首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Susan Eapen 《Protoplasma》1976,89(1-2):149-155
Summary Haploid tobacco (Nicotiana tabacum L.) cell suspensions subjected to varying doses of gamma and UV rays showed LD50 of about 3.7 Krad and 2,700 ergs/mm2 respectively. On exposure of UV-irradiated cells to visible light, an increase in suvival was observed. Regeneration of shoot buds from gamma-irradiated cells was completely inhibited at a dose of 2 Krad, while the same phenomenon with UV-irradiated cells was observed at 8,000 ergs/mm2. Regeneration pattern was similar for both photoreactivated and non-photoreactivated cells.  相似文献   

2.
Laser photoacoustic spectroscopy continuously quantified the ethylene (C2H4) produced by strawberry flowers and fruits developing in planta. C2H4 was first detected as flower buds opened and exhibited diurnal oscillations (to approximately 200 pl flower?1 h?1) before petal abscission. Exogenous application of silver thiosulphate (STS) to detached flowers inhibited petal abscission and flower senescence. In fruit, C2H4 production was maintained at a ‘low level’ (10–60 pl fruit?1 h?1) until fruit expanded when levels increased in a diurnal pattern (to 200 pl fruit?1 h?1). After expansion, C2H4 production declined to a low level until fruit attained the red‐ripe stage for at least 24 h. After this time, C2H4 levels increased linearly (no diurnal fluctuation) to approximately 1 nL fruit?1 h?1. Twenty‐four hours after the re‐initiation of C2H4 production by red fruit, CO2 levels increased approximately three‐fold, indicative of a respiratory climacteric. STS applied to fruits developing in planta and dissected fruit parts ex situ established that C2H4 production is regulated by negative feedback until fruits had expanded. The C2H4 produced by red‐ripe fruit was regulated by positive feedback. Anti‐1‐amino‐cyclopropane‐1‐carboxylic acid oxidase IgG localization identified immunoreactive antigens of 40 and 30 kDa (Mr) within the fruit achenes of expanding and red‐ripe fruit. Analysis of dissected fruit showed that seed C2H4 accounts for 50% the C2H4 that is detectable from ripe fruit.  相似文献   

3.
In 4 cultivars of tomato (Lycopersicon esculentum Mill.), theearly detachment of fruits advanced ripening and considerablyreduced the threshold value of endogenous C2H4. This indicatesa supply from the vegetative parts of (a) labile ripening-inhibitingsubstance(s) antagonizing the action of C2H4. The endogenous level of CO2 increased shortly after the risein C2H4, and maximum levels of C2H4 and CO2 occurred almostsimultaneously. The activity of PE showed no connection with ripening, but PGactivity did not occur until the onset of ripening. However,this activity increased at considerably higher C2H4 concentrationsthan the rise in WSP, and was independent of the possible presenceof ripening inhibitor(s). Hence PG is considered not to be involvedin the primary events leading to fruit ripening. Exposure of fruits to different C2H4 concentrations in the ambientatmosphere also showed PG activity to increase only after therise in WSP had started. Other pectin degrading or synthesizingenzymes may be involved. In the non-ripening Rin mutant of cv. Rutgers, no rise occurredin C2H4, CO2, WSP, and PG activity. 1 Present address: Department of Agricultural Chemistry, Facultyof Agriculture, Kochi University, Otsu 200 Monobe, Nangoku City,Kochi Prefecture 783, Japan. (Received February 16, 1978; )  相似文献   

4.
5.
Effect of some plant growth regulator treatments on apple fruit ripening   总被引:2,自引:0,他引:2  
The activity of IAA oxidase (IAAox), peroxidases (POD), and polyphenoloxidases (PPO), as affected by different pre-harvest growth regulator treatments (ABA, AVG, NAA, PDJ), was determined in on-tree ripening apples (cv. Golden Delicious) before and during the ethylene climacteric. The production of ethylene was inhibited by AVG and delayed by NAA, whereas ABA and PDJ treatments caused, in the on-tree remaining fruits, a marked fruit drop and a decrease or a slight increase in ethylene levels respectively. While all treatments reduced POD activity, jasmonate increased IAAox and PPO activity. The inhibitory effect of NAA on all enzyme activity seems related to interference with C2H2 action or to a reduced sensitivity of the fruit abscission zone tissues to the hormone. The observed high fruit drop induced by ABA treatment made it impossible to detect differences in enzyme activity. AVG-treated fruits showed no substantial effects on IAAox and PPO activity in comparison to the control, a finding that seems to be related to a delay in all senescence processes caused by the very low level of the inhibited ethylene production. In control fruits IAAox activity increased during the initial ripening stages and decreased thereafter, POD activity increased throughout ripening and PPO showed little variation.  相似文献   

