首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water and suspended sediment (SS) samples were collected from the Changjiang River at the Datong Hydrological Station (DHS), five times from May 1997 through January 1999 in order to evaluate transport, composition and bioavailability of phosphorus (P) during a 1998 flood. Transport of most of the phosphorus compositions was substantially higher during the 1998 flood than at other sampling dates. Phosphorus associated with suspended sediment (TPP) accounted for more than 85% of total phosphorus (TP) transport during periods of preflood and flood. The high transport of TPP during the flood was due to unusually high concentrations of TPP and sediment discharge. The potentially bioavailable phosphorus in SS (PBAP) accounted for about 10% of TPP. PBAP with dissolved inorganic phosphorus (DIP) consisted of 15–89% of TP. For all the sampling dates, the concentrations of potential bioavailable phosphorus (BAP) ranged from 0.035–0.08 mg L–1, significantly higher than the limiting concentration for eutrophication. Therefore, the increasing temporal trends of TP concentration and high bioavailability of TP appear to support more frequent algal blooms in receiving East China Sea coastal waters in recent years. Hence, the underestimate of TPP transport by large rivers may also underestimate the biogeochemical cycling of other associated nutrients, such as nitrogen and carbon.  相似文献   

2.
Phosphorus accumulation in sediments and internal loading   总被引:10,自引:0,他引:10  
  相似文献   

3.
We chose two surface soils with contrasting textures as model sediments for a model pond study. One soil, a calcareous clay, had a relatively high natural phosphate content and a large phosphate adsorption capacity. The second soil, a non calcareous loam, had a relatively low natural phosphate content and a small phosphate adsorption capacity. Chemical characteristics of both soils were roughly proportional to mineral surface area.Pasture sites of each soil were tilled to a depth of 15 cm and two plots at each site were fertilized by hand with triple superphosphate. A third plot at each site was left unfertilized. After fertilization the plots were mechanically mixed and left fallow for 2 to 3 months. Then the plots were resampled and equilibration phosphate concentrations were determined again. Results showed significant phosphate fixation by the clay soil but no fixation by the loam soil.Research Soil Scientist, Botanist, Physical Science Technician and Physical Science Technician, respectively, USDA-ARS Agric. Water Quality Management Lab.Contribution from the USDA-ARS agricultural Water Quality Management Lab., Durant, OK 74701.  相似文献   

4.
Sediment phosphorus (P) release accelerates lake eutrophication, while retention capacity and release potential of different P fractions, calcium-bound P (CaCO3~P) in particular, still remains unclear. Fractionation and sorption behaviors of phosphorus were studied in sediment of a Chinese shallow lake (Lake Wabu) and two inflowing rivers from December 2011 to December 2012. Abundance of P releasing bacteria was analyzed, and their main species were isolated using a culture-dependent method and identified by their 16S rDNA sequences. CaCO3~P release abilities of these bacteria were also tested. In sediments of both the lake and rivers studied, the rank order of the different P extracts was CaCO3~P > iron-bound P > acid-soluble organic P > hot NaOH-extractable organic P. At the same time, CaCO3~P content and equilibrium P concentration (EPC0) values in river sediments were significantly higher than those in the lake. Additionally, EPC0 changes non-monotonically with increasing CaCO3~P content, forming a V-shaped curve, with the lowest EPC0 at an intermediate CaCO3~P content (around 180 mg kg?1). Below this threshold, CaCO3~P was a component strengthening P retention; moreover, CaCO3~P became an active species responsible for P release. Noticeably, between the two parts divided by this threshold, the differences in abundance of inorganic phosphorus solubilizing bacteria (IPB) and organic phosphorus mineralizing bacteria (OPB) were insignificant and the dominant IPB species clustered together. By contrast, OPB was distinguished from each other, whose dominant species isolated from the part with higher CaCO3~P content, namely Novosphingobium sp., exhibited a stronger ability to solubilize CaCO3~P. Shortly, with lower content, CaCO3~P tends to stabilize P in sediment; while with higher content or under eutrophic condition, it shifted into P source, with some OPB species becoming the main factors to drive its release.  相似文献   

