首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the in situ spatial organization of ammonia-oxidizing and nitrite-oxidizing bacteria in domestic wastewater biofilms and autotrophic nitrifying biofilms by using microsensors and fluorescent in situ hybridization (FISH) performed with 16S rRNA-targeted oligonucleotide probes. The combination of these techniques made it possible to relate in situ microbial activity directly to the occurrence of nitrifying bacterial populations. In situ hybridization revealed that bacteria belonging to the genus Nitrosomonas were the numerically dominant ammonia-oxidizing bacteria in both types of biofilms. Bacteria belonging to the genus Nitrobacter were not detected; instead, Nitrospira-like bacteria were the main nitrite-oxidizing bacteria in both types of biofilms. Nitrospira-like cells formed irregularly shaped aggregates consisting of small microcolonies, which clustered around the clusters of ammonia oxidizers. Whereas most of the ammonia-oxidizing bacteria were present throughout the biofilms, the nitrite-oxidizing bacteria were restricted to the active nitrite-oxidizing zones, which were in the inner parts of the biofilms. Microelectrode measurements showed that the active ammonia-oxidizing zone was located in the outer part of a biofilm, whereas the active nitrite-oxidizing zone was located just below the ammonia-oxidizing zone and overlapped the location of nitrite-oxidizing bacteria, as determined by FISH.  相似文献   

2.
The change of activity and abundance of Nitrosospira and Nitrospira spp. along a bulk water gradient in a nitrifying fluidized bed reactor was analyzed by a combination of microsensor measurements and fluorescence in situ hybridization. Nitrifying bacteria were immobilized in bacterial aggregates that remained in fixed positions within the reactor column due to the flow regimen. Nitrification occurred in a narrow zone of 100 to 150 μm on the surface of these aggregates, the same layer that contained an extremely dense community of nitrifying bacteria. The central part of the aggregates was inactive, and significantly fewer nitrifiers were found there. Under conditions prevailing in the reactor, i.e., when ammonium was limiting, ammonium was completely oxidized to nitrate within the active layer of the aggregates, the rates decreasing with increasing reactor height. To analyze the nitrification potential, profiles were also recorded in aggregates subjected to a short-term incubation under elevated substrate concentrations. This led to a shift in activity from ammonium to nitrite oxidation along the reactor and correlated well with the distribution of the nitrifying population. Along the whole reactor, the numbers of ammonia-oxidizing bacteria decreased, while the numbers of nitrite-oxidizing bacteria increased. Finally, volumetric reaction rates were calculated from microprofiles and related to cell numbers of nitrifying bacteria in the active shell. Therefore, it was possible for the first time to estimate the cell-specific activity of Nitrosospira spp. and hitherto-uncultured Nitrospira-like bacteria in situ.  相似文献   

3.
Uncultivated Nitrospira-like bacteria in different biofilm and activated-sludge samples were investigated by cultivation-independent molecular approaches. Initially, the phylogenetic affiliation of Nitrospira-like bacteria in a nitrifying biofilm was determined by 16S rRNA gene sequence analysis. Subsequently, a phylogenetic consensus tree of the Nitrospira phylum including all publicly available sequences was constructed. This analysis revealed that the genus Nitrospira consists of at least four distinct sublineages. Based on these data, two 16S rRNA-directed oligonucleotide probes specific for the phylum and genus Nitrospira, respectively, were developed and evaluated for suitability for fluorescence in situ hybridization (FISH). The probes were used to investigate the in situ architecture of cell aggregates of Nitrospira-like nitrite oxidizers in wastewater treatment plants by FISH, confocal laser scanning microscopy, and computer-aided three-dimensional visualization. Cavities and a network of cell-free channels inside the Nitrospira microcolonies were detected that were water permeable, as demonstrated by fluorescein staining. The uptake of different carbon sources by Nitrospira-like bacteria within their natural habitat under different incubation conditions was studied by combined FISH and microautoradiography. Under aerobic conditions, the Nitrospira-like bacteria in bioreactor samples took up inorganic carbon (as HCO3 or as CO2) and pyruvate but not acetate, butyrate, and propionate, suggesting that these bacteria can grow mixotrophically in the presence of pyruvate. In contrast, no uptake by the Nitrospira-like bacteria of any of the carbon sources tested was observed under anoxic or anaerobic conditions.  相似文献   