6.
Fruit ripening can be seen as an oxidative phenomenon that, depending on its intensity, may directly influence fruit quality. At relatively higher altitudes, coffee fruit ripening takes place through an extended period of time, which positively affects coffee quality. However, little is known about the oxidative processes and antioxidant metabolism of coffee fruits grown at these altitudes. Thus, this study aimed to characterise coffee fruit development from trees grown at two contrasting altitudes (965 m and 1310 m) through phenological analysis and antioxidant metabolism evaluation (Hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents; superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) activity and gene expression). Phenological analysis showed that altitude extended coffee reproductive cycle by a month and promoted a higher ripening uniformity, with 100% of fruits at the ideal ripening stage for harvest (cherry stage) in the last evaluation time. H2O2 and malondialdehyde contents revealed that in both altitudes fruits went through oxidative damage, though in an early manner at the lower altitude. Although gene expression and enzyme activity did not well correlate, the delay in the oxidative damage in fruits of the higher altitude was probably a result of an increased efficiency in H2O2 neutralisation due to the higher activity levels of the APX and CAT enzymes, mainly in green fruits. Thus, a better removal of reactive oxygen species in coffee fruits from plants grown at higher altitudes is involved in the extension of the coffee reproductive cycle, contributing to the production of a higher cup quality coffee.  相似文献   

7.
A vacuum infiltration technique was used to apply an anti-auxin, α-(p-chlorophenoxy) isobutyric acid to mature green pears (Pyrus communis var. Bartlett). Application of α-(p-chlorophenoxy) isobutyric acid, at 0.02, 0.2, and 2.0 mm progressively accelerated the onset of chlorophyll degradation, softening, and CO2 evolution. The action of α(p-chlorophenoxy) isobutyric acid is apparently independent of ethylene, since the auxin analogue depressed ethylene evolution and could overcome ethylene deficiency in fruit ripening under hypobaric conditions.  相似文献   

8.
Endogenous peroxide levels in pear fruit (Pyrus communis) were measured using a titanium assay method, and were found to increase during senescence in both Bartlett and Bosc varieties. Application of glycolic acid or xanthine, serving as substrates for the formation of H2O2, increased the peroxide content of the tissue and accelerated the onset of ripening, as measured by increased softening and ethylene evolution. Application of ethylene also induced increased peroxide levels. Ripening processes were similarly promoted when peroxides were conserved by inhibiting the activity of catalase with hydroxylamine or potassium cyanide. By comparison, the inhibition of glycolate oxidase with alphahydroxy-2-pyridinemethanesulfonic acid decreased the peroxide content of the tissue and delayed the onset of ripening. These results indicate that the onset of ripening correlates with the peroxide content of fruit tissues as occurring under normal conditions or as influenced by the treatments. Hydrogen peroxide may be involved in oxidative processes required in the initiation and the promotion of ripening.  相似文献   

9.
Protein synthesis in relation to ripening of pome fruits   总被引:20,自引:20,他引:0       下载免费PDF全文
Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis.  相似文献   

10.
Cell wall enzymes at different stages of fruit development were compared between the normal Rutgers and the isogenic nonripening rin tomato. In Rutgers, a detectable increase in polygalacturonase (PG) activity was observed 6 days prior to the respiratory climacteric (43 days postanthesis). The maximum increase in PG activity occurred after C2H2 and CO2 production reached their peak. However, in the rin tomato, no change in PG activity was noted up to 100 days postanthesis. Cellulase activity increased in Rutgers fruits prior to the respiratory climacteric and continued to increase thereafter. Similar changes in cellulase activity were also observed in the nonclimacteric rin fruits. Short term ethylene treatment (2 days) of 36-day-old rin fruits increased cellulase activity, but had no effect on PG activity. Detectable changes in other parameters of ripening, such as chlorophyll loss and softening, also occurred prior to the respiratory climacteric. These results suggest that the failure of rin fruits to ripen is related to their low PG activity during maturity as compared with normal fruits.  相似文献   

