首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cloning of a cDNA encoding porcine brain natriuretic peptide   总被引:3,自引:0,他引:3  
Complimentary DNA (cDNA) clones encoding porcine brain natriuretic peptide (BNP) were isolated from a porcine atrial cDNA library. The longest of the cDNA clones (1507 nucleotides) apparently originated from an unprocessed messenger RNA, since the nucleotide sequence encoding BNP-26 was interrupted by an intron of 554 nucleotides. A partial cDNA clone representing processed BNP mRNA was prepared by polymerase chain reaction. A comparison of the sequence of these two cDNAs reveals the presence of an additional intron within the sequence encoding the BNP precursor. The identification of these introns suggests that the BNP gene structure differs from the atrial natriuretic peptide gene in the location of intron 2. BNP mRNA encodes a propeptide of 131 amino acids, including a signal peptide domain (25 amino acids) and a prohormone domain (106 amino acids). Like atrial natriuretic peptide, the bioactive BNP sequence is localized at the carboxyl terminus of the prohormone. Although the carboxyl-terminal peptide sequences of porcine atrial natriuretic peptide and BNP are well conserved, there is relatively little homology within their propeptide regions.  相似文献   

2.
The natriuretic peptide family comprises atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), C-type natriuretic peptide (CNP), dendroaspis natriuretic peptide (DNP), and urodilatin. The activities of natriuretic peptides and endothelins are strictly associated with each other. ANP and BNP inhibit endothelin-1 (ET-1) production. ET-1 stimulates natriuretic peptide synthesis. All natriuretic peptides are synthesized from polypeptide precursors. Changes in natriuretic peptides and endothelin release were observed in many cardiovascular diseases: e.g. chronic heart failure, left ventricular dysfunction and coronary artery disease.  相似文献   

3.
Brain natriuretic peptide (BNP) is a new type of natriuretic peptide, which has so far been identified only in porcine brain and atrium. Immunological observations suggest that rat and porcine BNP may have structural difference according to species. To identify rat BNP, we constructed a rat atrial cDNA library, and screened for clones encoding rat BNP-precursor by using part of porcine BNP cDNA as a probe. By sequencing a cloned cDNA, the amino acid sequence of rat BNP-precursor comprising 121 residues was deduced as carrying a 26-residue putative signal peptide at the N-terminus and a region homologous to porcine BNP-32 at the C-terminus. In addition, remarkably high homology between rat and porcine BNP-precursors was observed in the 3'-untranslated AT-rich region. Comparing sequences of precursors of ANP and BNP thus far identified, structural and processing features characteristic of the BNP family were discussed.  相似文献   

4.
The precursor to B-type natriuretic peptide is an O-linked glycoprotein   总被引:2,自引:0,他引:2  
Human pro-B-type natriuretic peptide (proBNP), the precursor for B-type natriuretic peptide (BNP), was expressed in Chinese hamster ovary cells (CHO) and compared by Western blot analysis to BNP cross-reacting material immunoprecipitated from the plasma of heart failure patients. Both recombinant and native forms co-migrated as a diffuse band centered around 25 kDa and were reduced to a 12 kDa species by treatment with a mixture of O-link deglycosylation enzymes. The 108-amino acid CHO-expressed protein was examined by tryptic mapping and LC-MS and found to be an O-linked glycoprotein. Determination of the sites of O-glycosyl addition by blank cycle sequencing of tryptic and Glu-C (Staphylococcus aureus V8 protease) peptides showed that there are seven sites of glycosylation confined to a 36-amino acid residue stretch within the center of the propeptide region. This data is consistent with previous observations of higher molecular weight isoforms of BNP.  相似文献   

