首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Small heat shock proteins (sHsps) are oligomers that perform a protective function by binding denatured proteins. Although ubiquitous, they are of variable sequence except for a C-terminal approximately 90-residue "alpha-crystallin domain". Unlike larger stress response chaperones, sHsps are ATP-independent and generally form polydisperse assemblies. One proposed mechanism of action involves these assemblies breaking into smaller subunits in response to stress, before binding unfolding substrate and reforming into larger complexes. Two previously solved non-metazoan sHsp multimers are built from dimers formed by domain swapping between the alpha-crystallin domains, adding to evidence that the smaller subunits are dimers. Here, the 2.5A resolution structure of an sHsp from the parasitic flatworm Taenia saginata Tsp36, the first metazoan crystal structure, shows a new mode of dimerization involving N-terminal regions, which differs from that seen for non-metazoan sHsps. Sequence differences in the alpha-crystallin domains between metazoans and non-metazoans are critical to the different mechanism of dimerization, suggesting that some structural features seen for Tsp36 may be generalized to other metazoan sHsps. The structure also indicates scope for flexible assembly of subunits, supporting the proposed process of oligomer breakdown, substrate binding and reassembly as the chaperone mechanism. It further shows how sHsps can bind coil and secondary structural elements by wrapping them around the alpha-crystallin domain. The structure also illustrates possible roles for conserved residues associated with disease, and suggests a mechanism for the sHsp-related pathogenicity of some flatworm infections. Tsp36, like other flatworm sHsps, possesses two divergent sHsp repeats per monomer. Together with the two previously solved structures, a total of four alpha-crystallin domain structures are now available, giving a better definition of domain boundaries for sHsps.  相似文献   

2.
Selengut JD 《Biochemistry》2001,40(42):12704-12711
MDP-1 is a eukaryotic magnesium-dependent acid phosphatase with little sequence homology to previously characterized phosphatases. The presence of a conserved motif (Asp-X-Asp-X-Thr) in the N terminus of MDP-1 suggested a relationship to the haloacid dehalogenase (HAD) superfamily, which contains a number of magnesium-dependent acid phosphatases. These phosphatases utilize an aspartate nucleophile and contain a number of conserved active-site residues and hydrophobic patches, which can be plausibly aligned with conserved residues in MDP-1. Seven site-specific point mutants of MDP-1 were produced by modifying the catalytic aspartate, serine, and lysine residues to asparagine or glutamate, alanine, and arginine, respectively. The activity of these mutants confirms the assignment of MDP-1 as a member of the HAD superfamily. Detailed comparison of the sequence of the 15 MDP-1 sequences from various organisms with other HAD superfamily sequences suggests that MDP-1 is not closely related to any particular member of the superfamily. The crystal structures of several HAD family enzymes identify a domain proximal to the active site responsible for important interactions with low molecular weight substrates. The absence of this domain or any other that might perform the same function in MDP-1 suggests an "open" active site capable of interactions with large substrates such as proteins. This suggestion was experimentally confirmed by demonstration that MDP-1 is competent to catalyze the dephosphorylation of tyrosine-phosphorylated proteins.  相似文献   

3.
Computer analysis of DNA polymerase protein sequences revealed previously unidentified conserved domains that belong to two distinct superfamilies of phosphoesterases. The alpha subunits of bacterial DNA polymerase III and two distinct family X DNA polymerases are shown to contain an N-terminal domain that defines a novel enzymatic superfamily, designated PHP, after polymerase and histidinol phosphatase. The predicted catalytic site of the PHP superfamily consists of four motifs containing conserved histidine residues that are likely to be involved in metal-dependent catalysis of phosphoester bond hydrolysis. The PHP domain is highly conserved in all bacterial polymerase III alpha subunits, but in proteobacteria and mycoplasmas, the conserved motifs are distorted, suggesting a loss of the enzymatic activity. Another conserved domain, found in the small subunits of archaeal DNA polymerase II and eukaryotic DNA polymerases alpha and delta, is shown to belong to the superfamily of calcineurin-like phospho-esterases, which unites a variety of phosphatases and nucleases. The conserved motifs required for phospho-esterase activity are intact in the archaeal DNA polymerase subunits, but are disrupted in their eukaryotic orthologs. A hypothesis is proposed that bacterial and archaeal replicative DNA polymerases possess intrinsic phosphatase activity that hydrolyzes the pyrophosphate released during nucleotide polymerization. As proposed previously, pyrophosphate hydrolysis may be necessary to drive the polymerization reaction forward. The phosphoesterase domains with disrupted catalytic motifs may assume an allosteric, regulatory function and/or bind other subunits of DNA polymerase holoenzymes. In these cases, the pyrophosphate may be hydrolyzed by a stand-alone phosphatase, and candidates for such a role were identified among bacterial PHP superfamily members.  相似文献   