11.
The investigation was carried out to evaluate the effect of different doses of gamma rays (100, 200, 300, 400, 500 Gy and zero doses as control) on various morphological aspects of Abelmoschus esculentus. A comparison of the results of different doses with control showed that gamma irradiation significantly affected various parameters. Days to germination were almost the same as compared to control, but 400 Gy took minimum days to germination. Germination % was 100% both in control and the irradiated plants. 100 Gy took minimum days for flower initiation as compared to control and other doses. Fruit initiation early occurred in 100Gy as compared to other doses, and fruit maturation occurred early in 300 Gy as compared to control. Plant height was significantly increased at 500 Gy as compared to control. Number of fruits per plant was significantly decreased at 200 Gy as compared to control. Fruit length decreased in all doses but in control fruit length was maximum. Number of seeds per fruit was maximum at control, fresh and dry weights of seeds were increased in control as compared to other doses. The number of nodes decreased in all doses but in the control the numbers of nodes were maximum. Branches were increased in100Gy as compare to 200, 300,400,500 Gy as well in control. Numbers of leaves were increased in 300 Gy as compared to other doses.  相似文献   

12.
Auxin inhibition of ripening in bartlett pears   总被引:11,自引:3,他引:8       下载免费PDF全文
The effect of indoleacetic acid and 2,4-dichlorophenoxyacetic acid on the ripening of intact mature-green pears (Pyrus communis var. Bartlett) was investigated using a vacuum infiltration technique.  相似文献   

13.
A soluble oxalate oxidase activity has been detected in homogenate of ripened fruits of strawberry (Fragaria ananassa), as confirmed by the stoichiometric relationship between the disappearance of oxalate and utilization of dissolved O2, and generation of H2O2. The enzyme was purified up to apparent homogeneity and had a Mr of 119 kDa with two identical subunits. Km for oxalate was found to be 1.67×10?3 M, and Vmax of 0.741 mmoles ml?1min?1. It retained 76% of its initial activity, when heated at 60°C for 30 min. The enzyme was found to be glycoprotein in nature. The significant increase in the enzyme activity of ripened fruits compared to that in pre-ripened fruit, and decrease in oxalate level (?0.927 correlation with oxalate oxidase) with advancement of ripening indicated the physiological role of enzyme in fruit ripening.  相似文献   

14.
This experiment assessed the biochemical changes in fenugreek plants exposed to gamma radiation. Two pot experiments were carried out during two growing seasons of 2015 and 2016. Seeds were subjected to five doses of gamma irradiation (25, 50, 100, 200 and 400?Gy) and were immediately planted into soil pots in a greenhouse. The experimental analysis was performed in M1 and M2 generations. Significant differences between irradiated and control plants were detected for most studied characters in M1 and M2 generations. It was demonstrated that low doses of gamma irradiation led to gradually increases in growth, yield characters, leaf soluble protein concomitantly with increases in the contents of phenolic and flavonoids compounds particularly at 100?Gy. These changes were accompanied by a substantial increase in ascorbic acid, α-tocopherol and retinol contents. Proline content was increased under all doses of gamma rays in M1 generation and the highest amount of proline was obtained at 200?Gy with visible decrease in M2 generation under the same dose. Meanwhile, the highest dose of gamma radiation (400?Gy) decreased all the studied parameters in both mutagenic generations as compared with control plants. In addition, gamma irradiation doses induced changes in DNA profile on using five primers and caused the appearance and disappearance of DNA polymorphic bands with variation in their intensity. These findings confirm the effectiveness of relatively low doses of gamma rays on improving the physiological and biochemical criteria of fenugreek plants.  相似文献   