5.
125I-Porcine brain natriuretic peptide (125I-pBNP) bound to mouse astrocytes in primary culture in a time-dependent manner (t1/2 = 4.5 min), similar to 125I-human atrial natriuretic peptide (125I-hANP) (t1/2 = 5 min). Binding was saturable and reached equilibrium after 90 min at 22 degrees C for both radioligands. Scatchard analysis suggested a single class of binding sites for pBNP with a binding affinity and capacity (KD = 0.08 nM; Bmax = 78.3 fmol/mg of protein) similar to those of hANP1-28 (KD = 0.1 nM; Bmax = 90.3 fmol/mg of protein). In competition binding studies, pBNP or human/rat atrial natriuretic peptide (ANP) analogues [hANP1-28, rat ANP1-28 (rANP1-28), and rANP5-28] displaced 125I-hANP, 125I-pBNP, and 125I-rANP1-28 completely, all with IC50 values of less than nM (0.14-0.83 nM). All four peptides maximally stimulated cyclic GMP (cGMP) production by 10 min at 22 degrees C at concentrations of 1 microM with EC50 values ranging from 50 to 100 nM. However, maximal cGMP induction by brain natriuretic peptide (BNP) (25.9 +/- 2.1 pmol/mg of protein) was significantly greater than that by hANP1-28 (11.5 +/- 2.2 pmol/mg of protein), rANP1-28 (16.5 +/- 2.0 pmol/mg of protein), and rANP5-28 (15.8 +/- 2.2 pmol/mg of protein). These studies indicate that BNP and ANPs act on the same binding sites and with similar affinities in cultured mouse astrocytes. BNP, however, exerts a greater effect on cGMP production. The difference in both affinity and selectivity between binding and cGMP production may indicate the existence of receptor subtypes that respond differentially to natriuretic peptides despite similar binding characteristics.  相似文献   

6.
7.
Brain natriuretic peptide (BNP) is a novel diuretic-natriuretic and vasorelaxant peptide originally isolated from porcine brain. In contrast to mammalian atrial natriuretic peptide (ANP), immunological characterization suggests that mammalian BNPs show structural species differences. In order to determine the amino acid sequence of human BNP, we constructed a human cardiac atrium cDNA library and screened for clones hybridizing with porcine BNP cDNA. By sequence analysis of cDNA encoding a putative human BNP precursor, an amino acid sequence of human prepro-BNP of 134 residues has been deduced, in which a minimum bioactive unit highly homologous to porcine BNP-32 is present at the carboxy-terminus.  相似文献   

8.
Sellitti DF  Koles N  Mendonça MC 《Peptides》2011,32(9):1964-1971
C-type natriuretic peptide (CNP) is a member of the small family of natriuretic peptides that also includes atrial natriuretic peptide (ANP) and brain, or B-type natriuretic peptide (BNP). Unlike them, it performs its major functions in an autocrine or paracrine manner. Those functions, mediated through binding to the membrane guanylyl cyclase natriuretic peptide receptor B (NPR-B), or by signaling through the non-enzyme natriuretic peptide receptor C (NPR-C), include the regulation of endochondral ossification, reproduction, nervous system development, and the maintenance of cardiovascular health. To date, the regulation of CNP gene expression has not received the attention that has been paid to regulation of the ANP and BNP genes. CNP expression in vitro is regulated by TGF-β and receptor tyrosine kinase growth factors in a cell/tissue-specific and sometimes species-specific manner. Expression of CNP in vivo is altered in diseased organs and tissues, including atherosclerotic vessels, and the myocardium of failing hearts. Analysis of the human CNP gene has led to the identification of a number of regulatory sites in the proximal promoter, including a GC-rich region approximately 50 base pairs downstream of the Tata box, and shown to be a binding site for several putative regulatory proteins, including transforming growth factor clone 22 domain 1 (TSC22D1) and a serine threonine kinase (STK16). The purpose of this review is to summarize the current literature on the regulation of CNP expression, emphasizing in particular the putative regulatory elements in the CNP gene and the potential DNA-binding proteins that associate with them.  相似文献   

9.
Cardiovascular homeostasis and blood pressure regulation are reliant, in part, on interactions between natriuretic peptide (NP) hormones and natriuretic peptide receptors (NPR). The C-type NPR (NPR-C) is responsible for clearance of NP hormones from the circulation, and displays a cross-reactivity for all NP hormones (ANP, BNP, and CNP), in contrast to other NPRs, which are more restricted in their specificity. In order to elucidate the structural determinants for the binding specificity and cross-reactivity of NPR-C with NP hormones, we have determined the crystal structures of the complexes of NPR-C with atrial natriuretic peptide (ANP), and with brain natriuretic peptide (BNP). A structural comparison of these complexes, with the previous structure of the NPR-C/CNP complex, reveals that NPR-C uses a conformationally inflexible surface to bind three different, highly flexible, NP ligands. The complex structures support a mechanism of rigid promiscuity rather than conformational plasticity by the receptor. While ANP and BNP appear to adopt similar receptor-bound conformations, the CNP structure diverges, yet shares sets of common receptor contacts with the other ligands. The degenerate versus selective hormone recognition properties of different NPRs appears to derive largely from two cavities on the receptor surfaces, pocket I and pocket II, that serve as anchoring sites for hormone side-chains and modulate receptor selectivity.  相似文献   