5.
A numerical model to simulate the transport of suspended sediment in tidal estuaries is presented. The model is applied to the two large European estuaries the Tagus (Portugal) and the Scheldt (Belgium-The Netherlands). Calculated suspended sediment concentrations compare favourably with observations in the Tagus (r=0.84) and in the Scheldt (r=0.73). The parametrization scheme indicates that the bottom content of fine sediment is correlated with depth in the Tagus; but a different relationship is used in the Scheldt. Because of tidal range differences, average suspended sediment concentrations are lower in the Tagus (80 mg l−1) than in the Scheldt (130 mg l−1), but a larger relative variation between spring and neap tide concentrations may occur in the Tagus.  相似文献   

6.
Phosphorus in soil,water and sediment: an overview   总被引:10,自引:4,他引:10  
The geochemistry, availability and abundance of different forms of phosphorus in soil, water and sediments are reviewed. The present knowledge of phosphorus pathways in ecosystems and their regulation is discussed.In a drainage basin, anthropogenic phosphorus is brought into the system mainly as fertilizers and detergents. Sewer systems and outwash processes transfer the phosphorus from the terrestrial environment to the aquatic part of the ecosystem where an accumulation occurs in the sediments of the watercourse.A great part of the phosphates in soil is sorbed to soil particles or incorporated into soil organic matter. The release and export of phosphorus from uncultivated soil is a function of the geology and soil composition, but also of the air temperature, precipitation and the hydrological condition, pH etc.The solubility of phosphates is controlled by either sorption-desorption or precipitation-dissolution reactions depending on the environment in the soil or sediments. In soil and sediments with large amounts of iron and aluminium hydrous oxides, sorption-desorption reactions are largely responsible for determining the level of orthophosphate in the solution at equilibrium.Algal availability of phosphorus associated with soil-derived materials present in aquatic systems deserves more research. In addition, processes responsible for transport of phosphorus from cropland to aquatic systems and chemical and microbial transformations of phosphorus in lakes and streams deserve more attention.  相似文献   

7.
Intact cores from the upper soil profile and surface litter were collected at the peak of the dry season and during the rainy period in the tropical deciduous forest of the Chamela region, Jalisco, México, to (1) analyze upper soil phosphorus (P) movement and retention, (2) compare soil P dynamic pools (soluble, bicarbonate, and microbial) in dry and rainy seasons, and (3) determine the response of these P pools to wetting. Unperturbed litter-soil cores were treated in the laboratory with either 10 mm or 30 mm of simulated rain with carrier-free 32P and compared to a control (no water addition) to determine the fate and retention of added P. 31P concentrations and pools in most litter and soil fractions were higher in the dry than in the rainy season. Soluble P was 0.306 g/m2 and microbial P was 0.923 g/m2 in the dry season (litter plus soil) versus 0.041 (soluble) and 0.526 (microbial) g P/m2 in the rainy season. After water addition, rainy-season cores retained 99.9 and 94% of 32P in the 10- and 30-mm treatments, respectively. Dry-season samples retained 98.9 and 80% of inputs in the same treatments. Retention after wetting occurred mostly in soil (bicarbonate and microbial fractions). Simulated rainfall on rainy-season soils increased P immobilization. On the other hand, simulated rainfall on dry-season soils released P through mineralization. The P release represents between 46 and 99% of the annual litterfall return. Our results suggest that both soluble and microbial P constitute important sources for initiation of plant growth at the onset of the rainy season in tropical dry forest. Received: 23 September 1997 / Accepted: 2 February 1998  相似文献   

