首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李扬  孙心德 《生命科学》1999,11(5):215-217
离子型谷氨酸受体分为NMDA型和非NMDA型两类,其中NMDA型受体与中枢神经系统发育关系密切。本文综述了NMDA受体的分子特性及NMDA受体五种亚单位NR1、NR2A、NR2B、NR2C和NR2D在动物出生后脑内的时空表达;NMDA受体亚单位在发育中的作用以及NMDA受体活性的胞内调节机制。  相似文献   

2.
3.
The retina is one of the best-characterized regions of the central nervous system (CNS) and has served as a model for many of the principles that now form the foundation for CNS development. In the past several years, a number of advances have been made in our understanding of the coordination of proliferation and cell fate specification during retinal development. In this review, we will draw on findings from studies of the retina and highlight similarities and differences in other regions in the CNS, namely the cerebellum and cortex. We will present a framework in which to pose challenges and outstanding questions for future studies on the coordination of proliferation and cell fate specification in the developing CNS.  相似文献   

4.
Purpose of the review: The synchronic development of vascular and nervous systems is orchestrated by common molecules that regulate the communication between both systems. The identification of these common guiding cues and the developmental processes regulated by neurovascular communication are slowly emerging. In this review, we describe the molecules modulating the neurovascular development and their impact in processes such as angiogenesis, neurogenesis, neuronal migration, and brain homeostasis. Recent findings: Blood vessels not only are involved in nutrient and oxygen supply of the central nervous system (CNS) but also exert instrumental functions controlling developmental neurogenesis, CNS cytoarchitecture, and neuronal plasticity. Conversely, neurons modulate CNS vascularization and brain endothelial properties such as blood–brain barrier and vascular hyperemia. Summary: The integration of the active role of endothelial cells in the development and maintenance of neuronal function is important to obtain a more holistic view of the CNS complexity and also to understand how the vasculature is involved in neuropathological conditions.  相似文献   

5.
6.
7.
NMDA受体与中枢神经系统发育   总被引:9,自引:0,他引:9  
中枢神经系统兴奋性氨基酸离子型受体-NMDA受体,是由NMDAR1和NMDAR2两个亚单位共同构成的受体通道复合体。NMDA受本激活后可引起神经元细胞对Na^+,K^+和Ca^2+通透性增强,产生兴奋性突触后电位,在中枢神经发育的过程中,NMDA受体通过不同亚型的选择性表达,改变自身的结构和功能,进而影响NMDA受体介导的Ca^2+内流,调节神经元内Ca^2+依赖的第二信使系统,最终实现对中枢神经  相似文献   

8.
9.
10.
Insulin-like growth factor-I and central nervous system development.   总被引:3,自引:0,他引:3  
Insulin-like growth factor-I (IGF-I), a 70-amino acid-protein structurally similar to insulin, promotes cell proliferation and differentiation in multiple tissues. Most of its effects are mediated by the Type I IGF receptor (IGF-IR), a heterotetramer that has tyrosine kinase activity and phosphorylates insulin receptor substrates (IRS-1 and 2) which leads to the activation of two downstream signaling cascades: the MAP kinase and the phosphatidylinositol 3-kinase (P3K) cascades. The growth-promoting effects of IGF-I are prominent in the nervous system, qualifying this molecule as a neurotrophin. Although the primary regulator of IGF-I expression is growth hormone (GH), the developmental expression of IGF-I in various tissues precedes that of GH, supporting an independent role of IGF-I in embryonic and fetal life [1]. This review will examine the effect of IGF-I on central nervous system (CNS) development. The specialized structure of the CNS is the product of a complex series of biological events which result from the interaction between the cells' genetic program and environmental influences. CNS development begins in the embryo with dorsal ectodermal cell proliferation to form the neural plate, and, with its closure, the neural tube, followed by the rapid division of pluripotential cells, their migration to the periphery of the neural tube, and differentiation into neural or glial cells. During the latter stages, cells form special structures such as nuclei, ganglia, cerebral cortical layers, and they also develop a network with their cytoplasmic extensions, neurites. Many more cells and connections are generated in fetal life than are found in the mature organism. This excessive production of some cell groups and neurites may compensate for tissue loss due to various injuries, and their selective elimination also constitutes an efficient way to organize the architecture of the CNS. This elimination is believed to be accomplished by apoptosis. The cells' intrinsic program for development includes the expression of various genes at different times. Environmental influences, such as extracellular matrix (ECM) molecules that attract or repel cells, afferent inputs, and target-derived diffusible molecules modify and modulate cellular behavior. IGF-I is among the molecules which affect several steps involved in development.  相似文献   