4.
Nine proteins have been assigned to date to the superfamily of mammalian small heat shock proteins (sHsps): Hsp27 (HspB1, Hsp25), myotonic dystrophy protein kinase-binding protein (MKBP) (HspB2), HspB3, alphaA-crystallin (HspB4), alphaB-crystallin (HspB5), Hsp20 (p20, HspB6), cardiovascular heat shock protein (cvHsp [HspB7]), Hsp22 (HspB8), and HspB9. The most pronounced structural feature of sHsps is the alpha-crystallin domain, a conserved stretch of approximately 80 amino acid residues in the C-terminal half of the molecule. Using the alpha-crystallin domain of human Hsp27 as query in a BLAST search, we found sequence similarity with another mammalian protein, the sperm outer dense fiber protein (ODFP). ODFP occurs exclusively in the axoneme of sperm cells. Multiple alignment of human ODFP with the other human sHsps reveals that the primary structure of ODFP fits into the sequence pattern that is typical for this protein superfamily: alpha-crystallin domain (conserved), N-terminal domain (less conserved), central region (variable), and C-terminal tails (variable). In a phylogenetic analysis of 167 proteins of the sHsp superfamily, using Bayesian inference, mammalian ODFPs form a clade and are nested within previously identified sHsps, some of which have been implicated in cytoskeletal functions. Both the multiple alignment and the phylogeny suggest that ODFP is the 10th member of the superfamily of mammalian sHsps, and we propose to name it HspB10 in analogy with the other sHsps. The C-terminal tail of HspB10 has a remarkable low-complexity structure consisting of 10 repeats of the motif C-X-P. A BLAST search using the C-terminal tail as query revealed similarity with sequence elements in a number of Drosophila male sperm proteins, and mammalian type I keratins and cornifin-alpha. Taken together, the following findings suggest a specialized role of HspB10 in cytoskeleton: (1) the exclusive location in sperm cell tails, (2) the phylogenetic relationship with sHsps implicated in cytoskeletal functions, and (3) the partial similarity with cytoskeletal proteins.  相似文献   

5.
The alpha-crystallin-related, small heat shock proteins (sHsps), despite their overall variability in sequence, have discrete regions of conserved sequence that are involved in structural organization, as well as nonconserved regions that may perform similar roles in each protein. Recent X-ray diffraction analyses of an archeal and a plant sHsp have revealed both similarities and differences in how they are organized, suggesting that there is variability, particularly in the oligomeric organization of sHsps. As an adjunct to crystallographic analysis of sHsp structure, we employed the yeast 2-hybrid system to detect interactions between peptide regions of the sHsp of Neurospora crassa, Hsp30. We found that the conserved alpha-crystallin domain can be divided into N-terminal and C-terminal subdomains that interact strongly with one another. This interaction likely represents the tertiary contacts of the monomer that were visualized in the crystallographic structures of MjHsp16.5 and wheat Hsp16.9. The conserved sHsp monomeric fold is apparently determined by these regions of conserved sequence. We found that the C-terminal portion of the alpha-crystallin domain also interacts with itself in 2-hybrid assays; however, this interaction requires peptide extension into the semiconserved carboxyl tail. This C-terminal association may represent a principal contact site between dimers that contributes to higher-order assembly, as seen for the crystallized sHsps.  相似文献   

6.
Myosins play essential roles in migration, cytokinesis, endocytosis, and adhesion. They are composed of a large N-terminal motor domain with ATPase and actin binding sites and C-terminal neck and tail regions, whose functional roles and structural context in the protein are less well characterized. The tail regions of myosins I, IV, VII, XII, and XV each contain a putative SH3 domain that may be involved in protein-protein interactions. SH3 domains are reported to bind proline-rich motifs, especially "PxxP" sequences, and such interactions serve regulatory functions. The activity of Src, PI3, and Itk kinases, for example, is regulated by intramolecular interactions between their SH3 domain and internal proline-rich sequences. Here, we use NMR spectroscopy to reveal the structure of a protein construct from Dictyostelium myosin VII (DdM7) spanning A1620-T1706, which contains its SH3 domain and adjacent proline-rich region. The SH3 domain forms the signature beta-barrel architecture found in other SH3 domains, with conserved tryptophan and tyrosine residues forming a hydrophobic pocket known to bind "PxxP" motifs. In addition, acidic residues in the RT or n-Src loops are available to interact with the basic anchoring residues that are typically found in ligands or proteins that bind SH3 domains. The DdM7 SH3 differs in the hydrophobicity of the second pocket formed by the 3(10) helix and following beta-strand, which contains polar rather than hydrophobic side chains. Most unusual, however, is that this domain binds its adjacent proline-rich region at a surface remote from the region previously identified to bind "PxxP" motifs. The interaction may affect the orientation of the tail without sacrificing the availability of the canonical "PxxP"-binding surface.  相似文献   

