首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Antimicrobial peptides have received increasing attention not only as potential candidates to their administration as antimicrobial agents, but also as potential drugs applied in cancer therapy. Here, we have examined the action of both nisin and magainin on human promyelocytic leukemia HL-60 cells. Cells were cultured in presence of either nisin or magainin 1 as well as in combination with both nisin and magainin 1. Results have revealed that magainin, but not nisin, produces a loss of cell viability in HL-60 cells, and a minor increase of hemolysis, whereas it is not responsible for cell membrane disruption and lactate dehydrogenase (LDH) leakage. In addition, magainin is involved in a significant generation of reactive oxygen species (ROS), as well as in an augment of caspase-3 activity. Magainin-induced apoptosis was verified by DNA fragmentation and annexin V-FITC/propidium iodide (PI) staining of the cells. Promotion of cell death by magainin occurs via cytochrome c release accompanied by a substantial increase of proteasome activity. These results underline the importance of magainin as a drug capable of exerting an in vitro antitumoral activity by triggering apoptosis.  相似文献   

2.
Bactericidal activity of magainin 2: use of lipopolysaccharide mutants   总被引:4,自引:0,他引:4  
Salmonella typhimurium and a series of rough lipopolysaccharide mutants derived from it were used as target bacteria to examine the antimicrobial capacity of magainin 2. Magainin 2 demonstrated a dose-related bactericidal activity against the smooth parent strain and the series of lipopolysaccharide mutants. The lipopolysaccharide mutant series showed an ordered increase in sensitivity to the magainin 2 as the depth of the rough lesion in the lipopolysaccharide increased.  相似文献   

3.
抗菌肽Magainin基因的克隆及其在Pichia pastoris中的表达   总被引:20,自引:0,他引:20  
用化学合成法合成了以酵母偏爱密码子编码的抗菌肽magainin基因片段 ,合成片段拼接后 ,与pUC19重组 ,获得magainin基因 .Magainin基因与酵母表达载体pPIC3重组 ,构建胞内表达载体pPIC3 Mag ,电击法转化GS115宿主菌 ,经表型筛选和PCR鉴定证实了目的基因已稳定整合入Pichiapastoris酵母基因组中 .阳性克隆用甲醇诱导表达 ,用免疫印迹法确定了产物的正确性 .利用琼脂孔穴扩散法和液相测定法证明了重组magainin具有抗菌活性  相似文献   

4.
The pore-forming antibacterial peptide magainin 2 was made divalent, tetravalent, and octavalent via a copper(I)-mediated 1-3 dipolar cycloaddition reaction ("click" chemistry). This series of pore-forming compounds was tested in vitro for their ability to form pores in large unilamillar vesicles (LUVs). A large increase in the pore-forming capability was especially observed with the tetravalent and octavalent magainin compounds in the LUVs consisting of DOPC, and the octavalent magainin compound showed a marked increase with the DOPC/DOPG LUVs. Activity was observed in the low nanomolar range for these compounds.  相似文献   

5.
Expressing an antibacterial protein in bacteria for raising antibodies   总被引:5,自引:0,他引:5  
Magainins are small peptides with broad-spectrum activity against a range of plant and animal microbial pathogens. To detect magainin peptides in applications such as Western blot analysis and enzyme-linked immunosorbent assays, specific antibodies that recognize magainin peptides are required. The production of antibodies against small peptides injected into host animals poses problems with respect to eliciting an adequate immunogenic response due to the small size of the molecules. To increase the immunogenicity of a target peptide, it may be expressed as part of a larger fusion protein. However, expression of an antimicrobial peptide in bacteria may be cytotoxic to the host or subjected to degradation by host-derived peptidases. To overcome these potential problems, we fused the DNA coding sequence of a magainin gene analogue within the sequence of a bacterial thioredoxin gene. The subsequent gene fusion comprising a bacterial thioredoxin gene with a magainin coding sequence ligated at the active site of thioredoxin was successfully translated in a bacterial expression system. The fusion protein was non-toxic to the host bacteria. This represents a novel strategy to express antimicrobial peptides in a bacterial expression system. The fusion protein, purified by molecular size separation, was recovered in a soluble form following electroelution from polyacrylamide gels. Sufficient fusion protein was obtained for injection into rabbits and antibodies were obtained from rabbit sera that selectively recognized magainin peptides in Western blot analysis.  相似文献   

