首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
The Late Quaternary extinctions of megafauna (defined as animal species > 44.5 kg) reduced the dispersal of seeds and nutrients, and likely also microbes and parasites. Here we use body-mass based scaling and range maps for extinct and extant mammal species to show that these extinctions led to an almost seven-fold reduction in the movement of gut-transported microbes, such as Escherichia coli (3.3–0.5 km2 d−1). Similarly, the extinctions led to a seven-fold reduction in the mean home ranges of vector-borne pathogens (7.8–1.1 km2). To understand the impact of this, we created an individual-based model where an order of magnitude decrease in home range increased maximum aggregated microbial mutations 4-fold after 20 000 yr. We hypothesize that pathogen speciation and hence endemism increased with isolation, as global dispersal distances decreased through a mechanism similar to the theory of island biogeography. To investigate if such an effect could be found, we analysed where 145 zoonotic diseases have emerged in human populations and found quantitative estimates of reduced dispersal of ectoparasites and fecal pathogens significantly improved our ability to predict the locations of outbreaks (increasing variance explained by 8%). There are limitations to this analysis which we discuss in detail, but if further studies support these results, they broadly suggest that reduced pathogen dispersal following megafauna extinctions may have increased the emergence of zoonotic pathogens moving into human populations.  相似文献   

3.
Emerging infectious diseases (EIDs) pose threats to conservation and public health. Here, we apply the definition of EIDs used in the medical and veterinary fields to botany and highlight a series of emerging plant diseases. We include EIDs of cultivated and wild plants, some of which are of significant conservation concern. The underlying cause of most plant EIDs is the anthropogenic introduction of parasites, although severe weather events are also important drivers of disease emergence. Much is known about crop plant EIDs, but there is little information about wild-plant EIDs, suggesting that their impact on conservation is underestimated. We conclude with recommendations for improving strategies for the surveillance and control of plant EIDs.  相似文献   

4.
BackgroundDermatophytoses in children are common pathologies worldwide caused mainly by Trichophyton rubrum. However, due to the globalization and the atypical pets that people nowadays own, some zoonotic species are also involved in these lesions.Case reportWe present two cases of tinea faciei caused by the zoonotic mould Trichophyton erinacei in two children that owned a guinea pig and a hedgehog, respectively. Mycological diagnosis was performed inoculating skin scales on Sabouraud-glucose agar plates supplemented with chloramphenicol, with and without gentamicin, and on Sabouraud-glucose agar tubes, with and without cycloheximide. Microscopical examination in both cases and ITS region sequencing to confirm the identification (performed in one of them) were compatible with T. erinacei. Multiple treatments like corticosteroids and antibiotics were prescribed prior to the accurate diagnosis. Finally, both patients received topical and oral terbinafine, respectively, the lesions being resolved entirely.ConclusionsZoonotic fungi must be considered in the diagnosis of skin lesions. An accurate medical record, with a guided anamnesis about possible risk factors and an ongoing and open dialogue between health professionals, are essential to improve both the management of these exotic and zoophilic dermatophytoses.  相似文献   

5.
Menda N  Buels RM  Tecle I  Mueller LA 《Plant physiology》2008,147(4):1788-1799
The amount of biological data available in the public domain is growing exponentially, and there is an increasing need for infrastructural and human resources to organize, store, and present the data in a proper context. Model organism databases (MODs) invest great efforts to functionally annotate genomes and phenomes by in-house curators. The SOL Genomics Network (SGN; http://www.sgn.cornell.edu) is a clade-oriented database (COD), which provides a more scalable and comparative framework for biological information. SGN has recently spearheaded a new approach by developing community annotation tools to expand its curational capacity. These tools effectively allow some curation to be delegated to qualified researchers, while, at the same time, preserving the in-house curators' full editorial control. Here we describe the background, features, implementation, results, and development road map of SGN's community annotation tools for curating genotypes and phenotypes. Since the inception of this project in late 2006, interest and participation from the Solanaceae research community has been strong and growing continuously to the extent that we plan to expand the framework to accommodate more plant taxa. All data, tools, and code developed at SGN are freely available to download and adapt.  相似文献   

6.
7.
Neglected tropical diseases (NTDs) are parasitic and bacterial infections that are widespread, especially in the tropics, and cause health problems for about one billion people over 149 countries worldwide. However, in terms of therapeutic agents, for example, nifurtimox and benznidazole were developed in the 1960s to treat Chagas disease, but new drugs are desirable because of their side effects. Drug discovery takes 12 to 14 years and costs $2.6 billon dollars, and hence, computer aided drug discovery (CADD) technology is expected to reduce the time and cost. This paper describes our methods and results based on CADD, mainly for NTDs. An overview of databases, molecular simulation and pharmacophore modeling, contest-based drug discovery, and machine learning and their results are presented herein.  相似文献   