10.
We isolated human brain natriuretic peptide (human BNP) from the human atrium. Sequence analysis has revealed that it is a 32-amino-acid peptide with the sequence S-P-K-M-V-Q-G-S-G-C-F-G-R-K-M-D-R-I-S-S-S-S-G-L-G-C-K-V-L-R-R-H, which is identical to the C-terminal sequence (77-108) of the human BNP precursor deduced from the cDNA sequence. The sequence of human BNP (77-108) is preceded by Pro75-Arg76 in the human BNP precursor, which is the same processing signal as Pro97-Arg98 of the precursor of atrial natriuretic peptide (ANP). The processing of the BNP precursor occurs in the cardiocyte, although that of the ANP precursor in the cardiocyte is unclear at present.  相似文献   

11.
Isolation and sequence determination of rat cardiac natriuretic peptide   总被引:3,自引:0,他引:3  
We have isolated a cardiac natriuretic peptide of 5K daltons from the rat atrium and determined its amino acid sequence. The 5K cardiac natriuretic peptide was elucidated to be a 45-amino acid peptide with the sequence of S-Q-D-S-A-F-R-I-Q-E-R-L-R-N-S-K-M-A-H-S-S-S-C-F-G-Q-K-I-D-R-I-G-A-V-S-R- L-G-C-D - G-L-R-L-F by sequencing the native peptide and its lysyl endopeptidase digests. The sequence of this peptide was identical to the amino acid sequence [51-95] of the rat brain natriuretic peptide (BNP) precursor deduced from the cDNA sequence. The 5K cardiac natriuretic peptide, or BNP[51-95], was identified as the major storage and secretory form derived from the BNP precursor in the rat heart.  相似文献   

12.
吴志俊  金玮  张凤如  刘艳 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素, 主要包括A型、B型和C型利钠肽, 具有相似的基因结构和生理学效应, 可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性, 调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽, 通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示, 其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化, 与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制, 为临床诊疗开辟新思路。  相似文献   

13.
Wu ZJ  Jin W  Zhang FR  Liu Y 《遗传》2012,34(2):127-133
利钠肽家族是一组由心肌细胞分泌的激素,主要包括A型、B型和C型利钠肽,具有相似的基因结构和生理学效应,可对心血管系统产生血压调节、抗心肌肥厚、抗心肌纤维化和抗心肌弛缓等保护作用。利钠肽受体A、B和C亦介导多种生理活性,调节心血管稳态。利钠肽受体A选择性结合A型、B型利钠肽。利钠肽受体B结合C型利钠肽。利钠肽受体C结合各型利钠肽,通过受体介导的内化和退化作用清除血液循环中利钠肽。对利钠肽家族及其受体基因单核甘酸多态性及功能研究显示,其与多种心血管疾病(房颤、高血压、心力衰竭等)的易感性相关。利钠肽家族及其受体基因缺失的转基因小鼠表现为心肌肥厚、心肌纤维化,与高血压、心肌病及心力衰竭的发生发展相关。各种导致心肌肥厚和缺血性损伤的刺激均参与利钠肽及其受体基因的表达调控。临床将脑钠肽作为左室功能障碍和心力衰竭失代偿的一个预测指标。静脉注射重组脑钠肽已经成为治疗急性心力衰竭的有效手段。深入了解利钠肽家族基因变异及其信号调控有助于探索心血管疾病的病理生理机制,为临床诊疗开辟新思路。  相似文献   

14.
目的:分析急性缺血性脑卒中患者入院时血浆脑钠肽(BNP)水平与缺血性脑卒中梗死部位的关系。方法:随机入选88例急性缺血性脑卒中患者,按梗死部位,将其分为前循环病灶组(66名)和后循环病灶组(22名)两组进行比较。测定入院时血浆脑钠肽(BNP)水平进行比较。两组脑卒中病人的危险因素血糖、糖化血红蛋白、血脂全套,肝肾功能分析对比,并将急性缺血性脑卒中患者梗死部位相关的多个变量采用单因素logistic回归分析。结果:前循环病灶组血浆脑利钠肽水平的中位数是225.90 pg/mL,四分位数间距为596.00 pg/mL;后循环病灶组的中位数是750.95 pg/mL,四分位数间距为907.00 pg/mL。后循环病灶组血浆脑利钠肽水平要显著高于前循环病灶组血浆脑利钠肽水平,两个部位间入院时的脑利钠肽水平有统计学差异(P=0.004)。通过入院时脑利钠肽水平与缺血性脑卒中梗死部位的关系的ROC曲线,得出截点299.50 pg/mL。入院时血浆脑利钠肽水平≥299.50 pg/mL可以作为后循环病灶组的预测指标,其敏感性72.72%,特异性62.12%。结论:急性缺血性脑卒中患者入院时血浆BNP水平可作为急性期区别前后循环脑梗死的预测因子。  相似文献   

