首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电子传递链亦称呼吸链,由位于线粒体内膜的I、II、III、IV 4种复合物组成,负责电子传递和产生质子梯度。电子主要从复合物I进入电子传递链,经复合物III传递至复合物IV。电子传递系统的组装是一个十分复杂的过程,目前已知主要有约69个结构亚基以及至少16个组装因子参与了人类复合物I、III、IV的组装,这些蛋白质由核基因组与线粒体基因组共同编码。对线粒体电子传递系统的蛋白质组成及其结构已研究得较为清楚,但对它们的组装了解得还比较初步。许多人类线粒体疾病是由于电子传递系统的功能障碍引起的,其中又有许多是由于该系统中一个或多个部件的错误组装引起的。研究这些缺陷不仅能够加深对线粒体疾病发病机理的了解,也有助于揭示线粒体功能的调控机制。将着重对电子传递系统复合物的组装及其与人类疾病关系的研究进展进行综述。  相似文献   

2.
线粒体呼吸链复合物I位于线粒体的内膜,是呼吸链中最重要的蛋白复合体之一,可以将电子从NADH传递至CoQ,同时偶联四个质子从线粒体基质泵出至膜间隙,形成跨膜质子梯度,驱动ATP的合成。在目前的研究中,关于复合物I的晶体结构已经比较清楚,包括14个中心亚基,分别构成外周结构域和膜结构域,其中外周结构域负责电子的传递,膜结构域负责质子的泵出。由于在电子传递过程中存在多个中间态阶段,因此复合物I是机体中活性氧产生的主要位点。复合物I也可以通过A/D状态之间的转换,降低活性氧的产生。学者认为复合物I中电子传递产生的静电作用可以改变其结构,从而驱动质子的泵出,但是其具体机制仍不明确。复合物I功能的缺陷是多种神经退行性疾病的诱因,包括阿兹海默症、帕金森等,主要是由于其中不同亚基的点突变导致。本文综述了复合物I结构和功能的研究进展,并对今后的研究做出展望。  相似文献   

3.
线粒体是起源于最后真核生物共同祖先(last eukaryotic common ancestor,LECA)半自主性双层膜细胞器.线粒体氧化磷酸化(oxidative phosphorylation,OXPHOS)系统由细胞核和线粒体基因组协同编码5个蛋白质复合物组成,在内膜建立电子传递链并利用质子梯度产生三磷酸腺苷...  相似文献   

4.
线粒体在能量代谢、自由基产生、衰老、细胞凋亡中起重要作用。线粒体的基因突变,呼吸链缺陷,线粒体膜的改变等因素均会影响整个细胞的正常功能,从而导致病变。凋亡发生时,线粒体通透性转换孔开放,使得线粒体膜电位降低,呼吸链电子传递障碍,细胞ATP合成障碍,生成大量活性氧簇,线粒体发生水肿,线粒体外膜破裂,膜间隙释放大量促凋亡因子如细胞色素C。Bcl-2家族对线粒体的功能有调控作用,介导细胞色素C的释放,Caspase酶原的激活等。病毒性肝炎、酒精性肝病,梗阻性黄疸、肝癌、毒素和药物介导的肝损伤等疾病中都伴随着肝细胞凋亡的发生,目前保肝药物对肝细胞线粒体功能的保护机制主要体现在稳定线粒体膜功能,减轻氧化损伤等方面,针对临床疾病的治疗有很好的指导作用。  相似文献   

5.
张蕾  于锋 《生物磁学》2014,(3):586-589
线粒体在能量代谢、自由基产生、衰老、细胞凋亡中起重要作用。线粒体的基因突变,呼吸链缺陷,线粒体膜的改变等因素均会影响整个细胞的正常功能,从而导致病变。凋亡发生时,线粒体通透性转换孔开放,使得线粒体膜电位降低,呼吸链电子传递障碍,细胞ATP合成障碍,生成大量活性氧簇,线粒体发生水肿,线粒体外膜破裂,膜间隙释放大量促凋亡因子如细胞色素C。Bcl-2家族对线粒体的功能有调控作用,介导细胞色素C的释放,Caspase酶原的激活等。病毒性肝炎、酒精性肝病,梗阻陛黄疸、肝癌、毒素和药物介导的肝损伤等疾病中都伴随着肝细胞凋亡的发生,目前保肝药物对肝细胞线粒体功能的保护机制主要体现在稳定线粒体膜功能,减轻氧化损伤等方面,针对临床疾病的治疗有很好的指导作用。  相似文献   

