共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-steroidal anti-inflammatory drugs (NSAIDs) and inhibitors of the cyclooxygenase (COX) pathways are currently recommended for the prevention and treatment of several inflammatory diseases, including neurodegenerative disorders. However non-selective blockade of COX was found to have pro-inflammatory properties, because they have the ability to alter the plasma glucocorticoid levels that play a critical role in the control of the innate immune response. The present study investigated the role of non-selective (ketorolac or indomethacin) or specific inhibitors of COX-1 (SC-560) and COX-2 (NS-398) in these effects. Mice challenged systemically with the endotoxin lipopolysaccharide (LPS) exhibited a robust hybridization signal for numerous inflammatory genes in vascular-associated cells of the brain and microglia across the cerebral tissue. Ketorolac, indomethacin and NS-398 significantly increased the ability of LPS to trigger such an innate immune response at time 3 h post challenge, whereas SC-560 failed to change gene expression in the brain of animals treated with the endotoxin. These data together with the crucial role of COX-2-derived prostaglandin E2 (PGE2) in the increase of glucocorticoids during systemic immune stimuli provide evidence that inhibition of this pathway results in an exacerbated early innate immune reaction. This may have a major impact on the use of these drugs in diseases where inflammation is believed to be a contributing and detrimental factor. 相似文献
2.
3.
The duality of the inflammatory response to traumatic brain injury 总被引:19,自引:0,他引:19
Lenzlinger PM Morganti-Kossmann MC Laurer HL McIntosh TK 《Molecular neurobiology》2001,24(1-3):169-181
One and a half to two million people sustain a traumatic brain injury (TBI) in the US each year, of which approx 70,000–90,000
will suffer from long-term disability with dramatic impacts on their own and their families’ lives and enormous socio-economic
costs. Brain damage following traumatic injury is a result of direct (immediate mechanical disruption of brain tissue, or
primary injury) and indirect (secondary or delayed) mechanisms. These secondary mechanisms involve the initiation of an acute
inflammatory response, including breakdown of the blood-brain barrier (BBB), edema formation and swelling, infiltration of
peripheral blood cells and activation of resident immunocompetent cells, as well as the intrathecal release of numerous immune
mediators such as interleukins and chemotactic factors. An overview over the inflammatory response to trauma as observed in
clinical and in experimental TBI is presented in this review. The possibly harmful/beneficial sequelae of post-traumatic inflammation
in the central nervous system (CNS) are discussed using three model mediators of inflammation in the brain, tumor necrosis
factor-α (TNF-α), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β). While the former two may act as important
mediators for the initiation and the support of post-traumatic inflammation, thus causing additional cell death and neurologic
dysfunction, they may also pave the way for reparative processes. TGF-β, on the other hand, is a potent anti-inflammatory
agent, which may also have some deleterious long-term effects in the injured brain. The implications of this duality of the
post-traumatic inflammatory response for the treatment of brain-injured patients using anti-inflammatory strategies are discussed. 相似文献
4.
5.
Transient brain hypoxia-ischemia (HI) in neonates leads to delayed neuronal death and long-term neurological deficits. However, the underlying mechanisms are incompletely understood. Calcium-calmodulin-dependent protein kinase II (CaMKII) is one of the most abundant protein kinases in neurons and plays crucial roles in synaptic development and plasticity. This study used a neonatal brain HI model to investigate whether and how CaMKII was altered after HI and how the changes were affected by brain development. Expression of CaMKII was markedly up-regulated during brain development. After HI, CaMKII was totally and permanently depleted from the cytosol and concomitantly deposited into a Triton-insoluble fraction in neurons that were undergoing delayed neuronal death. Autophosphorylation of CaMKII-Thr286 transiently increased at 30 min of reperfusion and declined thereafter. All these changes were mild in P7 pups but more dramatic in P26 rats, consistent with the development-dependent CaMKII expression in neurons. The results suggest that long-term CaMKII depletion from the cytosolic fraction and deposition into the Triton-insoluble fraction may disable synaptic development, damage synaptic plasticity, and contribute to delayed neuronal death and long-term synaptic deficits after transient HI. 相似文献
6.
