首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of hydrated electrons produced during pulse radiolysis habe been used to investigate the binding of a range of alkyl sulphates to bovine-serum albumin. Binding to ten high-affinity sites is detectable for all compounds (methyl, hexyl, octyl, decyl, and dodecyl sulphates) studied. Sodium dodecyl sulphate, in contrast to the other analogues, causes large increases in the reactivity of BSA as a result of further binding. Possible mechanisms for this increase are discussed.  相似文献   

2.
In this paper, the interaction of methylparaben and erythromycin with human serum albumin (HSA) was studied for the first time using spectroscopic methods including Fourier transform infrared (FTIR) spectroscopy and UV absorption spectroscopy in combination with fluorescence quenching under physiological conditions. The binding parameters were evaluated using a fluorescence quenching method. Based on Förster's theory of non‐radiation energy transfer, the binding average distance, r between the donor (HSA) and the acceptor (methylparaben and erythromycin) was evaluated. UV/vis absorption, FTIR, synchronous and 3D spectral results showed that the conformation of HSA was changed in the presence of methylparaben and erythromycin. The thermodynamic parameters were calculated according to the van't Hoff equation and are discussed. The effect of some biological metal ions and site probes on the binding of methylparaben and erythromycin to HSA were further examined. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A notable hysteretic effect has been observed in the interaction of Co(II) with human serum albumin (HSA) or bovine serum albumin (BSA) using UV-Visible spectrometry at physiological pH (7.43), which shows that the binding between Co(II) and HSA or BSA may induce a slow transition of HSA or BSA from the conformation of weaker affinity for Co(II) to one of stronger affinity (A-B transition). The rate constants and activation parameters of this transition were measured and are discussed. It is inferred that such a conformation transition may occur due to the binding of the first Co(II) ion with the peptide segment of N-terminal residues 1-3, which results in a 'hinged movement' of the relatively hydrophobic 'valley' in the IA subdomain. This process leads to a slow conformational transition in the albumins, makes the other binding sites of Co(II) exposed, and shows a positive cooperativity effect. The LMCT (ligand-to-metal charge transition) bands of the Co(II)-HSA and Co(II)-BSA systems also show a kind of hypochromic effect featuring a dipole-dipole interaction mechanism. This phenomenon is rarely reported.  相似文献   

4.
A new microsensor application based on piezoresistive microcantilever technology has been used to study the interaction of anti-bovine serum albumin (a-BSA) with bovine serum albumin (BSA). A thin layer of BSA attached to a glass slide was used as the active sensing layer for the detection of a-BSA in solution. This design produced a large, consistent cantilever deflection when exposed to the analyte. In this system, the cantilever deflection is measured as a simple resistance change in the piezoresistive channel within the cantilever. In a second set of experiments, 3:1 BSA:PEO protein/polymer blended substrates were used as the active sensing layer for the detection of a-BSA in an aerosol delivery. A distinct signature for the analyte, separate from the water vapor carrier, is obtained for this system.  相似文献   

5.
The interaction of potassium dichromate (Cr(VI)) with bovine serum albumin (BSA) was investigated by fluorescence, synchronous fluorescence, resonance light scattering (RLS), ultraviolet-visible absorption, and circular dichroism (CD) spectroscopies under simulated physiological conditions. The experimental results showed that Cr(VI) could quench the intrinsic fluorescence of BSA following a static quenching process, which indicates the formation of a Cr(VI)-BSA complex. The binding constant (KA) and binding site (n) were measured at different temperatures. The spectroscopic results also revealed that the binding of Cr(VI) to BSA can lead to the loosening of the protein conformation and can change the microenvironment and skeleton of BSA.  相似文献   

6.
The binding isotherms of bovine serum albumin with octylglucoside and decyl glucoside were determined at 7 degrees C and 25 degrees C at pH 7.4 and ionic strength 0.1 M. The average number of detergent molecules bound was found to increase with increasing hydrocarbon chain length. Competitive binding indicates that alkylglycosides combine with the same sites as alkyl sulphates. Native bovine serum albumin has about 12 and 10 sites for non-ionic ligands at 7 degrees C and about 15 and 13 sites at 25 degrees C for octyl and decyl glucosides respectively. The values for standard free energy changes--delta G0, were calculated from the intrinsic association constants. Fourier-transformed infrared spectroscopy was used to study the effects of alkyl glucosides on the conformation of albumin. The results obtained indicate that there are no significant changes in protein structure.  相似文献   