8.
It is generally assumed that phosphorus (P) availability for plant growth on highly weathered and P-deficient tropical soils may depend more on biologically mediated organic P (Po) turnover processes than on the release of adsorbed inorganic P (Pi). However, experimental evidence showing the linkages between Po, microbial activity, P cycling and soil P availability is scarce. To test whether land-use systems with higher soil Po are characterized by greater soil biological activity and increased P mineralization, we analyzed the partitioning of P among various organic and inorganic P fractions in soils of contrasting agricultural land-use systems and related it to biological soil properties. Isotopic labeling was used to obtain information on the turnover of P held in the microbial biomass. Soil samples were taken from grass–legume pasture (GL), continuous rice (CR) and native savanna (SAV) which served as reference. In agreement with estimated P budgets (+277, +70 and 0 kg P ha–1 for CR, GL and SAV, respectively), available P estimated using Bray-2 and resin extraction declined in the order CR > GL > SAV. Increases in Bray-2 and resin Pi were greater in CR than GL relative to total soil P increase. Organic P fractions were significantly less affected by P inputs than inorganic fractions, but were a more important sink in GL than CR soils. Extractable microbial P (Pchl) was slightly higher in GL (6.6 mg P kg–1) than SAV soils (5.4 mg P kg–1), and significantly lowest in CR (2.6 mg P kg–1). Two days after labeling the soil with carrier free 33P, 25, 10 and 2% of the added 33P were found in Pchl in GL, SAV and CR soils, respectively, suggesting a high and rapid microbial P turnover that was highest in GL soils. Indicators of P mineralization were higher in GL than CR soils, suggesting a greater transformation potential to render Po available. Legume-based pastures (GL) can be considered as an important land-use option as they stimulate P cycling. However, it remains to be investigated whether crops planted in pasture–crop rotations could benefit from the enhanced Po cycling in grass–legume soils. Furthermore, there is need to develop and test a direct method to quantify Po mineralization in these systems.  相似文献   

9.
Phosphorus (P) dynamics in large shallow lakes are greatly influenced by physical processes such as wind-driven sediment resuspension, at times scales from hours to years. Results from long-term (30 year) research on Lake Okeechobee, Florida (area 1,730 km2, mean depth 2.7 m) illustrate key features of these P dynamics. Variations in wind velocity result in changes in water column transparency, suspended solids, and total P (TP). In summer there are diurnal changes in TP associated with afternoon winds, and in winter, when strong winds occur for multiple days, monthly average TP remains high compared to summer. The magnitude of daily and seasonal TP changes can exceed 100 μg l−1. Hurricanes and tropical storms also cause extreme changes in TP that are superimposed on seasonal dynamics. When a hurricane passed 80 km south of the lake in October 1999, mean pelagic TP increased from 88 to 222 μg l−1. During large resuspension events, light attenuation is substantially increased, and this influences the biomass and spatial extent of submerged plants, as well as water column TP. In Lake Okeechobee, TP concentrations typically are ∼20 μg l−1 when submerged plants are dense, and soluble reactive P concentrations are reduced below detection, perhaps by the periphyton and plant uptake and by precipitation with calcium at high pH. In contrast, TP exceeds 50 μg l−1 when submerged plants and periphyton are absent due to prolonged deep water, and phytoplankton biomass and algal bloom frequency both are increased. In Lake Okeechobee and other large shallow lakes, complex models that explicitly consider wind-wave energy, hydrodynamics, and sediment resuspension, transport, and key biological processes are needed to accurately predict how lake water TP will respond to different management options.  相似文献   

10.
The relative importance of biotic (top-down) vs. abiotic (bottom-up) controls on phytoplankton dynamics was investigated in the York River estuary, Virginia (USA) by a combination of extensive analyses of long-term data sets collected by the U.S. Environmental Protection Agency (EPA) monitoring program over 17 years (1984–2001), field studies (1996–1997) and ecosystem modeling analyses. Results from the analysis of long-term data records collected at three stations along the salinity gradient suggested that phytoplankton are more likely controlled by abiotic mechanisms such as resource limitation than biotic mechanisms such as grazing since annual cycles of primary production and phytoplankton biomass were similar and no grazing effects were evident based on the observed relationship between phytoplankton and zooplankton biomass (R 2 < 0.2, p > 0.1). This scenario was supported by short-term field observations made over an annual cycle at three stations in the mid-channel of the estuary where both chlorophyll a and primary production demonstrated similar patterns of seasonal variation. Ratios of fluorescence before and after acidification at all study sites were relatively high suggesting low grazing pressure in the estuary. A tidally-averaged, size-structured plankton ecosystem model was previously developed and verified for the lower York River estuary. The validated ecosystem model was also used to examine this issue and simulation results supported the importance of bottom-up control in the York River estuary.  相似文献   

