首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholic acid:CoA ligase (EC 6.2.1.7, choloyl-CoA synthetase) and deoxycholic acid:CoA ligase catalyze the synthesis of choloyl-CoA and deoxycholoyl-CoA from their respective bile acids in rat liver. A modification of the phase partition assay was introduced which yields significantly (3-fold) higher specific activities for cholic acid:CoA ligase than previously reported. An independent method of separating choloyl-CoA from the substrates by high-pressure liquid chromatography was also developed and validates the modification. Both enzymic activities were found to be localized predominantly in the endoplasmic reticulum of rat liver. The level of either ligase in other purified, active subcellular fractions is consistent with the level of contamination by endoplasmic reticulum, estimated by using marker enzymes. Hence, the ligase assay can be used as a sensitive enzymic marker for endoplasmic reticulum in rat liver. The kinetic parameters of both enzymic activities were determined by using purified rough endoplasmic reticulum from rat liver. While the apparent maximal velocities for the two substrates are similar, the Michaelis constant for deoxycholate is significantly lower than that for cholate. Taurocholate and deoxycholate are shown to be competitive inhibitors of cholic acid:CoA ligase. The inhibition constant of deoxycholate is similar to its Michaelis constant for the deoxycholoyl-CoA-synthesizing reaction, suggesting that the same enzyme is responsible for both ligase activities.  相似文献   

2.
A new Escherichia coli deoxyribonucleic acid (DNA) ligase mutant has been identified among a collection of temperature-sensitive DNA replication mutants isolated recently (Sevastopoulos, Wehr, and Glaser, Proc. Natl. Acad. Sci. U.S.A. 74:3485-3489, 1977). At the nonpermissive temperature DNA synthesis in the mutant stops rapidly, the DNA is degraded to acid-soluble material, and cell death ensures. This suggests that the mutant may be among the most ligase-deficient strains yet characterized.  相似文献   

3.
Despite its utility, dipeptides have not been widely used due to the absence of an efficient manufacturing method. Recently, a novel method for effective production of dipeptides using l-amino acid α-ligase (Lal) is presented. Lal, which is only identified in Bacillus subtilis, catalyzes dipeptide synthesis from unprotected amino acids in an ATP-dependent manner. However, not all the dipeptide can be synthesized by Lal from B. subtilis (BsLal) due to its substrate specificity. Here, we attempted to find a novel Lal exhibiting different substrate specificity from BsLal. By in silico screening based on the amino acid sequence of BsLal, RSp1486a an unknown protein from Ralstonia solanacearum was found to show the Lal activity. RSp1486a exhibited different substrate specificity from BsLal, and preferably synthesized hetero-dipeptides where more bulky amino acid was placed at N terminus and less bulky amino acid was placed at C terminus in opposition to those synthesized by BsLal.  相似文献   

4.
A new assay for the enzyme bile acid:CoA ligase is presented. The new assay is designed to supplant the existing radiometric assays which require radiolabeled bile acids. The new assay couples the formation of bile acid-CoA to its glycination in a reaction catalyzed by bile acid-CoA:glycine N-acyltransferase. The coupling reaction utilizes [14C]glycine and the bile acid-CoA is quantitatively converted to [14C]glycobile acid. The [14C]glycobile acid is isolated by solvent extraction and quantitated by liquid scintillation counting. The method is shown to be accurate, highly sensitive, and applicable to a wide variety of bile acids.  相似文献   

5.
6.
7.
8.
The peptidoglycan of Bifidobacterium globosum contains ornithine and lysine alternately in the same position of the peptide subunit. The uridine diphospho-N-acetylmuramyl-alanyl-D-glutamic acid: diamino acid ligase of this organism was purified 700-fold. Since the activities for the incorporation of ornithine and lysine into uridine diphospho-N-acetylmuramyl-tripeptide did not separate during purification and since the incorporation of ornithine is competitively inhibited by lysine and vice versa, both ornithine and lysine are assumed to be incorporated by one single enzyme. Studies on the specificity of the ligase toward analogs of ornithine have shown that the enzyme requires a diamino, monocarboxylic acid with 4–6 carbon atoms. Methylation of the -amino group or hydroxylation of the -carbon atom of lysine decreases the competitive properties of the analog, whereas the substitution of the -methylen group by sulfur (S-2-aminoethyl cysteine) results in a highly competitive compound.Abbreviations BSA bovine serum albumine - MurNAc N-acetyl-muramyl - DA diamino acid - Ala-DGlu--L-DA-DAla-D-Ala pentapeptide - Ala-DGlu--LDA tripeptide - Ala-DGlu dipeptide - DSM Deutsche Sammlung von Mikroorganismen - CEM clostridial enrichment medium  相似文献   