4.
The ammonia-oxidizing and nitrite-oxidizing bacterial populations occurring in the nitrifying activated sludge of an industrial wastewater treatment plant receiving sewage with high ammonia concentrations were studied by use of a polyphasic approach. In situ hybridization with a set of hierarchical 16S rRNA-targeted probes for ammonia-oxidizing bacteria revealed the dominance of Nitrosococcus mobilis-like bacteria. The phylogenetic affiliation suggested by fluorescent in situ hybridization (FISH) was confirmed by isolation of N. mobilis as the numerically dominant ammonia oxidizer and subsequent comparative 16S rRNA gene (rDNA) sequence and DNA-DNA hybridization analyses. For molecular fine-scale analysis of the ammonia-oxidizing population, a partial stretch of the gene encoding the active-site polypeptide of ammonia monooxygenase (amoA) was amplified from total DNA extracted from ammonia oxidizer isolates and from activated sludge. However, comparative sequence analysis of 13 amoA clone sequences from activated sludge demonstrated that these sequences were highly similar to each other and to the corresponding amoA gene fragments of Nitrosomonas europaea Nm50 and the N. mobilis isolate. The unexpected high sequence similarity between the amoA gene fragments of the N. mobilis isolate and N. europaea indicates a possible lateral gene transfer event. Although a Nitrobacter strain was isolated, members of the nitrite-oxidizing genus Nitrobacter were not detectable in the activated sludge by in situ hybridization. Therefore, we used the rRNA approach to investigate the abundance of other well-known nitrite-oxidizing bacterial genera. Three different methods were used for DNA extraction from the activated sludge. For each DNA preparation, almost full-length genes encoding small-subunit rRNA were separately amplified and used to generate three 16S rDNA libraries. By comparative sequence analysis, 2 of 60 randomly selected clones could be assigned to the nitrite-oxidizing bacteria of the genus Nitrospira. Based on these clone sequences, a specific 16S rRNA-targeted probe was developed. FISH of the activated sludge with this probe demonstrated that Nitrospira-like bacteria were present in significant numbers (9% of the total bacterial counts) and frequently occurred in coaggregated microcolonies with N. mobilis.  相似文献   

5.
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that “Brocadia”-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 μm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH4+ and NO2 consumption rates decreased from 0.68 and 0.64 μmol cm−2 h−1 at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 μmol cm−2 h−1 at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH4+ and NO2 and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O2 or organic compounds, which consequently established suitable microenvironments for anammox bacteria.  相似文献   

6.
Bacterial aggregates from a chemolithoautotrophic, nitrifying fluidized bed reactor were investigated with microsensors and rRNA-based molecular techniques. The microprofiles of O2, NH4+, NO2, and NO3 demonstrated the occurrence of complete nitrification in the outer 125 μm of the aggregates. The ammonia oxidizers were identified as members of the Nitrosospira group by fluorescence in situ hybridization (FISH). No ammonia- or nitrite-oxidizing bacteria of the genus Nitrosomonas or Nitrobacter, respectively, could be detected by FISH. To identify the nitrite oxidizers, a 16S ribosomal DNA clone library was constructed and screened by denaturing gradient gel electrophoresis and selected clones were sequenced. The organisms represented by these sequences formed two phylogenetically distinct clusters affiliated with the nitrite oxidizer Nitrospira moscoviensis. 16S rRNA-targeted oligonucleotide probes were designed for in situ detection of these organisms. FISH analysis showed that the dominant populations of Nitrospira spp. and Nitrosospira spp. formed separate, dense clusters which were in contact with each other and occurred throughout the aggregate. A second, smaller, morphologically and genetically different population of Nitrospira spp. was restricted to the outer nitrifying zones.  相似文献   