11.
Hartbeespoort Dam, a hypertrophic, warm monomictic impoundment in South Africa, receives extremely high phosphorus loads (14.6–25.9 g m–2 a–1) that are dominated by point source discharges from municipal wastewater treatment works. The reduced state of the phosphorus discharged from the works has led to the dominance of the dissolved phosphorus pool by low molecular weight orthophosphates which are analytically detectable as soluble reactive phosphorus (SRP; 60% of total phosphorus pool). Seasonality in the in-lake total phosphorus pool is regulated by a combination of abiotic and hydrological processes; biotic processes appear to play a minor role. Mass balance calculations indicate that between 62 and 77% of the annual total phosphorus inflow load is retained within the impoundment each year.  相似文献   

12.
Results are presented of in situ benthic phosphorus release experiments in an undercut bank of an impounded river. Due to high sedimentation of phytoplankton biomass high oxygen consumption rates between 259.4 and 947.0 mg O2 m–2 d–1 developed, leading to almost anaerobic conditions and phosphorus releases between 175.2 and 236.3 mgP m–2 d–1 over a period of 18 days.In a second series of experiments the water column overlying the sediment was aerated, resulting in much lower P release rates (1.1 to 32.9 mgP m–2 d–1) over a period of 30 days. The influence of pH and nitrate was studied by adjusting pH and adding NO3 to the overlying water. Increasing pH positively affected P release rates and enhanced NO3 levels led to an increase of benthic P release, too.  相似文献   

13.
The surficial sediment (0–10 cm) of shallow eutrophic Lake Võrtsjärv (Estonia) was characterized by an acid insoluble residue of 50% dry weight and low nutrient, Fe and Mn content. Among phosphorus (P) fractions (Hieltjes and Lijklema , 1980), NaOH-NRP amounted on an average to 50%, HCl-RP to 30%, NaOH-RP to 16%, and NH4Cl-RP to 4% of their sum. Seasonal changes in sediment P content were inconsistent with mass balance calculations and could be attributed to sediment redistribution caused by decreasing water level. High Fe/P ratio (26–30) and the aeration of surficial sediment by frequent resuspension kept phosphate adsorbed. Low pore-water SRP (commonly <10 μg l−1) usually prevented phosphate release from surficial sediment. However, a storm in September 1996 (max. wind speed 16 m s−1) which coincided with the extremely low water level in the lake (mean depth 1.44 m), denuded deeper anoxic sediment layers and caused a SRP release of 193 mg P m−2 d−1.  相似文献   

14.
Giesler  Reiner  Satoh  Fuyuki  Ilstedt  Ulrik  Nordgren  Anders 《Ecosystems》2004,7(2):208-217
Soil microorganisms play an important role in the mobilization of phosphorus (P), and these activities may be beneficial for plant P utilization. We investigated the effects on microbial P availability of different combinations of aluminum and iron (Al + Fe) concentrations and different P pools in humus soils from boreal forest ecosystems. We measured respiration rates in laboratory incubations before and after additions of glucose plus (NH4)2SO4 (Glu+N), with or without a small dose of KH2PO4. Glu+N was added in excess so that the availability of the inherent soil P would be growth-limiting for the microorganisms. The exponential increases observed in microbial growth after substrate additions (Glu+N) was slower for humus soils with high Al+Fe concentrations than for humus soils with low Al+Fe concentrations. Adding a small dose of KH2PO4 to humus soils with high Al+Fe concentrations did, however, increase the exponential growth, measured as the slope of the log-transformed respiration rates, by more than 200%. By contrast, the average increase in exponential growth was only 6% in humus soils with low Al+Fe concentrations. Almost eight times more carbon dioxide (CO2) was evolved between the substrate additions and the point at which the respiration rate reached 1 mg CO2 h–1 for soils with high Al+Fe concentrations compared to humus soils with low Al+Fe concentrations. The amount of CO2 evolved was positively related to the Al+Fe concentration of the humus soils (r 2 = 0.86, P < 0.001), whereas the slope was negatively related to Al+Fe concentration (r 2 = 0.70, P < 0.001). Easily available P forms were negatively related to the Al+Fe concentration, whereas organic P showed a strong positive relationship to Al+Fe (r 2 = 0.85, P < 0.001), suggesting that other forms of P, as well as inorganic P, are affected by the increased sorption capacity. The results indicate that P mobilization by microorganisms is affected by the presence of sorption sites in the humus layer, and that this capacity for sorption may relate not only to phosphate but also to organic P compounds.  相似文献   