15.
This report documents the purification and the complete primary structure of bovine aldosterone secretion inhibitory factor precursor (pro-ASIF). ASIF-(1-103) contains at position 69-103 of its carboxy-terminal end the formely identified 35-amino acid biologically active form, hence confirming the endogenous character of ASIF in the adrenal medulla. Compared to atrial natriuretic factor (ANF)-related peptide precursors, bovine ASIF displays 65% homology at the carboxy-terminal while the remaining amino-terminal part shows much more variability. Bovine pro-ASIF exhibits 73% homology with porcine pro-brain natriuretic peptide (BNP), a situation reminiscent of the relationship of pro-ANF in various species. When ANF- and BNP-related COOH-termini of bovine, porcine, human, rat, and chicken are compared, it appears that bovine ASIF and porcine BNP are closely related and belong to the same family which however appears to be much more heterogenous than the ANF-related family. These results strongly suggest that bovine ASIF is encoded by a precursor gene similar to the gene of BNP but different from the one encoding ANF.  相似文献   

16.
目的:探讨急性心肌梗死患者血浆B型利钠肽(BNP)、N-末端B型利钠肽原(NT-proBNP)、肌红蛋白(MYO)及心肌肌钙蛋白I(cTnI)的表达及临床意义。方法:选择2015年8月至2016年8月我院收治的162例急性心肌梗死患者记为观察组,另选择162例同期于我院健康体检志愿者为对照组进行对比研究。应用免疫分离法检测两组血浆BNP、NT-proBNP、MYO及cTnI水平。对比两组血浆BNP、NT-proBNP、MYO及cTnI的表达水平,以及BNP、NT-proBNP、MYO、cTnI单独检测和联合检测在急性心肌梗死诊断中的灵敏度及特异性,并分析各指标之间的相关性。结果:观察组血浆BNP、NT-proBNP、MYO及cTnI水平均高于对照组,差异有统计学意义(P0.05)。四项联合检测的灵敏度分别高于血浆BNP、NT-proBNP、MYO及cTnI单独检测,特异性分别高于血浆NT-proBNP、MYO单独检测,差异有统计学意义(P0.05),四项联合检测的特异性分别高于血浆BNP、cTnI单独检测,但差异无统计学意义(P0.05)。通过Spearman相关性分析显示,观察组血浆BNP、NT-proBNP、MYO及cTnI各指标水平之间呈正相关(P0.05)。结论:血浆BNP、NT-proBNP、MYO及cTnI在急性心肌梗死中具有明显高表达,且四项联合检测的灵敏度及特异性较高,各指标之间存在正相关关系,可为急性心肌梗死早期诊断提供科学的依据,值得临床推广。  相似文献   

17.
The present study determined cardiac chamber-specific alterations of the expression of the atrial and brain natriuretic peptide (ANP and BNP) genes with a small increase in age beyond adulthood and with systemic hypertension of intermediate duration. The expression distributions of these genes was determined using in situ hybridization in the right and left atria (RA and LA), and the right and left ventricles (RV and LV) in Wistar Kyoto rats (WKY) and age-matched Spontaneously Hypertensive rats (SHR) at ages 6 months (adult) and 8 months (advanced-age beyond adulthood).In all rat groups, both genes were expressed (ANP > BNP) in the LA and LV, and were not expressed in the RA and RV. The genes were expressed in the LA in all rat groups; the ANP, but not the BNP, expression increased with advancing age and with superimposed hypertension. They were expressed in the LV of the advanced-age WKY, adult and advanced-age SHR, but not in the adult WKY. The ANP mRNA labeling in the LA was diffuse and interspersed with dense accumulations, whereas BNP labeling was diffuse. The labeling of both genes in the form of sparse clusters was seen in the LV of the advanced-age SHR. Our study showed that ANP and BNP expression in left heart chambers increased with a small increase in age, with hypertension of intermediate duration, and with modest left ventricular hypertrophy. The chamber-specific expression distribution could be due to special groups of cardiac cells, or to local chamber-specific factors.  相似文献   