7.
Utilizing the principle of competitive PCR, we developed two assays to enumerate Nitrosomonas oligotropha-like ammonia-oxidizing bacteria and nitrite-oxidizing bacteria belonging to the genus Nitrospira. The specificities of two primer sets, which were designed for two target regions, the amoA gene and Nitrospira 16S ribosomal DNA (rDNA), were verified by DNA sequencing. Both assays were optimized and applied to full-scale, activated sludge wastewater treatment plant (WWTP) samples. If it was assumed that there was an average of 3.6 copies of 16S rDNA per cell in the total population and two copies of the amoA gene per ammonia-oxidizing bacterial cell, the ammonia oxidizers examined represented 0.0033% ± 0.0022% of the total bacterial population in a municipal WWTP. N. oligotropha-like ammonia-oxidizing bacteria were not detected in an industrial WWTP. If it was assumed that there was one copy of the 16S rDNA gene per nitrite-oxidizing bacterial cell, Nitrospira spp. represented 0.39% ± 0.28% of the biosludge population in the municipal WWTP and 0.37% ± 0.23% of the population in the industrial WWTP. The number of Nitrospira sp. cells in the municipal WWTP was more than 62 times greater than the number of N. oligotropha-like cells, based on a competitive PCR analysis. The results of this study extended our knowledge of the comparative compositions of nitrifying bacterial populations in wastewater treatment systems. Importantly, they also demonstrated that we were able to quantify these populations, which ultimately will be required for accurate prediction of process performance and stability for cost-effective design and operation of WWTPs.  相似文献   

8.
In this study, ammonia-oxidizing bacteria present in biofilms resulting from a nitrifying reactor were detected by both a conventional FISH technique and an original in situ PCR technique. Both techniques showed that ammonia-oxidizing bacteria were found near the surface of the biofilms. However, after the biofilm had been exposed to 2 weeks of ammonia starvation, ammonia-oxidizing bacteria present in the biofilm could not be detected by fluorescence in situ hybridization (FISH) because they did not have sufficient copies of rRNA. In contrast, ammonia-oxidizing bacteria could be detected by in situ PCR with strong signal. It was thus demonstrated that a cell possessing a specific functional gene is detectable by in situ PCR regardless of its activity.  相似文献   

9.
A continuous-flow moving bed biofilm reactor (MBBR) under aerobic conditions was established for simultaneous nitrification and denitrification (SND), and microbial communities were investigated by a combination of denaturing gel gradient electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). DGGE analysis has revealed more similar microbial community structures formed in the biofilms with more similar carbon nitrogen (C/N) ratios. FISH analysis shows that the dominance of both Betaproteobacteria ammonia-oxidizing bacteria and Nitrospira-like nitrite-oxidizing bacteria were negatively correlated to C/N ratios. Sequence analysis of DGGE bands has indicated the presence of anoxic denitrifying bacteria Agrobacterium tumefaciens and Rhizobium sp., suggesting that the oxygen gradient inside the biofilm may be responsible for the mechanism of SND in aerobic MBBRs. The study confirms that appropriate control of microbial community structure resulting from optimal C/N ratio is beneficial in improving SND, thus optimizing nitrogen removal in aerobic MBBR. The established SND-based MBBR can save operation space and time in comparison to the traditional nitrogen removal process, and might be very attractive for future practical applications.  相似文献   

