首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on a literature precedent, preparation of methyl 4-azido-3,4,6-trideoxy-3-fluoro-alpha-D-mannopyranoside (18) was attempted via fluorination of methyl 4-azido-2-O-benzyl-4,6-dideoxy-alpha-D-altropyranoside with diethylaminosulfur trifluoride (DAST). Contrary to expectations, the reaction took place with retention of configuration at the site of the fluorination yielding methyl 4-azido-2-O-benzyl-3,4,6-trideoxy-3-fluoro-alpha-D-altropyranoside. Treatment with DAST of methyl 4-azido-2-O-benzyl-4,6-dideoxy-alpha-D-allopyranoside (8), or its 2-(p-methoxybenzyl) analog 9 resulted in fluorination with inversion of configuration at position 3, to give the corresponding 3-deoxy-3-fluoro glucopyranosides 10 and 11, respectively. Accordingly, compound 18 was prepared from 11, by de-p-methoxybenzylation at O-2, followed by inversion of configuration at C-2 in the resulting methyl 4-azido-3,4,6-trideoxy-3-fluoro-alpha-D-glucopyranoside. The 2-O-methyl analog of 18 (19) was prepared by methylation of 18. Compounds 18 and 19 were converted, conventionally, into the 3-fluoro analogs of the terminal determinants of the O-PS of Vibrio cholerae O:1, serotype Inaba and Ogawa, respectively.  相似文献   

2.
Two 3,7-anhydro-octoses, namely, methyl 3,7-anhydro-5,6,8-trideoxy-β-d-allo-octofuranoside and methyl 3,7-anhydro-5,6,8-trideoxy-α-l-talo-octofuranoside, have been synthesized. The synthetic sequence includes the preparation of an octose from d-ribose by way of a Wittig reaction and the elaboration of the bicyclic-ring system by intramolecular cyclization.  相似文献   

3.
Synthesis of methyl 2,4,6-trideoxy-3-O-benzoyl-2,4-di-C-methyl-alpha-L-talohexopyranoside and 2,4,6-trideoxy-2,4-di-C-methyl-L-galactitol, stereoisomers of the C33-C38 fragment of amphothericin B, is described.  相似文献   

4.
An azidoaryl thioglycoside of sialic acid was prepared, as a potential photoaffinity probe reagent for the analysis of sialidases and sialic acid-binding proteins, by treatment of the glycosyl chloride of N-acetylneuraminic acid methyl ester with potassium thioacetate to give, in 70% yield, methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2-S-acetyl-2,3,5-trideoxy-2-thio-alph a-D- glycero-D-galacto-2-nonulopyranosonate. Selective hydrolysis of the thioacetate ester, followed by condensation with 4-fluoro-3-nitrophenyl azide, O-deacetylation, and hydrolysis gave (4-azido-2-nitrophenyl)- 5-acetamido-2,3,5-trideoxy-2-thio-alpha-D-glycero-D-galacto-2- nonulopyranosidonic acid.  相似文献   

5.
Derivatives of (S)-2-fluoro-L-daunosamine and (S)-2-fluoro-D-ristosamine were synthesized, starting ultimately from 2-amino-2-deoxy-D-glucose which was converted, according to the literature, into methyl 2-benzamido-4, 6-O-benzylidene-2-deoxy-3-O-(methylsulfonyl)-alpha-D-glucopyranoside (2). Treatment of 2 with tetrabutylammonium fluoride gave a 63% yield of (known) methyl 3-benzamido-4,6-O-benzylidene-2,3-dideoxy-2-fluoro-alpha-D-altropyran oside (4), together with a 6% yield of its 2-benzamido-2,3-dideoxy-3-fluoro-alpha-D-gluco isomer. From 4, the corresponding 6-bromo-2,3,6-trideoxyglycoside 4-benzoate (6) was obtained by Hanessian-Hullar reaction. Dehydrobromination of 6, followed by catalytic hydrogenation of the resulting 5-enoside, and subsequent debenzoylation and N-trifluoroacetylation, afforded the fluorodaunosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-beta-L-galactopyranos ide. Reductive debromination of 6, followed by debenzoylation and N-trifluoroacetylation, gave the fluororistosaminide, methyl 2,3,6-trideoxy-2-fluoro-3-trifluoroacetamido-alpha-D-altropyran oside. The 1H-n.m.r. spectra of the new aminofluoro sugars are discussed with respect to the effects of neighboring amino and acylamido substituents on geminal and vicinal 1H-19F coupling constants, in comparison with the reported effects of oxygen substituents.  相似文献   