7.
The interaction between human serum albumin (HSA) and N(6)-(2-hydroxyethyl)-adenosine (HEA) was investigated using fluorescence spectroscopy in combination with UV absorption spectroscopy for the first time. The results of spectroscopic measurements suggested that the hydrophobic interaction was the predominant intermolecular force stabilizing the complex, which was in good agreement with the results of molecular modelling study. The enthalpy change (DeltaH) and the entropy change (DeltaS) were calculated, according to the Van't Hoff equation, to be -24.05 kJ/mol and 30.23 J/mol/K, respectively. The effects of common ions on the binding constant of the HEA-HSA complex at room temperature were also investigated.  相似文献   

8.
The interaction between the photosensitive antitumour drug, 2(3),9(10),16(17),23(24)‐tetra‐(((2‐aminoethylamino)methyl)phenoxy)phthalocyaninato‐zinc(II) (ZnPc) and bovine serum albumin (BSA) has been investigated using various spectroscopic methods. This work may provide some useful information for understanding the interaction mechanism of anticancer drug–albumin binding and gain insight into the biological activity and metabolism of the drug in blood. Based on analysis of the fluorescence spectra, ZnPc could quench the intrinsic fluorescence of BSA and the quenching mechanism was static by forming a ground state complex. Meanwhile, the Stern–Volmer quenching constant (KSV), binding constant (Kb), number of binding sites (n) and thermodynamic parameters were obtained. Results showed that the interaction of ZnPc with BSA occurred spontaneously via hydrogen bond and van der Waal's force. According to Foster's non‐radioactive energy transfer theory, the energy transfer from BSA to ZnPc occurred with high possibility. Synchronous fluorescence and circular dichroism (CD) spectra also demonstrated that ZnPc induced the secondary structure of and conformation changes in BSA, especially α helix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The binding reactions of lomefloxacin-copper(II) complex (LMF-Cu) or LMF to bovine serum albumin (BSA) in physiological solution were investigated by multi-spectroscopy. The binding constant, the number of binding sites and the binding distance between LMF-Cu or LMF and BSA were obtained by a fluorescence quenching method and according to the mechanism of Forster-type dipole-dipole non-radioactive energy-transfer, respectively. Enthalpy and entropy changes for two systems were calculated to be -7.970 kJ mol(-1) and 47.438 J mol(-1)K(-1) for LMF-BSA, -12.469 kJ mol(-1) and 33.542 J mol(-1)K(-1) for LMF-Cu-BSA, respectively. The highly positive values observed for the entropy give evidence for a strong interaction. The values of DeltaH and DeltaS in two systems are similar, indicating that electrostatic interactions in two systems play major role. The effect of LMF-Cu or LMF on the conformation of BSA was also analyzed by synchronous fluorescence, three-dimensional fluorescence and circular dichroism spectra. The results showed that the presence of Cu ion in LMF-Cu can affect the conformation of BSA to some degree. All the results revealed that the addition of copper ion promotes the interaction of lomefloxacin with bovine serum albumin.  相似文献   

10.

Background

Curcumin has emerged to be utilized as a superb beneficial agent, due to its naturally occurring anti-oxidant, anti-inflammatory and anti-carcinogenic property.

Methods

The interaction of curcumin with human serum albumin, the main in vivo transporter of exogenous substances, was investigated using absorption spectroscopy, steady-state fluorescence, excited state life-time studies and circular dichroism spectroscopy.

Results

Isothermal titration calorimetry techniques inferred one class of binding site with binding constant ~1.74×105M?1 revealing a strong interaction. The binding profile was analyzed through the evaluation of the thermodynamic parameters, which indicated the involvement of hydrophobic interactions (burial of non-polar group). Fluorescence lifetime of tryptophan residue was observed to decrease to 1.94 ns from 2.84 ns in presence of Curcumin. Percentage of α helicity of human serum albumin was also reduced significantly upon binding with curcumin as evidenced by circular dichroism measurement leading to conformational modification of the protein molecule.

Conclusions

On the basis of such complementary results, it may be concluded that curcumin shows strong binding affinity for human serum albumin, probably at the hydrophobic cavities of the protein and at or around the tryptophan residue. Molecular Docking analysis of HSA and curcumin provided light on the number of binding sites at an atomic level, which were already determined at a molecular level in spectroscopic measurements. Our study unfolds the modes of interaction of curcumin with human serum albumin in the light of different biophysical techniques and molecular modeling analysis.
  相似文献   