6.
米慧  林蓓  管敏鑫 《生命科学》2012,(6):549-557
线粒体呼吸链缺陷一直被认为是诱发线粒体疾病的重要因素,这有助于研究人员阐释其遗传和临床多样性。然而,线粒体的其他功能也具有重要意义,包括蛋白质运输、细胞器动力学和细胞凋亡。调控这些功能的基因缺陷不仅导致神经和精神疾病,而且还导致年龄相关的神经变性疾病。因此,引起越来越多的关注。在讨论呼吸链缺陷引起相关神经系统疾病的一些致病难题后,就线粒体动力学改变引起的相关神经系统疾病病因和常见神经变性疾病的病理生理机制作一综述。  相似文献   

7.
周进  储炬  王永红 《生物技术》2006,16(3):90-93
酿酒酵母(Saccharomyces cerevisiae)的生长过程有大量的胞内NADH产生。有氧途径中,胞外的NADH脱氢酶、三磷酸甘油穿梭酶系是线粒体内NADH氧化的最主要机制。该文主要讨论以下三个方面的内容:不同生理环境下促成线粒体胞内NADH氧化的各主要机制的作用;借助电子传递链开启NADH从胞质脱氢酶到线粒体的通道,各代谢动力学的有序进行;各种酶形成超分子复合物,尤其是起关键调控作用的酶形成具相似生理功能的高整合性功能酶。  相似文献   

8.
近年来发现人类多种神经肌肉疾病存在线粒体电子传递链(electron transport chain,ETC)缺陷。由于线粒体在遗传上受核基因和线粒体基因双重控制,给确定ETC缺陷的来源造成困难。转线粒体DNA技术是线粒体同无线粒体DNA的细胞(ρ°cells)融合,形成转线粒体DNA细胞系(mtDNA-transferred cell line,也称cytoplasmic hybrids,简称cybrids),使病人的线粒体DNA(mito-  相似文献   

9.
王艳  薄海  张勇 《生理学报》2020,72(2):205-219
线粒体呼吸链超级复合体(mitochondrial respiratory chain supercomplex, mitoSC)是线粒体内膜呼吸链上的自由复合体通过其亚基之间的相互作用形成的复合体超级组装,主要为mitoSCⅠ_1+Ⅲ_2+Ⅳ_(1-4)、mitoSCⅠ_1+Ⅲ_2、mitoSCⅢ_2+Ⅳ_(1-2)、高分子量mitoSC (high molecular weight mitoSC, HMW mitoSC)和巨型超级复合体(mitochondrial metacomplex, mitoMC)。mitoSC已被证明具有提高呼吸链电子传递效率、减少活性氧产生的功能。在衰老的不同组织和诸多线粒体相关疾病组织中,mitoSC的种类和含量发生变化。本文通过归纳人类和哺乳动物不同组织中mitoSC的结构和功能,总结衰老、心脏疾病、2型糖尿病、癌症和基因缺陷疾病等条件下mitoSC的变化规律,重点探讨运动对mitoSC的影响及其相关调节机制,为线粒体相关疾病的运动干预提供参考。  相似文献   

10.
线粒体作为细胞器,是细胞内的动力工厂,是细胞发生有氧呼吸作用的主要场所,它的功能是通过氧化磷酸化进行能量转换,为细胞活动提供能量。其中,氧化过程由线粒体内膜上的4个呼吸链膜蛋白复合物(简称复合物Ⅰ、Ⅱ、Ⅲ和Ⅳ)来完成。近20年来,解析这4个膜蛋白复合物的结构一直是生物学研究的热点。  相似文献   