7.
Proteins for which there are good structural, functional and genetic similarities that imply a common evolutionary origin, can have sequences whose similarities are low or undetectable by conventional sequence comparison procedures. Do these proteins have sequence conservation beyond the simple conservation of hydrophobic and hydrophilic character at specific sites and if they do what is its nature? To answer these questions we have analysed the structures and sequences of two superfamilies: the four-helical cytokines and cytochromes c'-b(562). Members of these superfamilies have sequence similarities that are either very low or not detectable. The cytokine superfamily has within it a long chain family and a short chain family. The sequences of known representative structures of the two families were aligned using structural information. From these alignments we identified the regions that conserve the same main-chain conformation: the common core (CC). For members of the same family, the CC comprises some 50% of the individual structures; for the combination of both families it is 30%. We added homologous sequences to the structural alignment. Analysis of the residues occurring at sites within the CCs showed that 30% have little or no conservation, whereas about 40% conserve the polar/neutral or hydrophobic/neutral character of their residues. The remaining 30% conserve hydrophobic residues with strong or medium limitations on their volume variations. Almost all of these residues are found at sites that form the "buried spine" of each helix (at sites i, i+3, i+7, i+10, etc., or i, i+4, i+7, i+11, etc.) and they pack together at the centre of each structure to give a pattern of residue-residue contacts that is almost absolutely conserved. These CC conserved hydrophobic residues form only 10-15% of all the residues in the individual structures.A similar analysis of the cytochromes c'-b(562), which bind haem and have a very different function to that of the cytokines, gave very similar results. Again some 30% of the CC residues have hydrophobic residues with strong or medium conservation. Most of these form the buried spine of each helix and play the same role as those in the cytokines. The others, and some spine residues bind the haem co-factor.  相似文献   

8.
Saji H  Iizuka R  Yoshida T  Abe T  Kidokoro S  Ishii N  Yohda M 《Proteins》2008,71(2):771-782
Small heat shock proteins (sHsps) are one of the most ubiquitous molecular chaperones. They are grouped together based on a conserved domain, the alpha-crystallin domain. Generally, sHsps exist as oligomers of 9-40 subunits, and the oligomers undergo reversible temperature-dependent dissociation into smaller species as dimers, which interact with denaturing substrate proteins. Previous studies have shown that the C-terminal region, especially the consensus IXI/V motif, is responsible for oligomer assembly. In this study, we examined deletions or mutations in the C-terminal region on the oligomer assembly and function of StHsp14.0, an sHsp from an acidothermophilic archaeon, Sulfolobus tokodaii strain 7. Mutated StHsp14.0 with C-terminal deletion or replacement of IIe residues in the IXI/V motif to Ala, Ser, or Phe residues could not form large oligomers and lost chaperone activity. StHsp14.0WKW, whose Ile residues in the IXI/V motif are changed to Trp, existed as an oligomer like that of the wild type. However, it dissociates to small oligomers and exhibits chaperone activity at relatively lowered temperature. Replacement of two Ile residues in the motif to relatively small residues, Ala or Ser, also resulted in the change of beta-sheet rich secondary structure and decrease of hydrophobicity. Interestingly, StHsp14.0 mutant with amino acid replacements to Phe kept almost the same secondary structure and relatively high hydrophobicity despite that it could not form an oligomeric structure. The results show that hydrophobicity and size of the amino acids in the IXI/V motif in the C-terminal region are responsible not only for assembly of the oligomer but also for the maintenance of beta-sheet rich secondary structure and hydrophobicity, which are important for the function of sHsp.  相似文献   

9.
A leucine residue at position 370 (L370) in 29-4 Shaker K+ channels resides within two overlapping sequence motifs conserved among most voltage-gated channels: the S4 segment and a leucine heptad repeat. Here we investigate the effects observed upon substitution of L370 with many other uncharged amino acid residues. We find that smaller or more hydrophilic residues produce greater alterations in both activation and inactivation gating than does substitution with other large hydrophobic residues. In addition, subunits containing less conservative substitutions at position 370 are restricted in their assembly with wild-type subunits and are unlikely to form homomultimeric channel complexes. Consistent with the idea that L370 influences the tertiary structure of these channels, the results indicate that L370 undergoes specific hydrophobic interactions during the conformational transitions of gating; similar interactions may take place during the folding, insertion, or assembly of Shaker K+ channel subunits.  相似文献   