The developmental alterations in metallothionein (MT) proteins and zinc (Zn) were investigated in brains of two transgenic
strains of mice. MT protein was measured by a cadmium binding assay and Zn by atomic absorption spectrophotometry. MT proteins
were expressed at birth (day 1) both in MT-I overexpressing transgenic mouse (MT-I*) and MT-null (expressing only brain specific
isoform, MT-III) transgenic mouse. MT proteins level (mainly MT-I) in MT-I* was 16.1 Μ-g/g at birth, and thereafter increased
with age to a maximal adult level of 55.3 Μg/g (day 60). Zn level in MT-I* also increased from 8.43 Μg/g (day 1) to 20.7 Μg/g
(day 60) with age. MT protein (MT-III) in MT-null mouse was 9.71 Μg/g at birth and remained relatively unchanged during development.
Zn level in MT-null mouse at birth was 9.46 Μg/g and also remained unchanged during development. The similar alterations in
MT isoforms and Zn in brain during development suggest that MT isoforms may act as a Zn binding protein. 相似文献
7.
Activation of brain steroidogenesis and neurogenesis during the gonadal differentiation in protandrous black porgy,Acanthopagrus schlegelii 下载免费PDF全文
Chien‐Ju Lin Yi‐Chun Fan‐Chiang Sylvie Dufour Ching‐Fong Chang 《Developmental neurobiology》2016,76(2):121-136
The early brain development, at the time of gonadal differentiation was investigated using a protandrous teleost, black porgy. This natural model of monosex juvenile fish avoids the potential complexity of sexual dimorphism. Brain neurogenesis was evaluated by histological analyses of the diencephalon, at the time of testicular differentiation (in fish between 90 and 150 days after hatching). Increases in the number of both Nissl‐stained total brain cells, and Pcna‐immunostained proliferative brain cells were observed in specific area of the diencephalon, such as ventromedialis thalami and posterior preoptic area, revealing brain cell proliferation. qPCR analyses showed significantly higher expression of the radial glial cell marker blbp and neuron marker bdnf. Strong immunohistochemical staining of Blbp and extended cellular projections were observed. A peak expression of aromatase (cyp19a1b), as well as an increase in estradiol (E2) content were also detected in the early brain. These data demonstrate that during gonadal differentiation, the early brain exhibits increased E2 synthesis, cell proliferation, and neurogenesis. To investigate the role of E2 in early brain, undifferentiated fish were treated with E2 or aromatase inhibitor (AI). E2 treatment upregulated brain cyp19a1b and blbp expression, and enhanced brain cell proliferation. Conversely, AI reduced brain cell proliferation. Castration experiment did not influence the brain gene expression patterns and the brain cell number. Our data clearly support E2 biosynthesis in the early brain, and that brain E2 induces neurogenesis. These peak activity patterns in the early brain occur at the time of gonad differentiation but are independent of the gonads. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 121–136, 2016 相似文献
8.
Enhanced microglial pro‐inflammatory response to lipopolysaccharide correlates with brain infiltration and blood–brain barrier dysregulation in a mouse model of telomere shortening 下载免费PDF全文
Divya D. A. Raj Jill Moser Susanne M. A. van der Pol Ronald P. van Os Inge R. Holtman Nieske Brouwer Hisko Oeseburg Wandert Schaafsma Evelyn M. Wesseling Wilfred den Dunnen Knut P. H. Biber Helga E. de Vries Bart J. L. Eggen Hendrikus W. G. M. Boddeke 《Aging cell》2015,14(6):1003-1013
Microglia are a proliferative population of resident brain macrophages that under physiological conditions self‐renew independent of hematopoiesis. Microglia are innate immune cells actively surveying the brain and are the earliest responders to injury. During aging, microglia elicit an enhanced innate immune response also referred to as ‘priming’. To date, it remains unknown whether telomere shortening affects the proliferative capacity and induces priming of microglia. We addressed this issue using early (first‐generation G1 mTerc?/?)‐ and late‐generation (third‐generation G3 and G4 mTerc?/?) telomerase‐deficient mice, which carry a homozygous deletion for the telomerase RNA component gene (mTerc). Late‐generation mTerc?/? microglia show telomere shortening and decreased proliferation efficiency. Under physiological conditions, gene expression and functionality of G3 mTerc?/? microglia are comparable with microglia derived from G1 mTerc?/? mice despite changes in morphology. However, after intraperitoneal injection of bacterial lipopolysaccharide (LPS), G3 mTerc?/? microglia mice show an enhanced pro‐inflammatory response. Nevertheless, this enhanced inflammatory response was not accompanied by an increased expression of genes known to be associated with age‐associated microglia priming. The increased inflammatory response in microglia correlates closely with increased peripheral inflammation, a loss of blood–brain barrier integrity, and infiltration of immune cells in the brain parenchyma in this mouse model of telomere shortening. 相似文献
9.