15.
Sediment traps were used to investigate the settling, resuspension, and decomposition of particulate organic matter in Lake Itasca, MN (USA). Traps were deployed in the epilimnion and hypolimnion of the deepest basin during June, 1988, sampled twice during stratified conditions (August, September) and once after the lake had mixed (October). The downward flux of particulate material increased from summer to fall. The net sedimentation of organic matter ranged from 0.6 to 2.3 g m–2 d–1 at 4 m and increased to 2.1 to 3.2 g m–2 d–1 two meters above the bottom sediment indicating that resuspended sediment was at least 33% of the settling mass during all periods. The C:N ratios of captured particles (6.8–9.5) were between the ratios of plankton (5.8 to 6.8) and the sediments (9.9 to 10.2) but smaller than the ratios of terrestrial organic materials (13.5 to 222). The monosaccharide compositions of the entrapped particles were similar to plankton samples and different from the distinct composition of the sediments. Capture of rebound particles similar to the primary flux and not decomposition may have been responsible for this similarity. Total monosaccharide concentrations were lower in the sediments than in entrapped particles. Individual sugars exhibited different patterns of accumulation in the sediments. Glucose was lowest in sediments when the relative concentrations were compared to those in source materials and entrapped particles. In contrast, sediments had the highest rhamnose and fucose concentrations. Bacterial biomass could only account for small portions of these sugars in the sediment. The distinct monosaccharide composition of resuspended sediments was not strongly recorded in materials captured by the sediment traps even after the lake had mixed.  相似文献   

16.
Removal of phosphorus (P) by Ceratophyllum demersum L. and associated epiphytic periphyton was quantified by measuring the disappearance of soluble reactive P (SRP) from microcosms during 1-h in situ incubations conducted over a 1-year period. Initial P concentrations in these incubations ranged from 30 to >10,000 μg P L−1. Phosphorus removal was proportional to initial P concentrations and was weakly correlated with solar irradiance and water temperature. Removal rates (0.6–32.8 mg P m−2 d−1) and kv coefficients (0.68–1.93 h−1) from experiments run at low initial P concentrations (up to 200 μg P L−1) were comparable to results reported for other macrophytes. Removal rates from experiments run at the highest (>10,000 μg P L−1) initial P concentrations (5300 and 11,100 mg P m−2 d−1) most likely represented luxury nutrient consumption and were not thought to be sustainable long term. We were unable to determine a Vmax for P removal, suggesting that the nutrient-storage capability of the C. demersum/periphyton complex was not saturated during our short-term incubations. Based on N:P molar ratios, the marsh was P limited, while the C. demersum/periphyton complex was either N limited or in balance for N and P throughout this study. However, despite its tissue stoichiometry, the C. demersum/periphyton complex always exhibited an affinity for P. It appeared that the biochemical mechanisms, which mediate P removal, at least on a short-term basis, were more influenced by increases in ambient P levels than by tissue nutrient stoichiometry.  相似文献   

17.
Rhizophora apiculata leaf litter decomposition and the influence of this process on phosphorus (P) dynamics were studied in mangrove and sand flat sediments at the Bangrong mangrove forest, Phuket, Thailand. The remaining P in the mangrove leaf litter increased with time of decomposition to 174% and 220% of the initial amount in the litter in sand flat and mangrove sediment, respectively, although about 50% of the dry weight had been lost. The incorporation of P into the litter was probably associated with humic acids and metal bridging, especially caused by iron (Fe), which also accumulated in considerable amounts in the litter (5-10 times initial concentration). The addition of leaves to the sediment caused increased concentrations of dissolved reactive phosphate (DRP) in the porewater, especially in sand flat sediment. The DRP probably originated from Fe-bound P in the sediment, because decomposition of buried leaf litter caused increased respiration and reduced the redox potential (Eh) in the sediments. Binding of P to refractory organic material and oxidized Fe at the sediment-water interface explains the low release of DRP from the sediment. This mechanism also explains the generally low DRP concentration in the mangrove porewater, the low nutrient content of the R. apiculata leaves, but also the higher total sediment P concentration of the mangrove sediment as compared to sediments outside the mangrove. Both the low release rates for DRP from the sediment and the accumulation of P associated with leaf litter decomposition tend to preserve P in the sediments.  相似文献   