6.
Seven daunorubicin analogs containing α-l-, α-d-, and β-d-glycosidic linkages, in which the natural occurring sugar (l-daunosamine) was replaced by diastereo-isomeric 3-amino-2,3,6-trideoxyhexoses (3-epi-l-daunosamine, d-acosamine, d-daunosamine, d-ristosamine, and 3-epi-d-daunosamine), were prepared. In all cases, glycosidation with daunomycinone was performed in the presence of p-toluene-sulfonic acid starting from 1-O-acetyl-2,3,6-trideoxy-4-O-p-nitrobenzoyl-3-trifluoroacetamidohexopyranoses (prepared from the corresponding methyl 3-amino-2,3,6-trideoxyhexopyranosides) or from 1,5-anhydro-2,3,6-trideoxy-4-O-p-nitrobenzoyl-3-trifluoroacetamidohex-1-enitols (prepared from glycals or pseudoglycals, the 3-amino group being introduced by substitution with sodium azide and subsequent reduction). Glycosidation was followed by removal of the protecting groups.  相似文献   

7.
Methyl 4,6-O-benzylidene-2-deoxy-α-d-erythro-hexopyranosid-3-ulose reacted with potassium cyanide under equilibrating conditions to give, initially, methyl 4,6-O-benzylidene-3-C-cyano-2-deoxy-α-d-ribo-hexopyranoside (7), which, because it reverted slowly to the thermodynamically stable d-arabino isomer, could be crystallised directly from the reaction mixture. The mesylate derived from the kinetic product 7 could be converted by published procedures into methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-d-arabino-hexopyranoside, which was transformed into methyl N-acetyl-α-d-vancosaminide on inversion of the configuration at C-4. A related approach employing methyl 2,6-dideoxy-4-O-methoxymethyl-α-l-erythro-hexopyranosid-3-ulose gave the kinetic cyanohydrin and thence, via the spiro-aziridine 27, methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-l-arabino-hexopyranoside, a known precursor of methyl N-acetyl-α-l-vancosaminide.  相似文献   

8.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

9.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

10.
DBU catalyzed condensation of 3-O-benzyl(methyl)-5,6-dideoxy-1,2-O-isopropylidene-beta-L-threo-hept-4-enofuranuronates with different aldehydes produces the corresponding 3-O-benzyl(methyl)-6-carbethoxy-5,6-dideoxy-1,2-O-isopropylidene-7-phenyl-beta-L-threo-hept-4-enofuranoses. The latter on treatment with methanesulfonyl chloride followed by DBU catalyzed E2 reaction of the methanesulfonyloxy intermediates gave the respective 3-O-benzyl(methyl)-6-carbethoxy-5,6,7-trideoxy-1,2-O-isopropylidene-7-phenyl-beta-L-threo-hept-4,6-dienofuranose in moderate to good yields.  相似文献   

11.
Methyl 4,6-O-benzylidene-2-deoxy-α- -erythro-hexopyranosid-3-ulose reacted with potassium cyanide under equilibrating conditions to give, initially, methyl 4,6-O-benzylidene-3-C-cyano-2-deoxy-α- -ribo-hexopyranoside (7), which, because it reverted slowly to the thermodynamically stable -arabino isomer, could be crystallised directly from the reaction mixture. The mesylate derived from the kinetic product 7 could be converted by published procedures into methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α- -arabino-hexopyranoside, which was transformed into methyl N-acetyl-α- -vancosaminide on inversion of the configuration at C-4. A related approach employing methyl 2,6-dideoxy-4-O-methoxymethyl-α- -erythro-hexopyranosid-3-ulose gave the kinetic cyanohydrin and thence, via the spiro-aziridine 27, methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α- -arabino-hexopyranoside, a known precursor of methyl N-acetyl-α- -vancosaminide.  相似文献   

12.
N-Acetylepidaunosamine (3-acetamido-2,3,6-trideoxy-d-ribo-hexopyranose) was converted into the diethyl dithioacetal and this was cyclized with HgCi2, HgO, and MeOH, to give methyl 3-acetamido-2,3,6-trideoxy-α- and -β-d-ribo-hexofuranoside (4 and 5). These anomers were acetylated or (p-nitrobenzoyl)ated, and the esters were subjected to acetolysis, to afford 3-acetamido-1,5-di-O-acetyl-2,3,6-trideoxy-d-ribo-hexofuranose and 3-acetamido-1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-d-ribo-hexofuranose, respectively. Alternatively, compounds 4 and 5 were hydrolyzed to the free bases with barium hydroxide, and these were converted into the trifluoroacetamido derivatives which, on (p-nitrobenzoyl)ation and acetolysis, afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-d-ribo-hexofuranose. To prepare the corresponding daunosamine derivative, 2,3,6-trideoxy-3-(trifluoroacetamido)-l-lyxo-hexopyranose was converted into the diethyl dithioacetal, and this was cyclized in the same way, to afford methyl 2,3,6-trideoxy-3-(trifluoroacetamido)-α- and -β-l-lyxo-hexofuranoside. On (p-nitrobenzoyl)ation and acetolysis, both afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexofuranose.  相似文献   