18.
目的:探讨N末端前体脑钠肽(NT-proBNP)、脑钠肽(BNP)及超敏C-反应蛋白(hs-CRP)在老年急性非ST段抬高型心肌梗死患者血浆中的表达及临床意义。方法:选择2015年2月~2018年7月在我院进行诊治的老年急性非ST段抬高型心肌梗死患者200例为观察组,选择同期在我院进行诊治的非冠脉综合征患者100例为对照组。入院后次日检测所有患者的血浆中的NT-proBNP、BNP及hs-CRP等指标的水平,并对比两组患者以及观察组中不同血管病变支数患者上述指标水平。两组患者均随访6个月,观察心血管不良事件的发生率。结果:观察组患者的NT-proBNP、BNP及hs-CRP水平均显著高于对照组,组间比较差异有统计学意义(P0.05)。观察组内单支血管病变、双支血管病变、三支血管病变患者间NT-proBNP、BNP及hs-CRP水平比较差异有统计学意义(P0.05),各项指标水平随着血管病变支数增加而升高(P0.05)。观察组在出院后为期6个月随访期间心血管不良事件发生率为16.50%,高于对照组心血管不良事件发生率为6.00%,组间比较差异有统计学意义(P0.05)。患者冠脉血管病变支数与血浆NT-proBNP、BNP及hs-CRP水平间呈正相关(P0.05)。结论:血浆NT-proBNP、BNP及hs-CRP水平在老年急性非ST段抬高型心肌梗死患者中显著升高,且随着患者血管病变程度的增加而升高,对患者预后心血管不良事件判断有较好的预测作用。  相似文献   

19.
S Schulz  S Singh  R A Bellet  G Singh  D J Tubb  H Chin  D L Garbers 《Cell》1989,58(6):1155-1162
Atrial natriuretic peptide (ANP) binds directly to a plasma membrane form of guanylate cyclase (GC-A), stimulating the production of the second messenger cyclic GMP. We show that a second guanylate cyclase/receptor (GC-B) exists, with distinctly different specificities for various natriuretic peptides. A cDNA clone encoding GC-B was isolated by low-stringency screening of a rat brain cDNA library using GC-A cDNA as a probe. The deduced amino acid sequence of GC-B is 78% identical with GC-A within the intracellular region, but 43% identical within the extracellular domain. Cyclic GMP concentrations in cells transfected with GC-A were half-maximally elevated at 3 nM ANP, 25 nM brain natriuretic peptide (BNP), and 65 nM atriopeptin 1, while 25 microM ANP, 6 microM BNP, and greater than 100 microM atriopeptin 1 were required for half-maximal stimulation of GC-B. The potencies of natriuretic peptides on GC-A and GC-B activity are therefore markedly different; furthermore, despite the specificity of GC-B for BNP, the relatively high BNP concentration required to elicit a response suggests the possible presence of a more potent, unidentified natural ligand.  相似文献   

20.
C-type natriuretic peptide (CNP) was recently found in myocardium at the mRNA and protein levels, but it is not known whether cardiomyocytes are able to produce CNP. The aim of this study was to determine the expression of CNP and its specific receptor NPR-B in cardiac cells, both in vitro and ex vivo. CNP, brain natriuretic peptide (BNP) and natriuretic peptide receptor (NPR)-B mRNA expression were examined by RT-PCR in the H9c2 rat cardiac myoblast cell line, in neonatal rat primary cardiomyocytes and in human umbilical vein endothelial cells (HUVECs) as control. CNP protein expression was probed in cardiac tissue sections obtained from adult male minipigs by immunohistochemistry, and in H9c2 cells both by immunocytochemistry and by specific radioimmunoassay. The results showed that cardiac cells as well as endothelial cells were able to produce CNP. Unlike cardiomyocytes, as expected, in endothelial cells expression of BNP was not detected. NPR-B mRNA expression was found in both cell types. Production of CNP in the heart muscle cells at protein level was confirmed by radioimmunological determination (H9c2: CNP = 0.86 ± 0.083 pg/mg) and by immunocytochemistry studies. By immunostaining of tissue sections, CNP was detected in both endothelium and cardiomyocytes. Expression of CNP in cardiac cells at gene and protein levels suggests that the heart is actively involved in the production of CNP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号