18.
筑坝河流磷素的迁移转化及其富营养化特征   总被引:7,自引:0,他引:7  
鲍林林  李叙勇  苏静君 《生态学报》2017,37(14):4663-4670
人类活动过量营养物质输入是导致河流富营养化的主要原因,而河道过度的人为调控则进一步复杂化了河流的营养状态变化。闸坝是河流人为调控的重要工程措施之一,提高水资源利用效率的同时严重干扰了河流自然的生物地球化学循环,产生诸多负面生态环境效应。磷素的迁移转化对河流的营养限制作用受到越来越多的关注,国内外已有研究在筑坝河流磷的富营养化特征方面,已经取得了较为深刻的认识:水库闸坝建设滞留大量磷素,导致河流水体磷含量升高、营养物质比例变化,沉积物储存过量磷素形成的内源释放威胁,以及进一步浮游植物和有害藻类的生长响应等,使得筑坝河流的富营养化生态风险升高;在此基础上,也提出了根据降雨分配和闸控库区储水,合理设置闸坝泄流方式,以改善筑坝河流富营养化生态风险的重要管理思路。对于闸坝调控作用与水体富营养化的定量关系还有待进一步的探讨,而且随着河流资源开发和人为调控力度的增强,河流闸坝建设所产生的系列生态环境问题日益严峻,对此提出还需要系统研究的方向:闸坝调控作用下河流磷素的富营养化机制及其与氮、碳等元素的耦合作用,筑坝河流沉积物内源污染的综合管理,以及闸控景观河流的生态建设和修复等。  相似文献   

19.
This article compares limnological attributes of two of the world’s largest shallow lakes—Lake Okeechobee in Florida, USA and Lake Taihu in P.R. China. Both the systems support an array of ecological and societal values including fish and wildlife habitat, public water supply, flood protection, and recreation. Both have extensive research programs, largely because of concern regarding the lakes’ frequent cyanobacterial blooms. By evaluating these systems together, we compare and contrast properties that can generally advance the understanding and management of large shallow lowland lakes. Because of shallow depth, long fetch, and unconsolidated mud sediments, water chemistry, and transparency in both the lakes are strongly influenced by resuspended sediments that affect light and nutrient conditions. In the central region of both the lakes, where depth is the greatest, evaluation of limiting factors by a trophic state index approach indicates that light most often limits phytoplankton biomass. In contrast, the more sheltered shoreline areas of both the lakes display evidence of nitrogen (N) limitation, which also has been confirmed in nutrient assays conducted in earlier studies. This N limitation most likely is a result of excessive levels of phosphorus (P) that have developed in the lakes due to high external loads over recent decades and the currently high internal P recycling. Comparisons of these lakes show that Lake Taihu has higher N than, similar total phosphorus (TP) and similar light conditions to that of Lake Okeechobee, but less chlorophyll a (CHL). The latter may be as a result of lower winter temperatures in Lake Taihu (around 5°C) compared to Lake Okeechobee (around 15°C), which could reduce phytoplankton growth and abundance through the other seasons of the year. In these systems, the important role of light, temperature, and nutrients in algal bloom dynamics must be considered, especially due to possible adverse and unintended effects that might occur with projects such as sediment removal, and in the long term, in regard to buffering lake responses to external load reduction. Handling editor: D. Hamilton  相似文献   

20.
Selective withdrawal through the surface outlet was employed in Eau Galle Reservoir to reduce phytoplankton populations by 1) strengthening thermal stability, thereby decreasing vertical entrainment of hypolimnetic phosphorus (P); and 2) increasing epilimnetic flushing rate and discharge of algae. In spite of substantial release of sediment P over the growing season, epilimnentic P concentrations were overwhelming dominated by external sources, and thus insensitive to changes in withdrawal depth. Nor did surface withdrawal increase flushing rate sufficiently to affect phytoplankton biomass. In one year, an increase in thermal stability, due in part to surface withdrawal, permitted the development of a metalimnetic chlorophyll maximum in a summer that also experienced relatively low populations of ‘nuisance’ cyanophytes, and can be regarded as a positive effect of the change in operations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号