6.
In vitro toxicity of the antimicrobial peptides (AMPs) magainin 1 and 2 to a higher plant organism, i.e., the bicellular male gametophyte of Actinidia Deliciosa (kiwifruit), is investigated. Heavy damage to the plasma membrane, the primary cellular target of the peptides, was rapidly induced: in as few as 15 min, from 70 to nearly 100 % of pollen grains were rendered unviable by 20 microM magainin 1 or 2, respectively. Therefore, kiwifruit pollen sensitivity to natural magainins seemed to be higher if compared to the sensitivity of other pollen species towards magainin 2 amide or synthetic magainin analogues. Strong dose-dependent inhibitory effects on kiwifruit pollen performance were registered: as for magainin 1, the EC (50) at 120 min varied from 14.0 (germination) to 15.8 microM (tube elongation). The inhibitory effect was much greater when administering magainin 1 to elongating tubes rather than to ungerminated pollen grains. The two peptides differentially affected kiwifruit pollen, in line with the previously documented greater activity of magainin 2 in other cell systems. Furthermore, 20 microM magainin 1-treated pollen grains took on a shrivelled shape within 30 min of incubation, an increasingly widespread effect with higher peptide concentration. At the ultrastructural level, both protoplast shrinkage and striking organelle alterations were evident, including chromatin condensation, swelling and loss of mitochondrial cristae, dilation of rough endoplasmic reticulum cisternae, and vacuolization of cytoplasm. To our knowledge, similar alterations in animal or plant cells treated with AMPs have not been described yet.  相似文献   

7.
Tamba Y  Yamazaki M 《Biochemistry》2005,44(48):15823-15833
It is thought that magainin 2, an antimicrobial peptide, acts by binding to lipid membranes. Recent studies using a suspension of large unilamellar vesicles (LUVs) indicate that magainin 2 causes gradual leakage from LUVs containing negatively charged lipids. However, the details of the characteristics of the membrane permeability and the mechanism of pore formation remain unclear. In this report, we investigated the interaction of magainin 2 with single giant unilamellar vesicles (GUVs) composed of a dioleoylphosphatidylcholine and dioleoylphosphatidylglycerol mixture (50% DOPG/50% DOPC GUVs) containing the fluorescent dye, calcein, by phase contrast, fluorescence microscopy using the single GUV method. Low concentrations (3-10 microM) of magainin 2 caused the rapid leakage of calcein from single GUVs but did not disrupt the liposomes or change the membrane structure, showing directly that magainin 2 forms membrane pores through which calcein leaked. The rapid leakage of calcein from a GUV started stochastically, and once it began, the complete leakage occurred rapidly (6-60 s). The fraction of completely leaked GUV, P(L), increased with time and also with an increase in magainin 2 concentration. Shape changes in these GUVs occurred prior to the pore formation and also at lower concentrations of magainin 2, which could not induce the pore formation. Their analysis indicates that binding of magainin 2 to the external monolayer of the GUV increases its membrane area, thereby raising its surface pressure. The addition of lysophosphatidylcholine into the external monolayer of GUVs increased P(L). On the basis of these results, we propose the two-state transition model for the pore formation.  相似文献   