11.
12.
The reactions of a few representative gold(III) complexes -[Au(ethylenediamine)2]Cl3, [Au(diethylentriamine)Cl]Cl2, [Au(1,4,8,11-tetraazacyclotetradecane)](ClO4)2Cl, [Au(2,2',2'-terpyridine)Cl]Cl2, [Au(2,2'-bipyridine)(OH)2][PF6] and the organometallic compound [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine-H)(OH)][PF6]- with BSA were investigated by the joint use of various spectroscopic methods and separation techniques. Weak metal-protein interactions were revealed for the [Au(ethylenediamine)2]3+ and [Au(1,4,8,11-tetraazacyclotetradecane)]3+ species, whereas progressive reduction of the gold(III) centre was observed in the cases of [Au(2,2'-bipyridine)(OH)2]+ and [Au(2,2',2'-terpyridine)Cl]2+. In contrast, tight metal-protein adducts are formed when BSA is reacted with either [Au(diethylentriamine)Cl]2+ and [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine-H)(OH)]+. Notably, binding of the latter complex to serum albumin results in the appearance of characteristic CD bands in the visible spectrum. It is suggested that adduct formation for both of these gold(III) complexes occurs through coordination at the level of surface histidines. Stability of these gold(III) complexes/serum albumin adducts was tested under physiologically relevant conditions and found to be appreciable. Metal binding to the protein is tight; complete detachment of the metal from the protein has been achieved only after the addition of excess potassium cyanide. The implications of the present results for the pharmacological activity of these novel cytotoxic agents are discussed.  相似文献   

13.
1. The interaction of cefotaxime with the serum albumin of several mammalian species; horses, swine, sheep, dogs and rabbits, was studied comparatively. The technique of ultrafiltration and spectrophotometric determination of the free antibiotic in the filtrate was used. 2. Binding percentages, which vary according to the species studied, were found to be higher in swine and rabbit albumins (between 92 and 81%) and lower for sheep, dog and horse albumins (between 67 and 52%). 3. The number of binding sites is usually close to 2; in the case of the horse it is 2.43. The apparent binding constants are: swine, 1.61 x 10(4) M-1; rabbit, 1.19 x 10(4) M-1; sheep, 2.33 x 10(3) M-1; dog, 2.00 x 10(3) M-1; horse, 1.42 x 10(3) M-1. The Scatchard model was used for data analysis. 4. Possible consequences of this interaction regarding clinical use of cefotaxime on different species are discussed.  相似文献   

14.
The binding characteristics of the interaction between 3-(2-cyanoethyl) cytosine (CECT) and human serum albumin (HSA) were investigated using fluorescence, UV absorption spectroscopic and molecular modeling techniques under simulative physiological conditions. The intrinsic fluorescence intensity of HSA was decreased with the addition of CECT. The fluorescence data handled by Stern–Volmer equation proved that the quenching mechanism of the interaction between CECT and HSA was a static quenching procedure. The binding constants evaluated utilizing the Lineweaver–Burk equation at 17, 27 and 37?°C, were 2.340?×?104, 2.093?×?104 and 1.899?×?104?L?mol?1, respectively. The thermodynamic parameters were calculated according to van’t Hoff equations. Negative enthalpy (ΔH) and positive entropy (ΔS) values indicated that both hydrogen bond and hydrophobic force played a major role in the binding process of CECT to HSA, which was consistent with the results of the molecular modeling study. In addition, the effect of other ions on the binding constant of CECT-HSA was examined.  相似文献   

15.
The study on the interaction of artemisinin with bovine serum albumin (BSA) has been undertaken at three temperatures, 289, 296 and 303 K and investigated the effect of common ions and UV C (253.7 nm) irradiation on the binding of artemisinin with BSA. The binding mode, the binding constant and the protein structure changes in the presence of artemisinin in aqueous solution at pH 7.40 have been evaluated using fluorescence, UV–vis and Fourier transform infrared (FT-IR) spectroscopy. The quenching constant Kq, Ksv and the association constant K were calculated according to Stern–Volmer equation based on the quenching of the fluorescence of BSA. The thermodynamic parameters, the enthalpy (ΔH) and the entropy change (ΔS) were estimated to be −3.625 kJ mol−1 and 107.419 J mol−1 K−1 using the van’t Hoff equation. The displacement experiment shows that artemisinin can bind to the subdomain IIA. The distance between the tryptophan residues in BSA and artemisinin bound to site I was estimated to be 2.22 nm using Föster's equation on the basis of fluorescence energy transfer. The decreased binding constant in the presence of enough common ions and UV C exposure, indicates that common ions and UV C irradiation have effect on artemisinin binding to BSA.  相似文献   