10.
U-box proteins, as well as other proteins involved in regulated protein degradation, are apparently over-represented in Arabidopsis compared with other model eukaryotes. The Arabidopsis protein AtPUB14 contains a typical U-box domain followed by an Armadillo repeat region, a domain organization that is frequently found in plant U-box proteins. In vitro ubiquitination assays demonstrated that AtPUB14 functions as an E3 ubiquitin ligase with specific E2 ubiquitin-conjugating enzymes. The structure of the AtPUB14 U-box domain was determined by NMR spectroscopy. It adopts the betabetaalphabeta fold of the Prp19p U-box and RING finger domains. In these proteins, conserved hydrophobic residues form a putative E2-binding cleft. By contrast, they contain no common polar E2 binding site motif. Two hydrophobic cores stabilize the AtPUB14 U-box fold, and hydrogen bonds and salt bridges interconnect the residues corresponding to zinc ion-coordinating residues in RING domains. Residues from a C-terminal alpha-helix interact with the core domain and contribute to stabilization. The Prp19p U-box lacks a corresponding C-terminal alpha-helix. Chemical shift analysis suggested that aromatic residues exposed at the N terminus and the C-terminal alpha-helix of the AtPUB14 U-box participate in dimerization. Thus, AtPUB14 may form a biologically relevant dimer. This is the first plant U-box structure to be determined, and it provides a model for studies of the many plant U-box proteins and their interactions. Structural insight into these interactions is important, because ubiquitin-dependent protein degradation is a prevalent regulatory mechanism in plants.  相似文献   

11.
12.
Evidence is presented that the cytoplasmic domain of the type I interleukin-1 receptor (IL-1R) may be a GTPase. This domain conserves segments of hydrophobic amino acids that suggest a structural relatedness to the ras protooncogene protein and other members of the GTPase superfamily, despite a lack of significant detectable sequence homology. When the hydrophobic segments of the IL-1R were aligned with similar segments of the GTPases, it became apparent that the IL-1Rs possess a number of conserved amino acids that represent plausible functional residues for base-specific binding of GTP, magnesium chelation, and phosphate ester hydrolysis. Furthermore, a segment of five contiguous residues were found that is identical between ras and the IL-1R, and which is positioned to form part of the guanine base binding pocket. If this model is correct, then the IL-1Rs possess a highly conserved effector protein binding region, but one that is entirely unrelated to the effector regions of other superfamily members. Therefore, if the IL-1R is indeed a GTPase, then its activation function may be directed to as-yet unrecognized effector target proteins, as part of a unique cellular signal transduction pathway.  相似文献   

13.
Ying M  Huang X  Zhao H  Wu Y  Wan F  Huang C  Jie K 《PloS one》2011,6(9):e23863
Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold and formation of catalytic core in which related residues and regions exhibit preferential evolutionary conservation.  相似文献   

14.
Statistically significant similarity was revealed between amino acid sequences of NTP-binding pattern-containing domains which are among the most conserved protein segments in dissimilar groups of ss and dsDNA viruses (papova-, parvo-, geminiviruses and P4 bacteriophage), and RNA viruses (picorna-, como- and nepoviruses) with small genomes. Within the aligned domains of 100-120 amino acid residues, three highly conserved sequence segments have been identified, i.e. 'A' and 'B' motifs of the NTP-binding pattern, and a third, C-terminal motif 'C', not described previously. The sequence of the 'B' motif in the proteins of the new superfamily is unusually variable, with substitutions, in some of the members, of the Asp residue conserved in other NTP-binding proteins. The 'C' motif is characterized by an invariant Asn residue preceded by a stretch of hydrophobic residues. As the new superfamily included a well studied DNA and RNA helicase, T antigen of SV40, helicase function could be tentatively assigned also to the other related viral putative NTP-binding proteins. On the other hand, the possibility of different and/or multiple functions for some of these proteins is discussed.  相似文献   