8.
Magainin 2, a polycationic peptide, displays bactericidal and tumoricidal activity, presumably interacting with negatively charged phospholipids in the membrane hosts. In this work, we investigate the role played by the lipid head-group in the interactions and self-association of magainin 2 during pore formation in lipid bilayers. Two methods are used: single-channel and macroscopic incorporation into planar lipid membranes. Single-channel incorporation showed that magainin 2 did not interact with zwitterionic membranes, while the addition of negatively charged dioleoylphosphatidylglycerol to the membrane leads to channel formation. On the other hand, magainin 2 did not form channels in membranes made up of dioleoylphosphatidylserine (DOPS), although the addition of ergosterol to DOPS membranes leads to channel formation. This finding could indicate that ergosterol may be a possible target of magainin 2 in fungal membranes. Further support for this hypothesis comes from experiments in which the addition of ergosterol to palmitoyloleoylphosphatidylcholine membranes induced channel formation. Besides the role of negatively charged membranes, this study has shown that magainin 2 also forms channels in membranes lacking heads, such as monoolein and oxidized cholesterol, indicating an interaction of magainin 2 with acyl chains and cholesterol, respectively. This finding provides further evidence that peptide binding and assembly in lipid membranes is a complex process driven by electrostatic and/or hydrophobic interactions, depending on the structure of the peptide and the membrane composition.  相似文献   

9.
Antimicrobial activity of polycationic peptides   总被引:9,自引:0,他引:9  
The in vitro activity of six polycationic peptides, buforin II, cecropin P1, indolicidin, magainin II, nisin, and ranalexin, were evaluated against several clinical isolates of gram-positive and gram-negative aerobic bacteria, yeasts, Pneumocystis carinii and Cryptosporidium parvum, by using microbroth dilution methods. The peptides exhibited different antibacterial activities and rapid time-dependent killing. The gram-negative organisms were more susceptible to buforin II and cecropin P1, whereas buforin II and ranalexin were the most active compounds against the gram-positive strains. Similarly, ranalexin showed the highest activity against Candida spp., whereas magainin II exerted the highest anticryptococcal activity. Finally, the peptides showed high anti-Pneumocystis activity, whereas no compound had strong inhibitory effect on C. parvum.  相似文献   

10.
Interactions of two antimicrobial peptides, magainin 2 and indolicidin, with three different model biomembranes, namely, monolayers, large unilamellar vesicles (LUVs), and giant liposomes, were studied. Insertion of both peptides into lipid monolayers was progressively enhanced when the content of an acidic phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in a film of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) was increased. Indolicidin and magainin 2 penetrated also into lipid monolayers containing cholesterol (mole fraction, X = 0.1). Membrane association of magainin 2 attenuated lipid lateral diffusion in POPG-containing LUVs as revealed by the decrease in the excimer/monomer fluorescence ratio I(e)/I(m) for the pyrene fatty-acid-containing phospholipid derivative 1-palmitoyl-2-[10-(pyren-1-yl) decanoyl]-sn-glycero-3-phospho-rac-glycerol (PPDPG). Likewise, an increase in steady-state fluorescence anisotropy of the membrane-incorporated diphenylhexatriene (DPH) was observed, revealing magainin 2 to increase acyl chain order and induce segregation of acidic phospholipids. Similar effects were observed for indolicidin. The topological effects of magainin 2 and indolicidin on phospholipid membranes were investigated using optical microscopy of giant vesicles. Magainin 2 had essentially no influence on either SOPC or SOPC:cholesterol (X = 0.1) giant liposomes. However, effective vesiculation was observed when acidic phospholipid (X(PG) = 0.1) was included in the giant vesicles. Indolicidin caused only a minor shrinkage of giant SOPC vesicles whereas the formation of endocytotic vesicles was observed when the giant liposome contained POPG (X(PG) = 0.1). Interestingly, for indolicidin, vesiculation was also observed for giant vesicles composed of SOPC/cholesterol (X(chol) = 0.1). Possible mechanisms of membrane transformation induced by these two peptides are discussed.  相似文献   