8.
9.
A major challenge in the development of peptide-based vaccines is finding the right immunogenic element, with efficient and long-lasting immunization effects, from large potential targets encoded by pathogen genomes. Computer models are convenient tools for scanning pathogen genomes to preselect candidate immunogenic peptides for experimental validation. Current methods predict many false positives resulting from a low prevalence of true positives. We develop a test reject method based on the prediction uncertainty estimates determined by Gaussian process regression. This method filters false positives among predicted epitopes from a pathogen genome. The performance of stand-alone Gaussian process regression is compared to other state-of-the-art methods using cross validation on 11 benchmark data sets. The results show that the Gaussian process method has the same accuracy as the top performing algorithms. The combination of Gaussian process regression with the proposed test reject method is used to detect true epitopes from the Vaccinia virus genome. The test rejection increases the prediction accuracy by reducing the number of false positives without sacrificing the method's sensitivity. We show that the Gaussian process in combination with test rejection is an effective method for prediction of T-cell epitopes in large and diverse pathogen genomes, where false positives are of concern.  相似文献   

10.
Leptin was originally discovered as an adipocyte-derived hormone involved in the central control of body weight and energy homeostasis. It is now clear that leptin is a pleiotropic cytokine, with activities on many peripheral cell types. These findings may help explain the surprising role of leptin in pathophysiological processes. Recent evidence suggests that leptin contributes to atherosclerosis and to the increased risk of cardiovascular disease in obese people. Leptin also appears to be involved in T-cell-dependent immunity and possibly in the development and maintenance of certain autoimmune diseases. Here, we review the role of leptin in cardiovascular and autoimmune diseases, and also briefly address the potential therapeutic use of leptin antagonists.  相似文献   

11.
12.
edited by W.R. Dowdle and D.R. Hopkins, Wiley, 1998. pound60.00 (hbk) (xv +218 pages) ISBN 0 471 98089 7.  相似文献   

13.
14.
Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune investment among host species, and more generally what drives global patterns of parasite diversity and distribution? Here we consider how the perspectives and tools of macroecology, a field that investigates patterns and processes at broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global infectious disease ecology. In particular, emerging approaches are providing new insights about scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and infection risk. Ultimately, macroecology is establishing a framework to more accurately predict global patterns of infectious disease distribution and emergence.  相似文献   

15.
Recent pathogenomic research on plant parasitic oomycete effector function and plant host responses has resulted in major conceptual advances in plant pathology, which has been possible thanks to the availability of genome sequences.  相似文献   

16.
17.
Remarkable gains in the control of infectious diseases have occurred during the twentieth century. These have permitted life expectancles to approach 80 years for one fifth of the world's population. To effect reductions in child mortality to the rest, structured changes such as economic improvement, basic sanitation, education, reduced population growth and improvements in agriculture and nutrition are needed. Nearly US$40 billion in development investment supports these fundamental changes. For the near term, vertical programmes such as the Expanded Program on Immunization afford critical reductions in child mortality at relatively low cost. A network of multinational and bilateral agencies support structural and programmatic changes. Research holds the promise of improving still further the efficacy and cost-effectiveness of infectious disease control programmes. Leading causes of child mortality and their social and economic correlates are reviewed.This paper was presented at the IUMS Symposium on New Developments in Diagnosis and Control of Infectious Diseases held in conjunction with the Eighth International Congress of Virology, Berlin, Germany, 24–31 August 1990.  相似文献   

18.

Background  

A common approach to understanding the genetic basis of complex traits is through identification of associated quantitative trait loci (QTL). Fine mapping QTLs requires several generations of backcrosses and analysis of large populations, which is time-consuming and costly effort. Furthermore, as entire genomes are being sequenced and an increasing amount of genetic and expression data are being generated, a challenge remains: linking phenotypic variation to the underlying genomic variation. To identify candidate genes and understand the molecular basis underlying the phenotypic variation of traits, bioinformatic approaches are needed to exploit information such as genetic map, expression and whole genome sequence data of organisms in biological databases.  相似文献   

19.
Martinon F  Tschopp J 《Cell》2004,117(5):561-574
Caspases not only play an essential role during apoptotic cell death, but a subfamily of them-the inflammatory caspases-are associated with immune responses to microbial pathogens. Activation of inflammatory caspases, such as caspase-1 and caspase-5, occurs upon assembly of an intracellular complex, designated the inflammasome. This results in the cleavage and activation of the proinflammatory cytokines IL-1beta and IL-18. Mutations in one of the scaffold proteins of the inflammasome, NALP3/Cryopyrin, are associated with autoinflammatory disorders underscoring the importance of regulating inflammatory caspase activation.  相似文献   

20.
The pig: a model for human infectious diseases   总被引:1,自引:0,他引:1  
An animal model to study human infectious diseases should accurately reproduce the various aspects of disease. Domestic pigs (Sus scrofa domesticus) are closely related to humans in terms of anatomy, genetics and physiology, and represent an excellent animal model to study various microbial infectious diseases. Indeed, experiments in pigs are much more likely to be predictive of therapeutic treatments in humans than experiments in rodents. In this review, we highlight the numerous advantages of the pig model for infectious disease research and vaccine development and document a few examples of human microbial infectious diseases for which the use of pigs as animal models has contributed to the acquisition of new knowledge to improve both animal and human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号