10.
Numerous past studies have shown members of the genus Nitrospira to be the predominant nitrite-oxidizing bacteria (NOB) in nitrifying wastewater treatment plants (WWTPs). Only recently, the novel NOB ‘Candidatus Nitrotoga arctica'' was identified in permafrost soil and a close relative was enriched from activated sludge. Still, little is known about diversity, distribution and functional importance of Nitrotoga in natural and engineered ecosystems. Here we developed Nitrotoga 16S rRNA-specific PCR primers and fluorescence in situ hybridization (FISH) probes, which were applied to screen activated sludge samples from 20 full-scale WWTPs. Nitrotoga-like bacteria were detected by PCR in 11 samples and reached abundances detectable by FISH in seven sludges. They coexisted with Nitrospira in most of these WWTPs, but constituted the only detectable NOB in two systems. Quantitative FISH revealed that Nitrotoga accounted for nearly 2% of the total bacterial community in one of these plants, a number comparable to Nitrospira abundances in other WWTPs. Spatial statistics revealed that Nitrotoga coaggregated with ammonia-oxidizing bacteria, strongly supporting a functional role in nitrite oxidation. This activity was confirmed by FISH in combination with microradiography, which revealed nitrite-dependent autotrophic carbon fixation by Nitrotoga in situ. Correlation of the presence or absence with WWTP operational parameters indicated low temperatures as a main factor supporting high Nitrotoga abundances, although in incubation experiments these NOB remained active over an unexpected range of temperatures, and also at different ambient nitrite concentrations. In conclusion, this study demonstrates that Nitrotoga can be functionally important nitrite oxidizers in WWTPs and can even represent the only known NOB in engineered systems.  相似文献   

11.
Population dynamics of ammonia-oxidizing bacteria (AOB) and uncultured Nitrospira-like nitrite-oxidizing bacteria (NOB) dominated in autotrophic nitrifying biofilms were determined by using real-time quantitative polymerase chain reaction (RTQ-PCR) and fluorescence in situ hybridization (FISH). Although two quantitative techniques gave the comparable results, the RTQ-PCR assay was easier and faster than the FISH technique for quantification of both nitrifying bacteria in dense microcolony-forming nitrifying biofilms. Using this RTQ-PCR assay, we could successfully determine the maximum specific growth rate (mu = 0.021/h) of uncultured Nitrospira-like NOB in the suspended enrichment culture. The population dynamics of nitrifying bacteria in the biofilm revealed that once they formed the biofilm, the both nitrifying bacteria grew slower than in planktonic cultures. We also calculated the spatial distributions of average specific growth rates of both nitrifying bacteria in the biofilm based on the concentration profiles of NH4+, NO2-, and O2, which were determined by microelectrodes, and the double-Monod model. This simple model estimation could explain the stratified spatial distribution of AOB and Nitrospira-like NOB in the biofilm. The combination of culture-independent molecular techniques and microelectrode measurements is a very powerful approach to analyze the in situ kinetics and ecophysiology of nitrifying bacteria including uncultured Nitrospira-like NOB in complex biofilm communities.  相似文献   

12.
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes has found widespread application for analyzing the composition of microbial communities in complex environmental samples. Although bacteria can quickly be detected by FISH, a reliable method to determine absolute numbers of FISH-stained cells in aggregates or biofilms has, to our knowledge, never been published. In this study we developed a semiautomated protocol to measure the concentration of bacteria (in cells per volume) in environmental samples by a combination of FISH, confocal laser scanning microscopy, and digital image analysis. The quantification is based on an internal standard, which is introduced by spiking the samples with known amounts of Escherichia coli cells. This method was initially tested with artificial mixtures of bacterial cultures and subsequently used to determine the concentration of ammonia-oxidizing bacteria in a municipal nitrifying activated sludge. The total number of ammonia oxidizers was found to be 9.8 × 107 ± 1.9 × 107 cells ml−1. Based on this value, the average in situ activity was calculated to be 2.3 fmol of ammonia converted to nitrite per ammonia oxidizer cell per h. This activity is within the previously determined range of activities measured with ammonia oxidizer pure cultures, demonstrating the utility of this quantification method for enumerating bacteria in samples in which cells are not homogeneously distributed.  相似文献   