11.
The skin secretions of amphibians are a rich source of antimicrobial peptides. The two antimicrobial peptides PGLa and magainin 2, isolated from the African frog Xenopus laevis, have been shown to act synergistically by permeabilizing the membranes of microorganisms. In this report, the literature on PGLa is extensively reviewed, with special focus on its synergistically enhanced activity in the presence of magainin 2. Our recent solid state 2H NMR studies of the orientation of PGLa in lipid membranes alone and in the presence of magainin 2 are described in detail, and some new data from 3,3,3-2H3-L-alanine labeled PGLa are included in the analysis.  相似文献   

12.
Antimicrobial peptides are widely distributed in nature and appear to play a role in the host defense of plants and animals. In this study we report the existence of antimicrobial peptides in the stomach of the vertebrate Xenopus laevis, an animal previously shown to store high concentrations of antimicrobial peptides in its skin. Antimicrobial activity was detected in extracts of X. laevis stomach tissue and nine antimicrobial peptides were then purified. A novel 24-amino acid peptide, designated PGQ, was isolated from these extracts, and has the following amino acid sequence: GVLSNVIGYLKKLGTGALNAVLKQ. PGQ is relatively basic and has the potential to form an amphipathic alpha-helix. The other peptides isolated are members of the magainin family of antimicrobial peptides, and include magainins I and II, PGLa, xenopsin precursor fragment, and four caerulein precursor fragments. None of these peptides had been previously identified in tissues other than the skin. The purification of the peptides from stomach extracts and subsequent protein sequence analysis reveals that the peptides have undergone the same processing as their dermal counterparts, and that they are stored in their processed forms. Northern blot analysis indicates that the magainin family of peptides are synthesized in the stomach, and immunohistochemical studies demonstrate that magainin is stored in a novel granular multinucleated cell in the gastric mucosa of Xenopus. This study demonstrates that the magainin family of antimicrobial peptides is found in the gastrointestinal system of X. laevis and offers an opportunity to further define the physiological role of these defense peptides.  相似文献   

13.
The antimicrobial peptides magainin 2 and PGLa isolated from the skin of the African clawed frog Xenopus laevis show marked functional synergism. We have proposed that the two peptides form a heterodimer composed of parallel helices with strong membrane permeabilizing activity [Hara, T., Mitani, Y., Tanaka, K., Uematsu, N., Takakura, A., Tachi, T., Kodama, H., Kondo, M., Mori, H., Otaka, A., Fujii, N., and Matsuzaki, K. (2001) Biochemistry 40, 12395-12399]. In this study, to elucidate the molecular mechanism of the synergy, we synthesized a chemically fixed heterodimer and investigated in detail the interaction of the hybrid peptide with bacteria, erythrocytes, and lipid bilayers. The hybrid peptide showed antimicrobial activity and membrane permeabilizing activity against negatively charged membranes, similar to or even stronger than those of a physical equimolar mixture of magainin and PGLa, indicating that the synergy is due to the formation of a parallel heterodimer. The heterodimer assumed a more oblique orientation than the component peptides. In contrast, the cross-linking of the two peptides significantly strengthened the action against erythrocytes and zwitterionic lipid bilayers by enhancing the affinity for membranes without changing the basic mode of action. Thus, the separate production of mutually recognizing peptides without cross-linking appears to be a good way to increase selective toxicity.  相似文献   