16.
Palladium(II) complexes are potential antitumor metallodrugs for their chemical resemblance to platinum(II) complexes. Two palladium(II) complexes (1 and 2) in the formula of [PdLnCl] [L1 = N-(tert-butoxycarbonyl)-l-methionine-N′-8-quinolylamide, L2 = L-alanine-N′-8-quinolylamide] have been synthesized accordingly. The structures of the complexes were fully characterized by X-ray crystallography. The palladium(II) center in 1 is coordinated by two N atoms and an S atom from L1 with one chloride anion as the leaving group; while that in 2 is coordinated by three N atoms from L2 with one chloride anion as the leaving group. The interaction between complex 1 and human serum albumin (HSA) has been investigated using fluorescence and circular dichroism spectroscopies. The complex seems to react with HSA chiefly through hydrophobic and electrostatic interactions, and it does not alter the α-helical nature of HSA. The cytotoxicity of these complexes has been tested against the human cervical cancer (HeLa), human mammary cancer (MCF-7), and human lung cancer (A-549) cell lines. Complex 1 displays a cytotoxic activity comparable to that of cisplatin, but complex 2 is less active than cisplatin.  相似文献   

17.
18.
Interaction of oxacillin, cloxacillin, dicloxacillin, phenoxymethylpenicillin, methicillin, nafcillin and benzylpenicillin with human serum albumin (HSA) was studied with flow microcalorimetry and differential scanning calorimetry. The measured thermodynamic parameters of complex formation between the penicillins and HSA were compared with similar characteristics of their binding to bovine serum albumin. It was shown that there were species differences between these two globular proteins in their interaction with the above antibiotics in relation to both the number of the biopolymer active sites and the nature of the molecular forces in the complex formation. The effect of the first bound molecule of oxacillin, cloxacillin, dicloxacillin, nafcillin, phenoxymethylpenicillin and benzylpenicillin on HSA conformation was observed. It was demonstrated that there was thermostabilization of HSA on its interaction with the above drugs with preserving cooperative nature of thermal denaturation of the complexes in relation to HSA melting.  相似文献   

19.
In the present study, the interaction between the HSA and MnCORM in vitro under physiological conditions, was investigated through ultraviolet-visible (UV-vis) absorption, fluorescence, time-resolved fluorescence, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic techniques and in silico molecular docking methods. Binding parameters such as the binding constant, number of binding sites and binding force were obtained from the fluorescence data. Thermodynamic interaction revealed that the reaction was spontaneous (ΔG < 0) and hydrogen bond and van der Waals interaction were primarily involved in the binding. The changes induced in the secondary structure conformation due to the MnCORM interaction were monitored using CD and FT-IR spectroscopic techniques. The results showed reduction in α-helix conformation and corresponding increase in β-sheet and unordered structures due to slight unfolding. The time-resolved fluorescence decay confirmed the static quenching mechanism of the MnCORM. The molecular docking studies revealed that the MnCORM interacted at Sudlow’s site II of domain IIIA through hydrogen bond and van der Waals interactions. In order to understand the drug distribution and elimination, studies on the drug molecule interaction with HSA are vital. Therefore, it is evident that MnCORM interacts with HSA through ground state complex formation and thus suitable for in vivo delivery.  相似文献   

20.
The binding interaction between quinapril (QNPL) and bovine serum albumin (BSA) in vitro has been investigated using UV absorption spectroscopy, steady-state fluorescence spectroscopic, synchronous fluorescence spectroscopy, 3D fluorescence spectroscopy, Fourier transform infrared spectroscopy, circular dichroism, and molecular docking methods for obtaining the binding information of QNPL with BSA. The experimental results confirm that the quenching mechanism of the intrinsic fluorescence of BSA induced by QNPL is static quenching based on the decrease in the quenching constants of BSA in the presence of QNPL with the increase in temperature and the quenching rates of BSA larger than 1010 L mol?1 s?1, indicating forming QNPL–BSA complex through the intermolecular binding interaction. The binding constant for the QNPL–BSA complex is in the order of 105 M?1, indicating there is stronger binding interaction of QNPL with BSA. The analysis of thermodynamic parameters together with molecular docking study reveal that the main binding forces in the binding process of QNPL with BSA are van der Waal’s forces and hydrogen bonding interaction. And, the binding interaction of BSA with QNPL is an enthalpy-driven process. Based on Förster resonance energy transfer, the binding distance between QNPL and BSA is calculated to be 2.76 nm. The results of the competitive binding experiments and molecular docking confirm that QNPL binds to sub-domain IIA (site I) of BSA. It is confirmed there is a slight change in the conformation of BSA after binding QNPL, but BSA still retains its secondary structure α-helicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号