal arrangement with no exogenous anions as ligands. The metal-binding environment, including the second coordination sphere and charge properties, is consistent with a preference for Fe(III). Atypically, FutA2 has a Tat signal peptide, and its inability to coordinate divalent cations may be crucial to prevent metals from binding to the folded protein prior to export from the cytosol. A loop containing the His(43) ligand undergoes considerable movement in apo-versus Fe-FutA2 and may control metal release to the importer. Although these data are consistent with FutA2 being the periplasmic component involved in iron uptake, deletion of another putative ferric binding protein, FutA1, has a greater effect on the accumulation of iron and is more analogous to a DeltafutA1DeltafutA2 double mutant than DeltafutA2. Here, we also discover that there is a reduced level of ferric FutA2 in the periplasm of the DeltafutA1 mutant providing an explanation for its severe iron-uptake phenotype.  相似文献   

17.
The recent determination by X-ray diffraction of the tridimensional structure of human lactotransferrin has underlined the presence of two lobes, each composed of two domains, I and II, as well as the involvement of five ligands in the binding of iron. Only one of the ligands (Asp-61) is located in domain I (residues 1-90 and 252-320), while the others [two tyrosine, one histidine and one (bi)carbonate ion linked to an arginine residue] belong to domain II (residues 91-251). On the basis of these data and of our previous results concerning the isolation of the 30 kDa N-tryptic fragment (residues 4-281) and the 20 kDa N2-glycopeptide (N-terminal domain II; residues 91-253) from human and bovine lactotransferrins, we have compared the iron-binding properties of these two fragments. The results demonstrate that Asp-61, which is missing from domain II, does not take part in the stability upon protonation of the iron complex of both human and bovine lactotransferrins. Furthermore, by comparing the iron-binding properties of human and bovine lactotransferrins to those of isolated 30 kDa N-tryptic and 50 kDa C-tryptic fragments and of the reassociated N,C-tryptic complex of both proteins, it has been shown that the non-covalent interactions which occurred between the two lobes of lactotransferrins and in the reassociated N,C-tryptic complex can explain in part the high affinity of lactotransferrins for iron. Finally, deglycosylation experiments on the 30 kDa N-tryptic fragment and N-terminal domain II from human and bovine lactotransferrins demonstrate that full removal of the glycan moiety leads to the loss of iron-binding capacity and so underlines the importance of the glycan moiety in the stability upon protonation of the N-terminal iron-binding site of both lactotransferrins.  相似文献   

18.
A dynamic model of the meningococcal transferrin receptor.   总被引:7,自引:0,他引:7  
Iron is an essential nutrient for all organisms and consequently, the ability to bind transferrin and sequester iron from his source constitutes a distinct advantage to a blood-borne bacterial pathogen. Levels of free iron are strictly limited in human serum, largely through the action of the iron-binding protein transferrin. The acquisition of trasferrin-iron is coincident with pathogenicity among Neisseria species and a limited number of other pathogens of human and veterinary significance. In Neisseria meningitidis, transferrin binding relies on two co-expressed, outer membrane proteins distinct in aspects of both structure and function. These proteins are independently and simultaneously capable of binding human transferrin and both are required for the optimal uptake of iron from this source. It has been established that transferrin-binding proteins (designated TbpA and TbpB) form a discrete, specific complex which may be composed of a transmembrane species (composed of the TbpA dimer) associated with a single surface-exposed lipoprotein (TbpB). This more exposed protein is capable of selectively binding iron-saturated transferrin and the receptor complex has ligand-binding properties which are distinct from either of its components. Previous in vivo analyses of N. gonorrhoeae, which utilizes a closely related transferrin-iron uptake system, indicated that this receptor exists in several conformations influenced in part by the presence (or absence) of transferrin.Here we propose a dynamic model of the meningococcal transferrin receptor which is fully consistent with the current data concerning this subject. We suggest that TbpB serves as the initial binding site for iron-saturated transferrin and brings this ligand close to the associated transmembrane dimer, enabling additional binding events and orientating transferrin over the dual TbpA pores. The antagonistic association of these receptor proteins with a single ligand molecule may also induce conformational change in transferrin, thereby favouring the release of iron. As, in vivo, transferrin may have iron in one or both lobes, this dynamic molecular arrangement would enable iron uptake from either iron-binding site. In addition, the predicted molecular dimensions of the putative TbpA dimer and hTf are fully consistent with these proposals. Given the diverse data used in the formulation of this model and the consistent characteristics of transferrin binding among several significant Gram-negative pathogens, we speculate that such receptor-ligand interactions may be, at least in part, conserved between species. Consequently, this model may be applicable to bacteria other than N. meningitidis.  相似文献   

19.
Campylobacter jejuni, the leading cause of human gastroenteritis, expresses a ferric binding protein (cFbpA) that in many pathogenic bacteria functions to acquire iron as part of their virulence repertoire. Recombinant cFbpA is isolated with ferric iron bound from Escherichia coli. The crystal structure of cFbpA reveals unprecedented iron coordination by only five protein ligands. The histidine and one tyrosine are derived from the N-terminal domain, whereas the three remaining tyrosine ligands are from the C-terminal domain. Surprisingly, a synergistic anion present in all other characterized ferric transport proteins is not observed in the cFbpA iron-binding site, suggesting a novel role for this protein in iron uptake. Furthermore, cFbpA is shown to bind iron with high affinity similar to Neisserial FbpA and exhibits an unusual preference for ferrous iron (oxidized subsequently to the ferric form) or ferric iron chelated by oxalate. Sequence and structure analyses reveal that cFbpA is a member of a new class of ferric binding proteins that includes homologs from invasive and intracellular bacteria as well as cyanobacteria. Overall, six classes are defined based on clustering within the tree and by their putative iron coordination. The absence of a synergistic anion in the iron coordination sphere of cFbpA also suggests an alternative model of evolution for FbpA homologs involving an early iron-binding ancestor instead of a requirement for a preexisting anion-binding ancestor.  相似文献   

20.
Helicobacter pylori produces one monofunctional catalase, encoded by katA (hp0875). The crystal structure of H. pylori catalase (HPC) has been determined and refined at 1.6 A with crystallographic agreement factors R and R(free) of 17.4 and 21.9%, respectively. The crystal exhibits P2(1)2(1)2 space group symmetry and contains two protein subunits in the asymmetric unit. The core structure of the HPC subunit, including the disposition of a heme b prosthetic group, is closely related to those of other catalases, although it appears to be the only clade III catalase that has been characterized that does not bind NADPH. The heme iron in one subunit of the native enzyme appears to be covalently modified, possibly with a perhydroxy or dioxygen group in a compound III-like structure. Formic acid is known to bind in the active site of catalases, promoting the breakdown of reaction intermediates compound I and compound II. The structure of an HPC crystal soaked with sodium formate at pH 5.6 has also been determined to 1.6 A (with R and R(free) values of 18.1 and 20.7%, respectively), revealing at least 36 separate formate or formic acid residues in the HPC dimer. In turn, the number of water molecules refined into the models decreased from 1016 in the native enzyme to 938 in the formate-treated enzyme. Extra density, interpreted as azide, is found in a location of both structures that involves interaction with all four subunits in the tetramer. Electron paramagnetic resonance spectra confirm that azide does not bind as a ligand of the iron and that formate does bind in the heme pocket. The stability of the formate or formic acid molecule found inside the heme distal pocket has been investigated by calculations based on density functional theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号