14.
Unger T  Oren Z  Shai Y 《Biochemistry》2001,40(21):6388-6397
The amphipathic alpha-helical structure is a common motif found in membrane binding polypeptides including cell lytic peptides, antimicrobial peptides, hormones, and signal sequences. Numerous studies have been undertaken to understand the driving forces for partitioning of amphipathic alpha-helical peptides into membranes, many of them based on the antimicrobial peptide magainin 2 and the non-cell-selective cytolytic peptide melittin, as paradigms. These studies emphasized the role of linearity in their mode of action. Here we synthesized and compared the structure, biological function, and interaction with model membranes of linear and cyclic analogues of these peptides. Cyclization altered the binding of melittin and magainin analogues to phospholipid membranes. However, at similar bound peptide:lipid molar ratios, both linear and cyclic analogues preserved their high potency to permeate membranes. Furthermore, the cyclic analogues preserved approximately 75% of the helical structure of the linear peptides when bound to membranes. Biological activity studies revealed that the cyclic melittin analogue had increased antibacterial activity but decreased hemolytic activity, whereas the cyclic magainin 2 analogue had a marked decrease in both antibacterial and hemolytic activities. The results indicate that the linearity of the peptides is not essential for the disruption of the target phospholipid membrane, but rather provides the means to reach it. In addition, interfering with the coil-helix transition by cyclization, while maintaining the same sequence of hydrophobic and positively charged amino acids, allows a separated evaluation of the hydrophobic and electrostatic contributions to binding of peptides to membranes.  相似文献   

15.
The role of the outer membrane and lipopolysaccharide (LPS) in the interaction between the small cationic antimicrobial peptide magainin 2 and the Gram-negative cell envelope was studied by FT-IR spectroscopy. Magainin 2 alters the thermotropic properties of the outer membrane-peptidoglycan complexes from wild-type Salmonella typhimurium and a series of LPS mutants which display differential susceptibility to the bactericidal activity of cationic antibiotics. These results are correlated with the LPS phosphorylation pattern and charge (characterized by high-resolution 31P NMR) and outer membrane lipid composition, and are compared to the bactericidal susceptibility. LPS mutants show a progressive loss of resistance to killing by magainin 2 as the length of the LPS polysaccharide moiety decreases. Disordering of the outer membrane lipid fatty acyl chains by magainin 2, however, depends primarily upon the magnitude of LPS charge rather than the length of the LPS polysaccharide, contradicting the proposal by Weiss et al. [Weiss, J., Beckerdite-Quagiata, S., & Elsbach, P. (1980) J. Clin. Invest. 65, 619-628] that the sugar side chain of LPS shields the negative charges of the outer membrane surface. While disruption of outer membrane structure most likely is not the primary factor leading to cell death, the susceptibility of Gram-negative cells to magainin 2 is associated with factors that facilitate the transport of the peptide across the outer membrane, such as the magnitude and location of LPS charge, the concentration of LPS in the outer membrane, outer membrane molecular architecture, and the presence or absence of the O-antigen side chain.  相似文献   

16.
A 13-residue synthetic peptide (Rev4) was designed based on indolicidin, an antimicrobial peptide from bovine neutrophils. The synthetic peptide retains high antimicrobial activity. When tested for its stability in tobacco leaf extracts, Rev4 was highly stable compared to another antimicrobial peptide, magainin. When mixed with Rev4, magainin was protected from degradation by the leaf extract. Our results show that Rev4 is a potent protease inhibitor which selectively inhibits three out of four different types of proteases. Four other synthetic peptides were tested and the results were suggestive of no correlation between their antimicrobial and protease inhibitory activities.  相似文献   

17.
Ubiquitin carboxyl-terminal hydrolases (UCHs) are implicated in the proteolytic processing of polymeric ubiquitin. The high specificity for the recognition site makes UCHs useful enzymes for in vitro cleavage of ubiquitin fusion proteins. In this work, an active C-terminal His-tagged UCH from Drosophila melanogaster (DmUCH) was produced as a secretory form in a recombinant strain of the methylotrophic yeast Pichia pastoris. The production of recombinant DmUCH by Mut(s) strain was much higher than that by Mut(+) strain, which was confirmed by Western blot analysis. When expression was induced at pH 6.0 in a BMMY/methanol medium, the concentration of recombinant DmUCH reached 210 mg l(-1). With the (His)(6)-tag, the recombinant DmUCH was easily purified by Ni-NTA chromatography and 18 mg pure active DmUCH were obtained from 100ml culture broth supernatant. Ubiquitin-magainin fusion protein was efficiently cleaved by DmUCH, yielding recombinant magainin with high antimicrobial activity. After removing the contaminants by Ni-NTA chromatography, recombinant magainin was purified to homogeneity easily by reversed-phase HPLC. Analysis of the recombinant magainin by ESI-MS showed that the molecular weight of the purified recombinant magainin was 2465 Da, which perfectly matches the mass calculated from the amino acid sequence. The result of mass spectrometry confirmed that the purified His-tagged DmUCH can recognize the ubiquitin-magainin fusion protein and cleave it at the carboxyl terminus of ubiquitin precisely. Our results showed that P. pastoris is a robust system to express the secreted form of DmUCH.  相似文献   

18.