9.
Bile acid CoA ligase (BAL) is responsible for catalyzing the first step in the conjugation of bile acids with amino acids. Sequencing of putative rat liver BAL cDNAs identified a cDNA (rBAL-1) possessing a 51 nucleotide 5'-untranslated region, an open reading frame of 2,070 bases encoding a 690 aa protein with a molecular mass of 75,960 Da, and a 138 nucleotide 3'-nontranslated region followed by a poly(A) tail. Identity of the cDNA was established by: 1) the rBAL-1 open reading frame encoded peptides obtained by chemical sequencing of the purified rBAL protein; 2) expressed rBAL-1 protein comigrated with purified rBAL during SDS-polyacrylamide gel electrophoresis; and 3) rBAL-1 expressed in insect Sf9 cells had enzymatic properties that were comparable to the enzyme isolated from rat liver. Evidence for a relationship between fatty acid and bile acid metabolism is suggested by specific inhibition of rBAL-1 by cis-unsaturated fatty acids and its high homology to a human very long chain fatty acid CoA ligase. In summary, these results indicate that the cDNA for rat liver BAL has been isolated and expression of the rBAL cDNA in insect Sf9 cells results in a catalytically active enzyme capable of utilizing several different bile acids as substrates.  相似文献   

10.
Deoxyribonucleic acid (DNA) ligase has been detected in a DNA membrane fraction extracted from Pneumococcus. The specific activity of the enzyme in this fraction is 10-fold greater than in the remaining cell extract. It remains firmly bound (with other enzymes) to the complex after a purification procedure in which a considerable percentage of the macromolecules are dissociated. The ligase acts in two ways in the DNA membrane fraction in vitro. One, it catalyzes the linkage of small-molecular-weight pieces of newly synthesized DNA into heavier-molecular-weight DNA strands as shown by others (M Gellert, 1976; R. Okazaki, A. Sugino, S. Hirose, T. Okazaki, Y. Imae, R. Kainuma-Kuroda, T. Ogawa, M. Arisawa, and Y. Kurosowa, 1973; B. Olivera and I. Lehman, 14; and A. Sugino, S. Hirose, and R. Okazaki, 1972) and, two, it protects DNA from degradation by deoxyribonucleases. This latter effect is due to a competition between the ability of the nucleases to degrade DNA and the ability of DNA ligase to seal the nicks produced by these degradative enzymes. The ligase acts cooperatively with other enzymes in the DNA membrane fraction to synthesize DNA.  相似文献   

11.
12.
The increasing incidence of bacterial resistance to most available antibiotics has underlined the urgent need for the discovery of novel efficacious antibacterial agents. The biosynthesis of bacterial peptidoglycan, where the MurD enzyme is involved in the intracellular phase of UDP-MurNAc-pentapeptide formation, represents a collection of highly selective targets for novel antibacterial drug design. Structural studies of N-sulfonyl-glutamic acid inhibitors of MurD have made possible the examination of binding modes of this class of compounds, providing valuable information for the lead optimization phase of the drug discovery cycle. Binding free energies were calculated for a series of MurD N-sulphonyl-Glu inhibitors using the linear interaction energy (LIE) method. Analysis of interaction energy during the 20-ns MD trajectories revealed non-polar van der Waals interactions as the main driving force for the binding of these inhibitors, and excellent agreement with the experimental free energies was obtained. Calculations of binding free energies for selected moieties of compounds in this structural class substantiated even deeper insight into the source of inhibitory activity. These results constitute new valuable information to further assist the lead optimization process. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Tom SolmajerEmail:
  相似文献   