11.
Neurotransmitters as early signals for central nervous system development   总被引:13,自引:0,他引:13  
During brain ontogenesis, the temporal and spatial generation of the different types of neuronal and glial cells from precursors occurs as a sequence of successive progenitor stages whose proliferation, survival and cell-fate choice are controlled by environmental and cellular regulatory molecules. Neurotransmitters belong to the chemical microenvironment of neural cells, even at the earliest stages of brain development. It is now established that specific neurotransmitter receptors are present on progenitor cells of the developing central nervous system and could play, during neural development, a role that has remained unsuspected until recently. The present review focuses on the occurrence of neurotransmitters and their corresponding ligand-gated ion channel receptors in immature cells, including neural stem cells of specific embryonic and neonatal brain regions. We summarize in vitro and in vivo data arguing that neurotransmitters could regulate morphogenetic events such as proliferation, growth, migration, differentiation and survival of neural precursor cells. The understanding of neurotransmitter function during early neural maturation could lead to the development of pharmacological tools aimed at improving adult brain repair strategies.  相似文献   

12.
13.
Abstract

The survival of developing embryos depends on the control and maintenance of homeostasis. Stress caused by chronic immobilization during pregnancy in rats may alter the normal development of the nervous system and increase susceptibility to psychiatric disorders. We investigated the effects of chronic stress on cell proliferation in the forebrains of embryos at 12 days of gestation, and in the hippocampus, dentate gyrus and cortex in embryos at 17 and 21 days of gestation. We examined serial sections of the embryonic brains of control and stressed rats at days 12, 17 and 21 of gestation. Brain sections were immunolabeled with anti-PCNA and stereological analysis was performed on 540 images. The results showed no statistical differences on days 12 and 17 of gestation in the proliferation area of the structures studied, whereas on day 21 of gestation, proliferation decreased in the cortex and dentate gyrus of embryos of the stressed group. These changes were related to decreased prolactin and increased corticosterone concentrations in the plasma.  相似文献   

14.
15.
16.
Retinoic acid and development of the central nervous system.   总被引:5,自引:0,他引:5  
We consider the evidence that RA, the vitamin A metabolite, is involved in three fundamental aspects of the development of the CNS: 1) the stimulation of axon outgrowth in particular neuronal sub-types; 2) the migration of the neural crest; and 3) the specification of rostrocaudal position in the developing CNS (forebrain, midbrain, hindbrain, spinal cord). The evidence we discuss involves RA-induction of neurites in cell cultures and explants of neural tissue; the teratological effects of RA on the embryo's nervous system; the observation that RA can be detected endogenously in the spinal cord; and the fact that the receptors and binding proteins for RA are expressed in precise domains and neuronal cell types within the nervous system.  相似文献   

17.
18.
Matricellular proteins, such as thrombospondins (TSPs1-4), SPARC, SPARC-like1 (hevin) and tenascin C are expressed by astrocytes in the central nervous system (CNS) of rodents. The spatial and temporal expression patterns of these proteins suggest that they may be involved in important developmental processes such as cell proliferation and maturation, cell migration, axonal guidance and synapse formation. In addition, upon injury to the nervous system the expression of these proteins is upregulated, suggesting that they play a role in tissue remodeling and repair in the adult CNS. The genes encoding these proteins have been disrupted in mice. Interestingly, none of these proteins are required for survival, and furthermore, there are no evident abnormalities at the gross anatomical level in the CNS. However, detailed analyses of some of these mice in the recent years have revealed interesting CNS phenotypes. Here we will review the expression of these proteins in the CNS. We will discuss a newly described function for thrombospondins in synapse formation in the CNS in detail, and speculate whether other matricellular proteins could play similar roles in nervous system development and function.  相似文献   

19.
Recent evidence argues that the oncogenesis and growth of CNS tumors occurs through dysregulated molecular and cellular mechanisms of neural development. New insights have emerged that have had a significant impact on both research and treatment of these cancers.  相似文献   

20.
Measurements made with two different techniques of intracellular calcium levels from small isolated cells of the mammalian central nervous system are described and compared. Recordings in cultured mouse embryo spinal cord and dorsal root ganglion neurons, made with double-barrelled borosilicate Ca2+-selective microelectrodes yielded a mean Ca2+ level of 2.3 (SE +/- 0.54) microM for the lowest values recorded in 24 out of 46 cells. Intracellular Ca2+ dependence on membrane potential was apparent with levels of calcium greater than or equal to 4 microM (r = 0.371, n = 29). Both cyclic fluctuations induced by tetraethylammonium and an apparent increase in Ca2+ evoked by the depolarizing excitatory amino acid, L-aspartate, were observed. In contrast, estimates of intracellular Ca2+ obtained by spectrofluorimetry of suspensions of mouse embryo brain cells, loaded with the intracellular Ca-binding fluorescent probe, quin2 provided a approximately equal to 10-fold lower value, 152 (SE +/- 7) nM. This more closely resembles levels reported for large neurons where large-tip microelectrodes with greater sensitivity were used, and in spite of the heterogeneity of the cells this value is presumed to be a more accurate estimate of intraneuronal Ca2+ concentration. In these fluorescence studies KCl readily evoked increases in intracellular Ca2+ which could be blocked by verapamil and Cd2+ and were not induced in the absence of Ca2+. Increases were also produced by N-methyl-D-aspartate, but not by the kainate-like Lathyrus neurotoxin, L-3-oxalylamino-2-aminopropionic acid. These results provide preliminary evidence for both voltage-sensitive and receptor-activated Ca channels in embryonic brain cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号