13.
Selective tosylation followed by acetylation of methyl 3-azido-2,3-dideoxy-alpha-D-arabino-hexopyranoside (1) in pyridine at room temperature affords a mixture of methyl 4-O-acetyl-3-azido-2,3-dideoxy-6-di-O-p-tolylsulfonyl-alpha-D-arabino-hexopyranoside (4) and methyl 3-azido-2,3-dideoxy-4,6-di-O-p-tolylsulfonyl-alpha-D-arabino-hexopyranoside (3). Compound 4 undergoes nucleophilic displacement with sodium iodide in acetic anhydride to give methyl 4-O-acetyl-3-azido-2,3,6-trideoxy-6-iodo-alpha-D-arabino-hexopyranoside (7), whose crystal structure and (1H) and (13)C NMR data are reported. This compound adopts the 4C(1) conformation.  相似文献   

14.
Hydrogenation, severally, of methyl 3-azido-2,3,6-trideoxy-β-D-erythro-hex-5-enopyranoside, its 3-benzamido analogue, and methyl 2,6-dideoxy-β-D-threo-hex-5-enopyranoside in the presence of palladium-on-barium sulphate gave the corresponding 6-deoxy-β-D-hexopyranoside derivatives. Stereoselective addition of hydrogen was observed in each case. Methyl 2,6-dideoxy-β-D-arabino-hexopyranoside was also prepared by reductive dehalogenation of methyl 3,4-di-O-benzoyl-6-bromo-2,6-dideoxy-β-D-arabino-hexopyranoside.  相似文献   

15.
In relation to the synthesis of antipseudomonal drugs, namely, gentamicin C2 and 3-de-O-methylsporaricin A, a protected purpurosamine B (15) and 6-epipurpurosamine B (13) were synthesized. The key intermediate, methyl 2,3,4,7- tetradeoxy-6-O-(methylsulfonyl)-2-phthalimido-beta-L-lyxo-++ +heptopyranoside (8), was obtained in 48% yield by Grignard addition to methyl 2,3,4-trideoxy-2-phthalimido-alpha-D-erythro-hexodialdo-1,5-pyrano side (7) proceeding in accordance with Cram's chelate rule, followed by methylsulfonylation. From 8, compound 15 was readily obtained by introduction of the azide group with inversion of configuration at C-6. Compound 13 was obtained by introduction of the azide group with retention of configuration.  相似文献   

16.
The title glycosides were synthesised from d-glucose, via the common intermediate methyl 2-acetamido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-α-d-ribo-hexopyranoside.  相似文献   

17.
5-Acetamido-4,7,8,9-tetra-O-acetyl-2,3,5-trideoxy-2-fluoro-D-glycero-alp ha- and -beta-D- galacto -2- nonulosonic acid methyl esters and the beta-chloro analog were synthesized from N-acetylneuraminic acid. Their 1H- and 13C-n.m.r.spectra were completely assigned by using single-frequency decoupling, off-resonance decoupling, and spin-simulation programs. Bond angles estimated from the 1H coupling-constants indicate that all of the compounds adopt the 2C5 (L) conformation with minor conformational differences in the C3 side chain. 5-Acetamido-2,3,5,-tri-deoxy-2-fluoro-D-glycero-alpha- and -beta-D- galacto -2- nonulosonic acid and their methyl esters were also prepared.  相似文献   

18.
An efficiently stereocontrolled total synthesis of GM3 alpha-D-Neup5Ac-(2----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----1) -Cer was achieved by employing both methyl 5-acetamido-4,7,8,9-tetra-O-benzyl-2-bromo-2,3,5-trideoxy-3- phenylthio-D-erythro-beta-L-gluco-2-nonulopyranosonate for the key sialylation step, and O-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O- acetyl-beta-D-galactopyranosyl-(1----4)-3,6-di-O-acetyl-2-O-pivaloyl- alpha-D-glucopyranosyl trichloroacetimidate and fluoride for the key coupling step with a ceramide derivative. These two steps were significantly altered and improved in comparison with our previous synthesis that had been executed without use of stereocontrolling auxiliaries. GM3 was obtained in 4.5% overall yield in 19 steps starting from allyl O-(2,6-di-O-acetyl-3,4-O-isopropylidene-beta-D-galactopyranosyl)-(1----4 )-2,3,6-tri-O-acetyl-beta-D-glucopyranoside.  相似文献   

19.
Selective tosylation of methyl 2-benzamido-2-deoxy-α-D-glucopyranoside at room temperature gave a mixture of the 6-sulphonate and the 3,6- and 4,6-disulphonates in yields of 25, 20, and 12%, respectively. Treatment of the 4-acetate of the 3,6-disulphonate with iodide ion gave the 3,6-di-iodo-D-gluco derivative, with overall retention of configuration involving participation of the 2-benzamido substituent in the substitution of the 3-tosyl group and formation of an intermediary oxazolinium ion. Reduction of the 3,6-di-iodo derivative gave methyl 2-benzamido-2,3,6-trideoxy-α-D-ribo-hexopyranoside. The disulphonates, characterised as their monoacetates, were synthesised from methyl 2-benzamido-4,6-O-benzylidene-2-deoxy-α-D-glucopyranoside by unambiguous routes, each of which was superior to selective tosylation.  相似文献   

20.
The synthesis of methyl 2,4,6-trideoxy-2,4-dimethyl-alpha-L-altro-hexopyranoside, having the configuration of the C33-C38 fragment of amphotericin B, is described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号