George J. Dombrowski Jr. Kenneth R. Swiatek Kuen-Lan Chao 《Neurochemical research》1994,19(10):1301-1310
Fructose 2,6-diphosphate and glucose 1,6-diphosphate concentrations were determined during late gestation and over the course of suckling in rat brain cortex and cerebellum. Cortex fructose 2,6-diphosphate concentration was greatest in neonatal animals and gradually declined thereafter by 25% to reach the adult level at 15 days of age. In contrast, the glucose 1,6-diphosphate concentration increased 4-fold over the same period to reach its highest level by postnatal day 15. Neither cerebellar fructose 2,6-diphosphate nor glucose 1,6-diphosphate concentrations varied significantly. Six day cortex 6-phosphofructo-1-kinase was less sensitive to inhibition by citrate than the enzyme obtained from 15 day pups, and fructose 2,6-diphosphate was better than glucose 1,6-diphosphate at relieving the inhibition imposed by citrate at either age. It is suggested that the rise in cerebral glucose use which occurs during suckling cannot be attributed to either changes in the concentrations of fructose 2,6-diphosphate or glucose 1,6-diphosphate, or the age-related differential sensitivity of 6-phosphofructo-1-kinase toward these effectors. 相似文献
10.
Audigier S Guiramand J Prado-Lourenco L Conte C Gonzalez-Herrera IG Cohen-Solal C Récasens M Prats AC 《RNA (New York, N.Y.)》2008,14(9):1852-1864
Fibroblast growth factor-2 (FGF-2) plays a fundamental role in brain functions. This role may be partly achieved through the control of its expression at the translational level via an internal ribosome entry site (IRES)-dependent mechanism. Transgenic mice expressing a bicistronic mRNA allowed us to study in vivo and ex vivo where this translational mechanism operates. Along brain development, we identified a stringent spatiotemporal regulation of FGF-2 IRES activity showing a peak at post-natal day 7 in most brain regions, which is concomitant with neuronal maturation. At adult age, this activity remained relatively high in forebrain regions. By the enrichment of this activity in forebrain synaptoneurosomes and by the use of primary cultures of cortical neurons or cocultures with astrocytes, we showed that this activity is indeed localized in neurons, is dependent on their maturation, and correlates with endogenous FGF-2 protein expression. In addition, this activity was regulated by astrocyte factors, including FGF-2, and spontaneous electrical activity. Thus, neuronal IRES-driven translation of the FGF-2 mRNA may be involved in synapse formation and maturation. 相似文献
11.
Ack1 is a non-receptor tyrosine kinase that is highly expressed in the adult central nervous system (CNS). Here, we studied the distribution of Ack1 mRNA throughout the development of mouse CNS. Expression was detected in all areas of the brain but especially high levels were observed in the neocortex, hippocampus, and cerebellum. Interestingly, expression levels were prominent in areas of proliferation such as the subventricular zone and areas that originate other structures such the pontine nucleus and the ganglionic eminence. During development, several areas showed an increase in Ack1 expression, especially the dentate gyrus and CA3 in the hippocampus, layer V in the neocortex, and the Purkinje cell layer in the cerebellum. These results demonstrate that this kinase is up-regulated during development and that it is expressed in proliferative areas and in migratory pathways in the developing brain. 相似文献
12.