11.
线粒体呼吸链膜蛋白复合体的结构   总被引:8,自引:0,他引:8  
线粒体作为真核细胞的重要“能量工厂”,是细胞进行呼吸作用的场所,呼吸作用包括柠檬酸循环和氧化磷酸化两个过程,其中氧化磷酸化过程的电子传递链(又称线粒体呼吸链)位于线粒体内膜上,由四个相对分子质量很大的跨膜蛋白复合体(Ⅰ、Ⅱ、Ⅲ、和Ⅳ)、介于Ⅰ/Ⅱ与Ⅲ之间的泛醌以及介于Ⅲ与Ⅳ之间的细胞色素c共同组成。线粒体呼吸链的功能是进行生物氧化,并与称之为复合物V的ATP合成酶(磷酸化过程)相偶联,共同完成氧化磷酸化过程,并生产能量分子ATP。线粒体呼吸链的结构生物学研究对于彻底了解电子传递和能量转化的机理是至关重要的,本文分别论述线粒体呼吸链复合体Ⅰ、Ⅱ、Ⅲ和Ⅳ的结构,并跟踪线粒体呼吸链超复合体的结构研究进展。  相似文献   

12.
目的观察食物水限制条件下对肾和肝组织线粒体呼吸链复合物活性的影响,研究组织线粒体能量代谢相关的响应特征。方法以健康成年子午沙鼠Meriones meridianus为材料,运用分光光度法测定了食物水限制3 d、6 d、9 d后子午沙鼠肾脏与肝脏组织线粒体呼吸链复合物Ⅰ~Ⅳ活性及超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量变化。结果水限制胁迫可引起肾和肝组织中线粒体呼吸链4种复合物的活性明显升高(P<0.05,P<0.01),体质量逐渐降低。其中水限制3 d是其适应性反应的重要阶段,3 d时呼吸链复合物活性升高幅度较大,9 d时活性均降低,但仍高于对照组。肾组织线粒体SOD活性呈不同程度升高,肾与肝组织线粒体MDA含量在水限制下显著升高。结论食物水限制引起肾和肝组织线粒体呼吸链复合物活性的升高与肾对水的重吸收和肝代谢增加有关,长时间水限制诱导自由基水平升高,对代谢酶活性的维持可能产生不利的影响。  相似文献   

13.
2005年7月1日出版的《细胞》杂志上发表了中国科学家解析出线粒体膜蛋白复合物Ⅱ精细结构的文章。结构决定功能,这个精细的三维结构除了科学上勿庸置疑的成就,还会给我们带来什么样的惊喜或者期待呢?线粒体上的呼吸链线粒体在细胞内拥有很独特的地位,它是细胞的"能量工厂",普  相似文献   

14.
呼吸作用是生物体最基本最重要的生命活动。在哺乳动物中,呼吸作用(氧化磷酸化)由位于线粒体内膜上的呼吸链复合物完成。一百多年来,科学家们孜孜不倦地对线粒体呼吸链复合物进行研究,想要窥探这一能量大分子机器的全貌,但是一直未能获取该复合物蛋白质结构。我们最新的研究首次纯化出了来源于人类细胞的线粒体呼吸链超超级复合物Ⅰ_2Ⅲ_2Ⅳ_2,通过冷冻电镜技术首次成功解析了它的结构,并且提出呼吸链复合物Ⅰ、Ⅱ、Ⅲ和Ⅳ可以一起组成超大型复合物Ⅰ_2Ⅱ_2Ⅲ_2Ⅳ_2,这是呼吸链超超级复合物的终极形态。同时,我们所解析的人源呼吸链超级复合物的高分辨率结构,为攻克线粒体缺陷引起的阿尔兹海默综合征、帕金森综合征、多发性硬化、少年脊髓型共济失调以及肌萎缩性脊髓侧索硬化症等多种疾病打下了坚实的基础。  相似文献   

15.
心磷脂和线粒体内膜   总被引:6,自引:0,他引:6  
心磷脂是构成线粒体内膜的主要磷脂之一,约75~90%的心磷脂分布在线粒体内膜脂双层的基质面,是线粒体内膜的特征性磷脂。心磷脂使线粒体内膜具有良好的流动性,利于呼吸链各复合物在膜脂双层中的侧向扩散。呼吸链的复合物与心磷脂特异结合才能表现其活性。在一定的条件下,心磷脂亦能形成六角形(?)相,这种多形性特点对离子转运和电子传递有重要意义。  相似文献   