15.
Recent studies suggest that fruit cuticle is an important contributing factor to tomato (Solanum lycopersicum) fruit shelf life and storability. Moreover, it has been hypothesized that variation in fruit cuticle composition may underlie differences in traits such as fruit resistance to desiccation and microbial infection. To gain a better understanding of cuticle lipid composition diversity during fruit ontogeny and to assess if there are common features that correlate with ripening, we examined developmental changes in fruit cuticle wax and cutin monomer composition of delayed‐ripening tomato fruit mutants, ripening inhibitor (rin) and non‐ripening (nor) and delayed‐ripening landrace Alcobaça. Previous reports show that fruit ripening processes such as climacteric ethylene production, cell wall degradation and color change are significantly delayed, or do not occur, in these lines. In the study presented here, however, we show that fruits from rin, nor and Alcobaça have cuticle lipid compositions that differ significantly from normal fruits of Ailsa Craig (AC) even at very early stages in fruit development, with continuing impacts throughout ripening. Moreover, rin, nor and the Alcobaça lines show quite different wax profiles from AC and each other throughout fruit development. Although cutin monomer composition differed much less than wax composition among the genotypes, all delayed‐ripening lines possessed higher relative amounts of C18 monomers than AC. Together, these results reveal new genetic associations between cuticle and fruit development processes and define valuable genetic resources to further explore the importance of cuticle in fruit shelf life.  相似文献   

16.
Abstract At 23°C, both C2H4 and CO2 stimulated the germination of freshly imbibed upper cocklebur (Xanthium pennsylvanicum Wallr.) seeds, but C2H4, unlike CO2, changed to an inhibitor of germination under some soaking conditions. However, when seeds were pre-soaked for more than several hours at 23 °C prior to treatment, C2H4 strongly inhibited their germination at 33 °C, the degree of inhibition increasing with the duration of pre-soaking. Maximum inhibition occurred at 1–3 cm3 m?3 C2H4 when seeds were pre-soaked for 1 week; further increases of C2H4 concentration and pre-soaking period decreased the inhibitory effect. C2H4 was synergistic with CO2 when C2H4 promoted germination, whereas it was antagonistic when inhibitory. Such a transition of the C2H4 action occurred at ca. 27 °C. Also 1-andnocyclopropane-1-carboxylic acid, a C2H4 precursor, inhibited the germination of pre-soaked seeds at 33 °C, although it promoted the germination at 23 °C. When pre-soaked seeds were prepared for germination by chilling at 8 °C for 3 d, the inhibitory effect of C2H4 on the subsequent germination was manifested even at 23 °C. The reversal of the C2H4 action from promotion to inhibition in cocklebur seed germination is discussed in relation to the engagement of two respiratory pathways in the imbibed seeds.  相似文献   

17.
Anthers of snapmelon (Cucumis melo L. var. momordica) were irradiated with varied doses of gamma rays (150, 200, 250, 300 and 350 Gray). Then pollen from irradiated anthers was used for pollinating female flowers. Results revealed that 250 Gray of gamma-irradiation was successful in inducing parthenogenesis and fruit development, whereas, low (150 and 200 Gray) or high (300 and 350 Gray) irradiation doses were not effective in inducing haploid embryos. Embryos at a range of developmental stages were dissected from fruits harvested after 21 days of pollination and cultured on E20A medium. Among these embryos cultured, only cotyledonary embryos germinated into plantlets. Chromosome counting, performed on the roots of regenerated plants, showed the haploid level (n = 12). Ploidy analysis using flow cytometer, measurement of stomatal cells and counting of chloroplast in the guard cells also corroborated the haploid nature of regenerated plants.  相似文献   