15.
The folding pattern of the alpha-crystallin domain, a conserved protein module encoding the molecular determinants of structure and function in the small heat-shock protein superfamily, was determined in the context of the lens protein alphaA-crystallin by systematic application of site-directed spin labeling. The sequence-specific secondary structure was assigned primarily from nitroxide scanning experiments in which the solvent accessibility and mobility of a nitroxide probe were measured as a function of residue number. Seven beta-strands were identified and their orientation relative to the aqueous solvent determined, thus defining the residues lining the hydrophobic core. The pairwise packing of adjacent strands in the primary structure was deduced from patterns of proximities in nitroxide pairs with one member on the exposed surface of each strand. In addition to identifying supersecondary structures, these proximities revealed that the seven strands are arranged in two beta-sheets. The overall packing of the two sheets was determined by application of the general rules of protein structure and from proximities in nitroxide pairs designed to distinguish between known all beta-sheet folds. Our data are consistent with an immunoglobulin-like fold consisting of two aligned beta-sheets. Comparison of this folding pattern to that of the evolutionary distant alpha-crystallin domain in Methanococcus jannaschii heat-shock protein 16.5 reveals a conserved core structure with the differences sequestered at one edge of the beta-sandwich. A beta-strand deletion in alphaA-crystallin disrupts a subunit interface and allows for a different dimerization motif. Putative substrate binding regions appear to include a buried loop and a buried turn, suggesting that the chaperone function involves a disassembly of the oligomer.  相似文献   

16.
PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.  相似文献   

17.
Dimerization of leucine zippers analyzed by random selection.   总被引:7,自引:1,他引:6       下载免费PDF全文
W T Pu  K Struhl 《Nucleic acids research》1993,21(18):4348-4355
The leucine zipper is a coiled coil that mediates specific dimerization of bZIP DNA-binding domains. A hydrophobic spine involving the conserved leucines runs down the coiled-coil and is thought to stabilize the dimer. We used the method of random selection to further define the primary sequence requirements for homodimer formation and heterodimer formation with Fos. When positions on either side of the hydrophobic spine of GCN4 are diversified to include the corresponding residues of Jun, a large percentage of the resulting sequences form homodimers, and a large percentage form heterodimers with Fos. Basic residues were preferred, but not essential, at position e of zippers which heterodimerize with Fos. When random sequences containing 5 heptad repeat of leucines are subject to a selection for homodimer formation, a diverse set of sequences is isolated. Certain residues are preferred at each position in the heptad repeat, although no essential primary sequence determinants could be identified. No pair of residues not involving the conserved leucines could be identified which strongly promotes homodimerization. These results suggest that factors determining leucine zipper dimerization are complex, with numerous interactions contributing to the association.  相似文献   

18.
The RNA recognition motif (RRM) is one of the most common eukaryotic protein motifs. RRM sequences form a conserved globular structure known as the RNA-binding domain (RBD) or the ribonucleoprotein domain. Many proteins that contain RRM sequences bind RNA in a sequence-specific manner. To investigate the basis for the RNA-binding specificity of RRMs, we subjected 330 aligned RRM sequences to covariance analysis. The analysis revealed a single network of covariant amino acid pairs comprising the buried core of the RBD and a surface patch. Structural studies have implicated a subset of these residues in RNA binding. The covariance linkages identify a larger set of amino acid residues, including some not directly in contact with bound RNA, that may influence RNA-binding specificity.  相似文献   

19.
T-cell-restricted intracellular antigen-1 (TIA-1) regulates alternative pre-mRNA splicing in the nucleus, and mRNA translation in the cytoplasm, by recognizing uridine-rich sequences of RNAs. As a step towards understanding RNA recognition by this regulatory factor, the X-ray structure of the central RNA recognition motif (RRM2) of human TIA-1 is presented at 1.95 Å resolution. Comparison with structurally homologous RRM-RNA complexes identifies residues at the RNA interfaces that are conserved in TIA-1-RRM2. The versatile capability of RNP motifs to interact with either proteins or RNA is reinforced by symmetry-related protein-protein interactions mediated by the RNP motifs of TIA-1-RRM2. Importantly, the TIA-1-RRM2 structure reveals the locations of mutations responsible for inhibiting nuclear import. In contrast with previous assumptions, the mutated residues are buried within the hydrophobic interior of the domain, where they would be likely to destabilize the RRM fold rather than directly inhibit RNA binding.  相似文献   

20.
The Structural Motifs of Superfamilies (SMoS) database provides information about the structural motifs of aligned protein domain superfamilies. Such motifs among structurally aligned multiple members of protein superfamilies are recognized by the conservation of amino acid preference and solvent inaccessibility and are examined for the conservation of other features like secondary structural content, hydrogen bonding, non-polar interaction and residue packing. These motifs, along with their sequence and spatial orientation, represent the conserved core structure of each superfamily and also provide the minimal requirement of sequence and structural information to retain each superfamily fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号