16.
线粒体是细胞内制造能量的细胞器,它还负责各种细胞信号的整合,参与协调多种复杂的细胞功能.线粒体是动态变化的,连续不断地进行分裂与融合,这是其功能维持和增殖遗传的关键.在过去20年中,参与线粒体分裂与融合的核心因子陆续被发现,它们在进化上高度保守,但是在形成分裂与融合复合物中的详细分子机制还有待于深入研究.线粒体分裂与融合的动态变化,是线粒体质量控制的重要组成部分,其动态平衡在细胞发育和稳态维持中起重要作用.线粒体动态变化失衡和功能失调,则会导致多种神经退行性疾病的发生.这些研究的发现为探索线粒体生物学及与疾病的关系开拓了令人振奋的新方向.  相似文献   

17.
辅酶Q10的生理作用及临床应用   总被引:6,自引:0,他引:6  
辅酶Q10是线粒体电子传递链中的一种重要辅酶,参与细胞氧化磷酸化及ATP生成过程。辅酶Q10是细胞代谢呼吸激活剂和免疫增强剂,具有抗氧化和自由基清除功能。辅酶Q10药物的临床应用主要在心血管疾病、高血压、神经系统疾病和免疫系统疾病方面。  相似文献   

18.
线粒体含有约1000种蛋白质,其中99%由细胞核DNA编码,在细胞质核糖体上合成后被分别转运至线粒体的内膜或外膜上、基质或膜间隙中。由众多分子机器组成的线粒体蛋白质转运系统参与了该生物学过程的执行。线粒体DNA编码的13种蛋白质也由该系统转运至线粒体内膜。本文就线粒体蛋白质转运系统中线粒体前体蛋白质的定位分选信号、转运复合物和转运途径作简要介绍。  相似文献   

19.
由核编码基因控制的线粒体翻译对线粒体中电子传递链复合物的合成是必不可少的。旨在揭示粟酒裂殖酵母中Mef2蛋白的主要功能。利用同源重组的方法构建Δmef2突变体,观察Δmef2在以甘油为唯一碳源的非发酵培养基的生长表型;生物信息学分析结果显示Mef2的N端含有一段由31个氨基酸组成的线粒体定位序列(MTS),为进一步确定Mef2蛋白的定位,在Mef2的C端添加一个GFP荧光标记,观察GFP绿色荧光的位置。接着采用Northern blotting检测mef2的缺失对线粒体基因组编码m RNAs的影响。最后,运用Western blotting检测mef2的缺失对线粒体基因组编码的蛋白的影响。研究结果表明,Δmef2菌株在非发酵培养基上表现出生长缺陷,是线粒体呼吸缺陷型菌;GFP绿色荧光定位实验证实了Mef2定位于线粒体中;Northern blotting实验结果显示mef2的缺失不影响线粒体基因组编码m RNAs的转录;Western blotting检测结果显示mef2的缺失导致Cox1、Cox3、Atp6和Cob1蛋白的表达量降低。综上所述,Mef2是一个与线粒体功能密切相关的蛋白,并且参与了线粒体编码蛋白Cox1、Cox3、Atp6和Cob1的翻译。  相似文献   

20.
CHCHD10是核基因编码的线粒体蛋白,主要位于线粒体膜间隙,在维持线粒体结构的完整性和线粒体功能方面起关键作用。CHCHD10基因突变或功能缺失与额颞叶痴呆、肌萎缩侧索硬化症、帕金森病、阿尔茨海默病等多种神经退行性疾病的发生、发展密切相关。线粒体损伤是多种神经退行性疾病的一个共同特点,CHCHD10基因突变或功能缺失同样会导致线粒体结构和功能的异常。本文从CHCHD10结构及其线粒体功能角度总结近年来所发表的研究进展,讨论CHCHD10基因突变或功能缺失引起线粒体损伤的机制。研究CHCHD10在维持线粒体结构和功能中的作用机制,将有助于理解神经退行性疾病的致病机理,并为探究这些疾病的干预策略奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号