13.
The sensitivity of nitrifying bacteria to acidic conditions is a well-known phenomenon and generally attributed to the lack and/or toxicity of substrates (NH3 and HNO2) with decreasing pHs. In contrast, we observed strong nitrification at a pH around 4 in biofilms grown on chalk particles and investigated the following hypotheses: the presence of less acidic microenvironments and/or the existence of acid-tolerant nitrifiers. Microelectrode measurements (in situ and under various experimental conditions) showed no evidence of a neutral microenvironment, either within the highly active biofilm colonizing the chalk surface or within a control biofilm grown on a nonbuffering (i.e., sintered glass) surface under acidic pH. A 16S rRNA approach (clone libraries and fluorescence in situ hybridizations) did not reveal uncommon nitrifying (potentially acid-tolerant) strains. Instead, we found a strongly acidic microenvironment, evidence for a clear adaptation to the low pH in situ, and the presence of nitrifying populations related to subgroups with low Kms for ammonia (Nitrosopira spp., Nitrosomonas oligotropha, and Nitrospira spp.). Acid-consuming (chalk dissolution) and acid-producing (ammonia oxidation) processes are equilibrated on a low-pH steady state that is controlled by mass transfer limitation through the biofilm. Strong affinity to ammonia and possibly the expression of additional functions, e.g., ammonium transporters, are adaptations that allow nitrifiers to cope with acidic conditions in biofilms and other habitats.  相似文献   

14.
Summary Formation and activity of bacterial nitrifying biofilms play an important role in the closed seawater systems for shrimp cultivation. The structure of microbial biofilm on empty oyster shells, used as a biofilm carrier in biofiltration of aquacultural water, was studied using fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy. FISH was performed with specific oligonucleotide probes for Bacteria and ammonia-oxidizing Nitrosomonas spp. The bacterial cells were arranged within the biofilm as a layer of vertically elongated aggregates. Aggregates of ammonia-oxidizing bacteria were embedded within the matrix formed by other bacteria. Vertically elongated cell aggregates may be ecologically important in bacterial biofilms because they have a higher surface-to-volume ratio than that of laminated biofilms.  相似文献   

15.
Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability. We observed strong stimulatory effects of elevated ammonium concentration on the processes of nitrification and methane oxidation as well as on the abundances of autotrophically growing nitrifiers. However, the key players in nitrification and methane oxidation, identified by stable-isotope labeling using 13CO2 and 13CH4, were the same under both ammonium levels, namely type 1.1a AOA, sublineage I and II Nitrospira-like NOB and Methylomicrobium-/Methylosarcina-like MOB, respectively. Ammonia-oxidizing bacteria were nearly absent, and ammonia oxidation could almost exclusively be attributed to AOA. Interestingly, although AOA functional gene abundance increased 10-fold during incubation, there was very limited evidence of autotrophic growth, suggesting a partly mixotrophic lifestyle. Furthermore, autotrophic growth of AOA and NOB was inhibited by active MOB at both ammonium levels. Our results suggest the existence of a previously overlooked competition for nitrogen between nitrifiers and methane oxidizers in soil, thus linking two of the most important biogeochemical cycles in nature.  相似文献   

16.
Autotrophic growth of nitrifying community in an agricultural soil   总被引:8,自引:0,他引:8  
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.  相似文献   

17.
Nitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems. In Nitrospira-specific 16S rRNA clone libraries retrieved from each plant, closely related phylogenetic clusters (16S rRNA identities between clusters ranged from 95.8% to 99.6%) within Nitrospira lineages I and II were found. Newly designed probes for fluorescence in situ hybridization (FISH) allowed the specific detection of several of these clusters, whose coexistence in the WWTPs was shown for prolonged periods of several years. In situ ecophysiological analyses based on FISH, relative abundance and spatial arrangement quantification, as well as microautoradiography revealed functional differences of these Nitrospira clusters regarding the preferred nitrite concentration, the utilization of formate as substrate and the spatial coaggregation with ammonia-oxidizing bacteria as symbiotic partners. Amplicon pyrosequencing of the nxrB gene, which encodes subunit beta of nitrite oxidoreductase of Nitrospira, revealed in one of the WWTPs as many as 121 species-level nxrB operational taxonomic units with highly uneven relative abundances in the amplicon library. These results show a previously unrecognized high diversity of Nitrospira in engineered systems, which is at least partially linked to niche differentiation and may have important implications for process stability.  相似文献   