Stephen Zamenhof 《Development genes and evolution》1976,180(1):1-8
Summary Experimental chick embryos were incubated at 37.5°C till day 7 and after day 10, and at 40.5°C on days 7–10; their optic lobes and cerebral hemispheres at day 10 and at hatching were compared with controls incubated at 37.5°C only. Cell numbers at day 10 were directly counted by a new method involving formalin fixation and cell disaggregation by gentle sonication. At hatching, body weights, organ weights and organ DNA (cell numbers) were the same in experimentals and in controls, for both optic lobes and cerebral hemispheres, though the protein contents were significantly higher in experimentals. However, at 10 days (end of neuron proliferation) the weights and the cell numbers in experimentals were significantly higher. Two possible explanations have been offered: 1. Elevated neuron population in experimental animals at day 10 is followed by their elevated death rate, or 2. The increment in neuron number is permanent but at hatching it is overshadowed by the population of other cells.An abstract of this work has been presented (Zamenhof, 1975) 相似文献
13.
14.
Patterns of growth and tract formation during the early development of secondary lineages in the Drosophila larval brain 下载免费PDF全文
Jennifer K. Lovick Angel Kong Jaison J. Omoto Kathy T. Ngo Amelia Younossi‐Hartenstein Volker Hartenstein 《Developmental neurobiology》2016,76(4):434-451
The Drosophila brain consists of a relatively small number of invariant, genetically determined lineages which provide a model to study the relationship between gene function and neuronal architecture. In following this long‐term goal, we reconstruct the morphology (projection pattern and connectivity) and gene expression patterns of brain lineages throughout development. In this article, we focus on the secondary phase of lineage morphogenesis, from the reactivation of neuroblast proliferation in the first larval instar to the time when proliferation ends and secondary axon tracts have fully extended in the late third larval instar. We have reconstructed the location and projection of secondary lineages at close (4 h) intervals and produced a detailed map in the form of confocal z‐projections and digital three‐dimensional models of all lineages at successive larval stages. Based on these reconstructions, we could compare the spatio‐temporal pattern of axon formation and morphogenetic movements of different lineages in normal brain development. In addition to wild type, we reconstructed lineage morphology in two mutant conditions. (1) Expressing the construct UAS‐p35 which rescues programmed cell death we could systematically determine which lineages normally lose hemilineages to apoptosis. (2) so‐Gal4‐driven expression of dominant‐negative EGFR ablated the optic lobe, which allowed us to conclude that the global centrifugal movement normally affecting the cell bodies of lateral lineages in the late larva is causally related to the expansion of the optic lobe, and that the central pattern of axonal projections of these lineages is independent of the presence or absence of the optic lobe. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 434–451, 2016 相似文献
15.
Interneuron progenitors in the ganglionic eminence of the ventral telencephalon generate most cortical interneurons during brain development. However, the regulatory mechanism of interneuron progenitors remains poorly understood. Here, we show that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) regulates proliferation and macroautophagy/autophagy of interneuron progenitors in the developing ventral telencephalon. To investigate the role of MTOR in interneuron progenitors, we conditionally deleted the Mtor gene in mouse interneuron progenitors and their progeny by using Tg(mI56i-cre,EGFP)1Kc/Dlx5/6-Cre-IRES-EGFP and Nkx2–1-Cre drivers. We found that Mtor deletion markedly reduced the number of interneurons in the cerebral cortex. However, relative positioning of cortical interneurons was normal, suggesting that disruption of progenitor self-renewal caused the decreased number of cortical interneurons in the Mtor-deleted brain. Indeed, Mtor-deleted interneuron progenitors showed abnormal proliferation and cell cycle progression. Additionally, we detected a significant activation of autophagy in Mtor-deleted brain. Our findings suggest that MTOR plays a critical role in the regulation of cortical interneuron number and autophagy in the developing brain. 相似文献
16.
17.
糖皮质激素受体(glucocorticoid reccptor,GR)广泛分布在脊椎动物中枢神经系统的多个组织区域中,而且结构及功能保守。在与激素结合的状态下,受体能够特异性地与靶基因的启动子结合影响基因的表达,或通过激活G蛋白偶联的信号途径引起神经递质的释放。外界环境刺激和外源糖皮质激素暴露都能改变GR在脑中的表达,并对神经的发育及功能产生影响,同时也对学习、记忆以及情感等高级神经活动和行为起到重要的作用。该文对脊椎动物糖皮质激素受体的结构和在脑中的分布,以及对神经发育和功能的影响及其中的分子机制的最新研究进展进行综述。 相似文献
18.