13.
T4 RNA ligase as a nucleic acid synthesis and modification reagent   总被引:4,自引:0,他引:4  
Oligodeoxyribonucleotides corresponding to portions of the recognition sequence and analogues thereof of the Eco RI restriction endonuclease have been synthesized using T4 RNA ligase. The successive addition of deoxyribonucleoside-3',5'-bisphosphates to preformed deoxyoligomers allowed stepwise oligodeoxyribonucleotide synthesis. Single strand deoxyoligomers were also joined to one another by the enzyme. In addition, biotin, and fluorophore tetramethylrhodamine, and hexylamine have been added to RNA via an ATP-independent RNA ligase reaction using their ADP adducts as substrates. When the beta-substituent on ADP is a good leaving group, e.g. p-nitrophenol or 4-methylumbelliferol, the RNA product is the 2'-(3')-cyclicphosphate derivative.  相似文献   

14.
Lipoic acid (LA) is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs) and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB) and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1). Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%). Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2). Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.  相似文献   

15.
Live cell imaging is a powerful method to study protein dynamics at the cell surface, but conventional imaging probes are bulky, or interfere with protein function, or dissociate from proteins after internalization. Here, we report technology for covalent, specific tagging of cellular proteins with chemical probes. Through rational design, we redirected a microbial lipoic acid ligase (LplA) to specifically attach an alkyl azide onto an engineered LplA acceptor peptide (LAP). The alkyl azide was then selectively derivatized with cyclo-octyne conjugates to various probes. We labeled LAP fusion proteins expressed in living mammalian cells with Cy3, Alexa Fluor 568 and biotin. We also combined LplA labeling with our previous biotin ligase labeling, to simultaneously image the dynamics of two different receptors, coexpressed in the same cell. Our methodology should provide general access to biochemical and imaging studies of cell surface proteins, using small fluorophores introduced via a short peptide tag.  相似文献   

16.
In a toluene-treated mutant of Escherichia coli K-12 having a temperature-sensitive, conditionally lethal mutation in the structural gene for deoxyribonucleic acid (DNA) ligase, an extensive DNA repair synthesis occurred in X-irradiated cells at the nonpermissive temperature, 42 C. At the permissive temperature, 30 C, nearly normal semiconservative synthesis and limited repair synthesis were observed when DNA ligase was activated by the addition of nicotinamide adenine dinucleotide.  相似文献   

17.
18.
The ATP-dependent carboxylate-amine/thiol ligase superfamily is known to contain enzymes catalyzing the formation of various types of peptide, such as d-alanyl-d-alanine, polyglutamate, and gamma-peptide, but, curiously, no enzyme synthesizing alpha-dipeptides of l-amino acids is known. We attempted to find such an enzyme. By in silico screening based on the consensus sequence of the superfamily followed by an in vitro assay with purified enzyme to avoid the degradation of the peptide(s) synthesized, ywfE of Bacillus subtilis was found to code for the activity forming l-alanyl-l-glutamine from l-alanine and l-glutamine with hydrolysis of ATP to ADP. No AMP was formed, supporting the idea that the enzyme belongs to the superfamily. Surprisingly, the enzyme accepted a wide variety of l-amino acids. Among 231 combinations of l-amino acids tested, reaction products were obtained for 111 combinations and 44 kinds of alpha-dipeptides were confirmed by high-performance liquid chromatography analyses, while no tripeptide or longer peptide was detected and the d-amino acids were inert. From these results, we propose that ywfE encodes a new member of the superfamily, l-amino acid ligase.  相似文献   

19.
DNA ligase III     
DNA ligases are crucial for most DNA transactions, including DNA replication, repair, and recombination. Recently, DNA ligase III (Lig3) has been demonstrated to be crucial for cell survival due to its catalytic function in mitochondria. This review summarizes these recent results and reports on a hitherto unappreciated widespread phylogenetic presence of Lig3 in eukaryotes, including in some organisms before the divergence of metazoa. Analysis of these putative Lig3 homologs suggests that many of them are likely to be found in mitochondria and to be critical for mitochondrial function.  相似文献   

20.
J R Carias  R Julien 《FEBS letters》1975,56(2):303-306
Aurin tricarboxylic acid (A.T.A.), an inhibitor of protein biosynthesis (initiation and elongation steps), acts also as a competitive inhibitor of phenylalanine, in the ATP-PPi exchange and tRNAPhe aminoacylation reactions catalysed by cytoplasmic wheat germ phenylalanine:tRNA ligase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号