Background

Antimicrobial agents, with different pore-formation mechanisms, may be differently influenced by alteration of the dipolar electric field of a lipid membrane.

Methods

By using electrophysiological measurements on reconstituted lipid membranes, we used alamethicin, melittin and magainin to report on how controlled manipulation of the membrane dipole potential by the styrylpyridinium dye RH 421 affects the kinetic and transport features of peptides within membranes.

Results

Our data demonstrate that the increase of the membrane dipole potential caused by RH 421 decreases the activity and single-channel conductance of alamethicin. Surprisingly, we found that RH 421 increases the activity of melittin and magainin, suggesting that RH 421 may contribute via electrostatic repulsions, among others, to an increase in the monolayer spontaneous curvature of the membrane. We propose that RH 421-induced dipole potential and membrane elasticity changes alter the peptide-induced channel dynamics, and the prevalence of one mechanism over the other for particular classes of peptides is dictated by the electrical and mechanical interactions which rule the pore-formation mechanism of such peptides.

General significance

These results point to a novel paradigm in which electrical and mechanical effects promoted by chemicals which preferentially alter the electrostatics of the membrane, may be employed to help distinguish among various pore-formation mechanisms of membrane-permeabilizing peptides.  相似文献   

19.
Magainins are antimicrobial peptides that selectively disrupt bacterial cell membranes. In an effort to determine the propensity for oligomerization of specific highly active magainin analogues in membrane mimetic systems, we studied the structures and lipid interactions of two synthetic variants of magainins (MSI-78 and MSI-594) originally designed by Genaera Corp. Using NMR experiments on these peptides solubilized in dodecylphosphocholine (DPC) micelles, we found that the first analogue, MSI-78, forms an antiparallel dimer with a "phenylalanine zipper" holding together two highly helical protomers, whereas the second analogue, MSI-594, whose phenylalanines 12 and 16 were changed into glycine and valine, respectively, does not dimerize under our experimental conditions. In addition, magic angle spinning solid-state NMR experiments carried out on multilamellar vesicles were used to corroborate the helical conformation of the peptides found in detergent micelles and support the existence of a more compact structure for MSI-78 and a pronounced conformational heterogeneity for MSI-594. Since magainin activity is modulated by oligomerization within the membrane bilayers, this study represents a step forward in understanding the role of self-association in determining magainin function.  相似文献   

20.
Interactions of the peptides melittin and magainin with phospholipid vesicle membranes have been studied using fluorescence correlation spectroscopy. Molecular interactions of melittin and magainin with phospholipid membranes are performed in rhodamine-entrapped vesicles (REV) and in rhodamine-labelled phospholipid vesicles (RLV), which did not entrap free rhodamine inside. The results demonstrate that melittin makes channels into vesicle membranes since exposure of melittin to vesicles causes rhodamine release only from REV but not from RLV. It is obvious that rhodamine can not be released from RLV because the inside of RLV is free of dye molecules. In contrast, magainin breaks vesicles since addition of magainin to vesicles results in rhodamine release from both REV and RLV. As the inside of RLV is free of rhodamine, the appearance of rhodamine in solution confirms that these vesicles are broken into rhodamine-labelled phospholipid fragments after addition of magainin. This study is of pharmaceutical significance since it will provide insights that fluorescence correlation spectroscopy can be used as a rapid protocol to test incorporation and release of drugs by vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号