18.
The effect of environmental conditions, especially ammonium concentration, on community composition and nitrification activity of nitrifying bacterial biofilms in a pilot wastewater treatment plant was examined. A decreasing ammonium gradient was created when four aerated tanks with suspended carrier material were serially fed with wastewater. Community composition was analysed using fluorescence in situ hybridization (FISH) probes as well as partial 16S rRNA and amoA gene analysis using polymerase chain reaction-denaturating gradient gel electrophoresis (PCR-DGGE) and sequencing. Fluorescence in situ hybridization probes identified at least five ammonia-oxidizing bacterial (AOB) and two nitrite-oxidizing bacterial (NOB) populations. A change in nitrifying community was detected in the tanks, indicating that ammonium was an important structuring factor. Further, we found support for different autoecology within the Nitrosomonas oligotropha lineage, as at least one population within this lineage increased in relative abundance with ammonium concentration while another population decreased. Absolute numbers of AOB and NOB growing in biofilms on the carriers were determined and the cell specific nitrification rates calculated seemed strongly correlated to ammonium concentration. Oxygen could also be limiting in the biofilms of the first tank with high ammonium concentrations. The response of the nitrifying community to increased ammonium concentrations differed between the tanks, indicating that activity correlates with community structure.  相似文献   

19.
In this study, a lab-scale partial nitrifying sequencing batch reactor (SBR) was developed to investigate partial nitrification at ambient temperature (16–22 °C). Techniques of denaturing gradient gel electrophoresis (DGGE), cloning, and fluorescence in situ hybridization (FISH) were utilized simultaneously to study microbial population dynamics. Partial nitrification was effectively achieved in response to shifts of influent ammonium concentrations. DGGE results showed that higher ammonia concentration referred to lower ammonia-oxidizing bacteria (AOB) diversity in the SBR. Phylogenetic analysis revealed that all the predominant AOB was affiliated with Nitrosomonas genus. FISH analysis illustrated AOB was the predominant nitrifying bacteria of microbial compositions when SBR achieved partial nitrification (PN) at ambient temperature.  相似文献   

20.
Chemolithoautotrophic nitrifying bacteria release soluble organic compounds, which can be substrates for heterotrophic microorganisms. The identities of these heterotrophs and the specificities of their interactions with nitrifiers are largely unknown. In this study, we incubated nitrifying activated sludge with 13C-labeled bicarbonate and used stable isotope probing of 16S rRNA to monitor the flow of carbon from uncultured nitrifiers to heterotrophs. To facilitate the identification of heterotrophs, the abundant 16S rRNA molecules from nitrifiers were depleted by catalytic oligonucleotides containing locked nucleic acids (LNAzymes), which specifically cut the 16S rRNA of defined target organisms. Among the 13C-labeled heterotrophs were organisms remotely related to Micavibrio, a microbial predator of Gram-negative bacteria. Fluorescence in situ hybridization revealed a close spatial association of these organisms with microcolonies of nitrite-oxidizing sublineage I Nitrospira in sludge flocs. The high specificity of this interaction was confirmed by confocal microscopy and a novel image analysis method to quantify the localization patterns of biofilm microorganisms in three-dimensional (3-D) space. Other isotope-labeled bacteria, which were affiliated with Thermomonas, colocalized less frequently with nitrifiers and thus were commensals or saprophytes rather than specific symbionts or predators. These results suggest that Nitrospira spp. are subject to bacterial predation, which may influence the abundance and diversity of these nitrite oxidizers and the stability of nitrification in engineered and natural ecosystems. In silico screening of published next-generation sequencing data sets revealed a broad environmental distribution of the uncultured Micavibrio-like lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号