EphAs and ephrin‐As are expressed in multiple regions of the developing brain and have been implicated in regulating brain size. Here, we report the identification of a novel mechanism in which reverse signaling through ephrin‐As controls neural epithelial cell number in the developing brain. Ectopic expression of EphA8‐Fc in transgenic embryos induced apoptosis of neural epithelial cells, which was accompanied by a dramatic decrease in brain size. The number of ephrin‐A5‐expressing cells was significantly reduced in the brain region where EphA8‐Fc was ectopically expressed. Furthermore, in vitro culture of the dissociated neuroepithelial cells revealed that EphA8‐Fc enhanced apoptotic cell death of the ephrinA5‐expressing cells in a caspase‐dependent manner. Thus, our results suggest that reverse signaling through ephrin‐As is biochemically linked with caspase‐dependent proapoptotic signaling during early brain development. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 702–712, 2013 相似文献
19.
To study mechanisms involved in the sexual differentiation of the rat brain, the expression of the protein product of the proto-oncogene c-raf-1 (Raf-1) was examined. Biochemical and immunocytochemical analyses localized Raf-1 in embryonic rat brain regions and demonstrated hormonally induced changes in Raf-1 expression. For this study an affinity-purified anti-peptide antiserum specific for Raf-1 (NH-44) was used. Western blots revealed an approximately 77 kD polypeptide isolated in the cytosol of developing rat brains. Raf-1 levels were highest in the embryonic (E) day 22 female hypothalamus (HYP), and approximately twofold higher than levels detected in male HYP at E22 as determined by quantitative protein dot blot and semiquantitative Western blot analyses. Raf-1 levels in HYP were greater than those in either brain stem (BS) or cortex. Immunocytochemical analysis revealed high levels of Raf-1 in selective brain regions (e.g., the ventromedial nucleus in the HYP, the mitral cell layers in the main and accessory olfactory bulbs (OB), and the locus coeruleus) at E22 and postnatal (P) day I. Lower levels of immunoreactivity were observed in many areas of the perinatal neuraxis. To test hormonal regulation of Raf-1, testosterone propionate (TP) was administered to pregnant rats on E17; male and female fetuses were examined on E22. This treatment significantly decreased Raf-1 levels in female HYP, but not in male HYP, as determined by Western blot analysis. No significant sex difference or response to prenatal hormone treatments were observed in either brain stem or cortex. No significant sex difference was noted postnatally, and administration of TP 3 h after birth did not change Raf-1 levels examined 24 h later. In summary, Raf-1 was localized within selective regions of the rat brain, and its expression was altered by exogenous prenatal hormonal stimulation. One role for Raf-1 in signal transduction may be to delimit hormonal critical periods in sexual differentiation of the brain. 相似文献
20.
Belen Joglar Jannette Rodriguez-Pallares Ana Isabel Rodriguez-Perez Pablo Rey Maria Jose Guerra Jose Luis Labandeira-Garcia 《Journal of neurochemistry》2009,109(2):656-669
The neurotoxin MPTP reproduces most of the biochemical and pathological hallmarks of Parkinson's disease. In addition to reactive oxygen species (ROS) generated as a consequence of mitochondrial complex I inhibition, microglial NADPH-derived ROS play major roles in the toxicity of MPTP. However, the exact mechanism regulating this microglial response remains to be clarified. The peptide angiotensin II (AII), via type 1 receptors (AT1), is one of the most important inflammation and oxidative stress inducers, and produces ROS by activation of the NADPH-oxidase complex. Brain possesses a local angiotensin system, which modulates striatal dopamine (DA) release. However, it is not known if AII plays a major role in microglia-derived oxidative stress and DA degeneration. The present study indicates that in primary mesencephalic cultures, DA degeneration induced by the neurotoxin MPTP/MPP+ is amplified by AII and inhibited by AT1 receptor antagonists, and that protein kinase C, NADPH-complex activation and microglial activation are involved in this effect. In mice, AT1 receptor antagonists inhibited both DA degeneration and early microglial and NADPH activation. The brain angiotensin system may play a key role in the self-propelling mechanism of Parkinson's disease and constitutes an unexplored target for neuroprotection, as previously reported for vascular diseases. 相似文献