18.
To examine in more detail the mechanisms of cocklebur (Xanthium pennsylvanicum Wallr.) seed germination and rice (Oryza sativa L. cv. Sasanishiki) coleoptile elongation that were responsive to both C2H4 and CO2, the effects of NBD (2,5-norbornadiene), a cyclic olefin known as a competitive inhibitor of C2H4, on those phenomena were tested under various conditions. NBD strongly inhibited germination of cocklebur seeds and their axial and cotyledonary growth. The NBD effects were significantly negated by endogenously evolved and exogenously applied CO2 regardless of incubation temperature. Similarly, the inhibitory NBD effect was negated by C2H4 at 23°C, but at 33°C a low concentration (3 1/L) of C2H4 rather enhanced the inhibitory NBD effect. This phenomenon reflected the growth responses of the tip zone of axial tissues in cocklebur seeds to NBD and C2H4, in which both gases were antagonistic in regulating the axial growth at 23°C but additive in inhibiting it at 33°C. Maximal negation of these inhibitory NBD effects was brought about by simultaneous application of CO2 and C2H4. Similarly, elongation of rice coleoptiles was suppressed by NBD, and when they were immature, its inhibitory action was counteracted by both C2H4 and CO2, especially during simultaneous application. However, the inhibitory NBD effect was completely negated by C2H4 applied alone at concentrations above 500 1/L regardless of the physiological age of coleoptiles. These inhibitory NBD effects are additional evidence suggesting that C2H4 acts as a growth regulator in both cocklebur seed germination and rice coleoptile elongation. That NBD was capable of counteracting CO2 action in some cases but was incapable of negating inhibitory C2H4 action, such as that observed in cocklebur seeds, suggests that NBD acts with some side effects besides being a competitive inhibitor of C2H4 actions.  相似文献   

19.
Three genes of the lipoxygenase (LOX) family in peach (Prunus persica var. compressa cv. Ruipan 4) were cloned, and their expression patterns during fruit ripening were analyzed using real-time quantitative PCR. All of the three peach LOX genes had been expressed during fruit ripening; however, their expression patterns were significantly different. During the normal ripening of peach fruits, the expression levels of PpLox1, PpLox2 and PpLox3 increased in varying degrees accompanying upsurge of ethylene evolution. After treated by methyl jasmonic acid (MeJA), the peak of ethylene releasing occurred in advance, and the declining rate of fruit hardness was accelerated, the expression level of the three peach LOX genes in fruits markedly enhanced at the early stage of storage, but significantly decreased at the late storage stage. So, it could be suggested that all three LOXs relate to fruit ripening; however, their functions might be different. PpLox1 expression increase along with the upsurge of ethylene evolution in both control and MeJA-treated peach fruits suggested that PpLox1 probably played a major role in the peach fruit ripening. Expression peak of PpLox2 appeared at the 1 DAH (days after harvest) in both control and MeJA-treated peach fruits, while obvious changes in ethylene evolution and fruit hardness was not observed, which suggested that the rise of PpLox2 expression can be induced by certain stimulation related to ripening, such as harvesting stress and MeJA treatment. The expression of PpLox3 kept a lower level in the natural ripening fruits, whereas raced up at the early stage of storage in the fruits treated with MeJA, which indicated that PpLox3 was expressed inductively and had minor roles during the normal ripening of peach fruits, but when encountered with external stimulation, its expression level would rapidly enhance and accelerate the ripening of peach fruit.  相似文献   

20.

Background and Aims

The mechanisms involving light control of vitamin C content in fruits are not yet fully understood. The present study aimed to evaluate the impact of fruit and leaf shading on ascorbate (AsA) accumulation in tomato fruit and to determine how fruit sugar content (as an AsA precursor) affected AsA content.

Methods

Cherry tomato plants were grown in a glasshouse. The control treatment (normally irradiated fruits and irradiated leaves) was compared with the whole-plant shading treatment and with leaf or fruit shading treatments in fruits harvested at breaker stage. In a second experiment, the correlation between sugars and AsA was studied during ripening.

Key Results

Fruit shading was the most effective treatment in reducing fruit AsA content. Under normal conditions, AsA and sugar content were correlated and increased with the ripening stage. Reducing fruit irradiance strongly decreased the reduced AsA content (−74 %), without affecting sugars, so that sugar and reduced AsA were no longer correlated. Leaf shading delayed fruit ripening: it increased the accumulation of oxidized AsA in green fruits (+98 %), whereas it decreased the reduced AsA content in orange fruits (−19 %), suggesting that fruit AsA metabolism also depends on leaf irradiance.

Conclusions

Under fruit shading only, the absence of a correlation between sugars and reduced AsA content indicated that fruit AsA content was not limited by leaf photosynthesis or sugar substrate, but strongly depended on fruit irradiance. Leaf shading most probably affected fruit AsA content by delaying fruit ripening, and suggested a complex regulation of AsA metabolism which depends on both fruit and leaf irradiance and fruit ripening stage.Key words: Ascorbate, fruit quality, irradiance, shading, Solanum lycopersicon, sugars, tomato, vitamin C  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号